首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major drawback with cancer therapy is the development of resistant cells within tumors due to their heterogeneous nature and due to inadequate drug delivery during chemotherapy. Therefore, the propagation of injury ("bystander effect" (BE)) from directly damaged cells to other cells may have great implications in cancer chemotherapy. The general advantage of the bystander cell killing phenomenon is the large therapeutic index that can be achieved. Experiments suggest that this phenomenon is detected in radiation therapy as well as in gene therapy in conjunction with chemotherapy. In the present study, we developed an original in vitro model dedicated to the exploration of bystander cytotoxicity induced during breast carcinoma chemotherapy. In brief, we investigated this perpetuation of injury on untreated bystander MCF-7 breast cancer cells which were coplated with 5-fluorouracil (5-FU)-treated MDA-MB-231 breast cancer cells. To achieve this goal, a specific in vitro coculture model which involved mixing of aggressive MDA-MB-231 breast cancer cells with enhanced green fluorescent protein (EGFP) expressing stable clone of non-metastatic MCF-7 breast cancer cells (MCF-EGFP), was used. A bystander killing effect was observed in MCF-EGFP cells cocultured with MDA-MB-231 cells pretreated with 5-FU. The striking decrease in MCF-EGFP cells, as detected by assaying for total GFP intensity, is mediated by activation of Fas/FasL system. The implication of Fas in MCF-EGFP cell death was confirmed by using antagonistic anti-FasL antibody that reverses bystander cell death by blocking FasL on MDA-MB-231 cells. In addition, inhibition of CD95/Fas receptor on the cell surface of MCF-EGFP cells by treatment with Pifithrin-alpha, a p53 specific transactivation inhibitor, partially abrogated the sensitivity of bystander MCF-EGFP cells. Our data, therefore, demonstrates that the Fas/FasL system could be considered as a new determinant for chemotherapy-induced bystander cell death in breast cancers.  相似文献   

2.
Previous reports have shown that gap junctions relay cell death in many cell types. However, changes in electrical coupling and their dynamics during cell death are poorly understood. We performed comprehensive studies of electrical coupling following induction of cell death by single-cell cytochrome c (cyC) injection in paired Xenopus oocytes. Cell death was rapidly induced by cyC in injected cells, and cell death was also observed in uninjected bystander cells electrically coupled to the cyC-injected oocytes. Gap junction currents either remained at pre-cyC injection levels or increased dramatically as the injected cell died. Nonjunctional currents increased in injected cells immediately following cyC injection; nonjunctional currents increased slowly in uninjected bystander cells. Bystander cell death occurred only when junctional conductance was approximately 6 muS. Both 1,2-bis-(o-aminophenoxy)-ethane-N,N,-N',N'-tetraacetic acid tetraacetoxy-methyl ester and Xestospongin C inhibited bystander cell death in pairs that had reached the death conductance threshold, suggesting that Ca(2+) and inositol 1,4,5 triphosphate are involved in the process.  相似文献   

3.
Although many works support gap junctional intercellular communication (GJIC) having a close relation to bystander cell killing in herpes simplex virus thymidine kinase (HSV-TK) gene and ganciclovir (GCV) treatment, our previous work suggested that other factors involved in bystander effect besides GJIC exist. To confirm our primary work, we evaluated the mode of the bystander cell (C6) co-cultured with TK-positive cells (TF10.2) in our designed "insert plates" in which two cell lines could be separated but share the same medium. Another method that we used was adding the supernatant from the medium of GCV-treated TF10.2 cells to the wild type C6. Growth inhibition of the bystander cells was observed despite the absence of GJIC. In addition, apoptotic cell death of TK+ cells and bystander cells was obvious. These studies suggested that other pathways besides cell-cell contacts may play a role in bystander cell killing; the factors released from TK-positive cells could induce apoptosis of bystander cells.  相似文献   

4.
Ionizing radiation-induced bystander effects have been documented for a multitude of endpoints such as mutations, chromosome aberrations and cell death, which arise in nonirradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. To address this, we employed precise microbeams of carbon and neon ions for targeting only a very small fraction of cells in confluent fibroblast cultures. Conventional broadfield irradiation was conducted in parallel to see the effects in irradiated cells. Exposure of 0.00026% of cells led to nearly 10% reductions in the clonogenic survival and twofold rises in the apoptotic incidence regardless of ion species. Whilst apoptotic frequency increased with time up to 72 h postirradiation in irradiated cells, its frequency escalated up to 24h postirradiation but declined at 48 h postirradiation in bystander cells, indicating that bystander cells exhibit transient commitment to apoptosis. Carbon- and neon-ion microbeam irradiation similarly caused almost twofold increments in the levels of serine 15-phosphorylated p53 proteins, irrespective of whether 0.00026, 0.0013 or 0.0066% of cells were targeted. Whereas the levels of phosphorylated p53 were elevated and remained unchanged at 2h and 6h postirradiation in irradiated cells, its levels rose at 6h postirradiation but not at 2h postirradiation in bystander cells, suggesting that bystander cells manifest delayed p53 phosphorylation. Collectively, our results indicate that heavy ions inactivate clonogenic potential of bystander cells, and that the time course of the response to heavy ions differs between irradiated and bystander cells. These induced bystander responses could be a defensive mechanism that minimizes further expansion of aberrant cells.  相似文献   

5.
In this study we investigated the involvement of p53 in cytotoxic T-lymphocyte (CTL)-induced tumor target cell killing mediated by the perforin/granzymes pathway. For this purpose we used a human CTL clone (LT12) that kills its autologous melanoma target cells (T1), harboring a wild type p53. We demonstrated initially that LT12 kills its T1 target in a perforin/granzymes-dependent manner. Confocal microscopy and Western blot analysis indicated that conjugate formed between LT12 and T1 resulted in rapid cytoplasmic accumulation of p53 and its activation in T1 target cells. Cytotoxic assay using recombinant granzyme B (GrB) showed that this serine protease is the predominant factor inducing such accumulation. Furthermore, RNA interference-mediated lowering of the p53 protein in T1 cells or pifithrin-alpha-induced p53-specific inhibition activity significantly decreased CTL-induced target killing mediated by CTL or recombinant GrB. This emphasizes that p53 is an important determinant in granzyme B-induced apoptosis. Our data show furthermore that when T1 cells were treated with streptolysin-O/granzyme B, specific phosphorylation of p53 at Ser-15 and Ser-37 residues was observed subsequent to the activation of the stress kinases ataxia telangiectasia mutated (ATM) and p38K. Treatment of T1 cells with pifithrin-alpha resulted in inhibition of p53 phosphorylation at these residues and in a significant decrease in GrB-induced apoptotic T1 cell death. Furthermore, small interference RNAs targeting p53 was also accompanied by an inhibition of streptolysin-O/granzyme B-induced apoptotic T1 cell death. The present study supports p53 induction after CTL-induced stress in target cells. These findings provide new insight into a potential role of p53 as a component involved in the dynamic regulation of the major pathway of CTL-mediated cell death and may have therapeutic implications.  相似文献   

6.
7.
The melanoma differentiation-associated gene-7 (mda-7/IL-24) is a unique member of the interleukin 10 (IL-10) family of cytokines, with ubiquitous tumor cell pro-apoptotic activity. Recent data have shown that IL-24 is secreted as a glycosylated protein and functions as a pro-Th1 cytokine and as a potent anti-angiogenic molecule. In this study, we analyzed the activity of Ad-mda7 and its protein product, secreted IL-24, against human breast cancer cells. We show that Ad-mda7 transduction of human breast cancer cells results in G2/M phase cell cycle arrest and apoptotic cell death, which correlates with secretion of IL-24 protein. Neutralizing antibody against IL-24 significantly inhibited Ad-mda7 cytotoxicity. IL-24 and IL-10 both engage their cognate receptors on breast cancer cells resulting in phosphorylation and activation of STAT3, however, IL-10 receptor binding failed to induce cell killing, indicating that tumor cell killing by IL-24 is independent of STAT3 phosphorylation. Treatment with exogenous IL-24 induced apoptosis in breast cancer cells and this effect was abolished by addition of anti-IL-24 antibody or anti-IL-20R1, indicating that bystander cell killing is mediated via IL-24 binding to the IL-20R1/IL-20R2 heterodimeric receptor complex. Co-administration of the related cytokine IL-10 inhibited killing mediated by IL-24 and concomitantly inhibited IL-24 mediated up-regulation of the tumor suppressor proteins, p53 and p27Kip1. In summary, we have defined a tumor-selective cytotoxic bystander role for secreted IL-24 protein and identified a novel receptor-mediated death pathway in breast cancer cells, wherein the related cytokines IL-24 and IL-10 exhibit antagonistic activity.  相似文献   

8.
9.
Exposure of p53 mutated estrogen-receptor-negative MDA-MB231 human breast tumor cells to a pharmacological concentration of estradiol enhances liposome-mediated uptake and expression of SV-40 luciferase. Unexpectedly, the effect of estradiol on SV-40 expression is evident even when estradiol exposure occurs after the initial uptake phase; this suggests that estradiol may influence gene expression by mechanisms other than increasing gene uptake alone, such as altering the intracellular distribution of the gene. We determined that while uptake of SV-40 luciferase is increased only three-fold by estradiol, there is a 30-fold increase in the nuclear/cytoplasmic ratio of the gene. In order to demonstrate that the influence of estradiol on gene uptake and expression is translated into a functional response, the effects of estradiol on the function of an exogenous gene, in this case the apoptotic function of p53, were assessed in the p53 mutated MDA-MB231 breast tumor cell. While liposome-mediated delivery of CMV-p53 alone was ineffective in promoting cell death, incubation with estradiol and the liposomal p53 complex resulted in a two-fold increase in cell killing over that observed in cells transfected with the corresponding mock vector (empty vector for p53). Evidence that cell killing was occurring through apoptosis included apoptotic body formation, cell shrinkage and an increase in fluorescence after terminal transferase end-labeling. The capacity of estradiol to promote apoptosis in MDA-MB231 cells by a p53-liposome complex is likely to be related to the preferential redistribution of the gene from the cytoplasm to the nucleus which could occur during both the uptake and post-uptake phases. Consequently, although direct effects on gene expression, and the stability of message and protein cannot be ruled out, the predominant effect of estradiol in this experimental system appears to be to influence DNA translocation from the cytoplasm to the cell nucleus.  相似文献   

10.
Activation of p53 by cellular stress may lead to either cell cycle arrest or apoptotic cell death. Restrictions in a cell's ability to halt the cell cycle might, in turn, cause mitotic catastrophe, a delayed type of cell death with distinct morphological features. Here, we have investigated the contribution of p53 and caspase-2 to apoptotic cell death and mitotic catastrophe in cisplatin-treated ovarian carcinoma cell lines. We report that both functional p53 and caspase-2 were required for the apoptotic response, which was preceded by translocation of nuclear caspase-2 to the cytoplasm. In the absence of functional p53, cisplatin treatment resulted in caspase-2-independent mitotic catastrophe followed by necrosis. In these cells, apoptotic functions could be restored by transient expression of wt p53. Hence, p53 appeared to act as a switch between apoptosis and mitotic catastrophe followed by necrosis-like lysis in this experimental model. Further, we show that inhibition of Chk2, and/or 14-3-3sigma deficiency, sensitized cells to undergo mitotic catastrophe upon treatment with DNA-damaging agents. However, apoptotic cell death seemed to be the final outcome of this process. Thus, we hypothesize that the final mode of cell death triggered by DNA damage in ovarian carcinoma cells is determined by the profile of proteins involved in the regulation of the cell cycle, such as p53- and Chk2-related proteins.  相似文献   

11.
12.
Conditionally replicating adenoviruses (CRAds) represent a promising class of novel anticancer agents that are used for virotherapy. The E1ADelta24 mutation-based viruses, Ad5-Delta24 [CRAd(E3-); E3 region deleted] and infectivity-enhanced Ad5-Delta24RGD [CRAd(E3+)] have been shown to potently eradicate tumor cells. The presence of the E3 region in the latter virus is known to improve cell killing that can be attributed to the presence of the oncolysis-enhancing Ad death protein. The more precise mechanism by which CRAds kill tumor cells is unclear, and the role of the host cell apoptotic machinery in this process has been addressed only in a limited way. Here, we examine the role of several major apoptotic pathways in the CRAd-induced killing of non-small-cell lung cancer H460 cells. As expected, CRAd(E3+) was more potent than CRAd(E3-). No evidence for the involvement of the p53-Bax apoptotic pathway was found. Western blot analyses demonstrated strong suppression of p53 expression and unchanged Bax levels during viral replication, and stable overexpression of human papillomavirus type 16-E6 in H460 cells did not affect killing by both CRAds. CRAd activity was also not hampered by stable overexpression of anti-apoptotic Bcl2 or BclXL, and endogenous Bcl2/BclXL protein levels remained constant during the oncolytic cycle. Some evidence for caspase processing was obtained at late time points after infection; however, the inhibition of caspases by the X-linked inhibitor of apoptosis protein overexpression or cotreatment with zVAD-fmk did not inhibit CRAd-dependent cell death. Analyses of several apoptotic features revealed no evidence for nuclear fragmentation or DNA laddering, although phosphatidylserine externalization was detected. We conclude that despite the known apoptosis-modulating abilities of individual Ad proteins, Ad5-Delta24-based CRAds trigger necrosis-like cell death. In addition, we propose that deregulated apoptosis in cancer cells, a possible drug resistance mechanism, provides no barrier for CRAd efficacy.  相似文献   

13.
The p53-activated gene PAG608, which encodes a nuclear zinc finger protein, is a p53-inducible gene that contributes to p53-mediated apoptosis. However, the mechanisms by which PAG608 is involved in the apoptosis of neuronal cells are still obscure. In this study, we demonstrated that expression of p53 was induced by 100 microm 6-hydroxydopamine (6-OHDA), accompanied by increased PAG608 expression in PC12 cells. On the other hand, transient or permanent transfection of antisense PAG608 cDNA into PC12 cells significantly prevented apoptotic cell death induced by 100 microm 6-OHDA or 200 microm hydrogen peroxide but not by 250 microm 1-methyl-4-phenylpyridinium ion. The 6-OHDA-induced activation of caspase-3, DNA fragmentation, loss of mitochondrial membrane potential, and induction of p53 and Bax were also prevented in PC12 cells that stably expressed antisense PAG608 cDNA. These results suggest that PAG608 is associated with the apoptotic pathway induced by these oxidative stress-generating reagents, upstream of the collapse in the mitochondrial membrane potential in PC12 cells. Interestingly, transient transfection with PAG608 cDNA increased p53 expression in both PC12 cells and B65 cells, indicating that PAG608 induced by p53 is able to induce p53 expression in these cells inversely. Furthermore, transient transfection of a truncated mutant PAG608 cDNA, lacking the first zinc finger domain, inhibited 6-OHDA-induced cell death and altered the nuclear and nucleolar localization of wild-type PAG608 in PC12 cells. These results suggest that PAG608 may induce or regulate p53 expression and translocate to the nucleus and nucleolus using its first zinc finger domain during oxidative stress-induced apoptosis of catecholamine-containing cells.  相似文献   

14.
There has been a recent upsurge of interest in radiation-induced bystander effects. Previously we reported that the accumulation of inducible nitric oxide (NO) synthase (iNOS) was induced only in human glioblastoma mutant (m) p53 cells by acute irradiation with X-rays, suggesting a suppression of iNOS induction after acute irradiation with X-rays in wtp53 cells. NO secreted from the irradiated mp53 cells induced the accumulation of p53 in unirradiated wtp53 cells. The radiosensitivity of wtp53 cells was reduced by exposure to the conditioned medium from irradiated mp53 cells, suggesting that NO is an initiator of radiation-induced bystander effects. In the present study, we found that the accumulation of iNOS in wtp53 cells was induced by chronic irradiation with gamma-rays followed by acute irradiation with X-rays, but not by each one. It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation. We found that chronic irradiation with gamma-rays did not inhibit the accumulation of p53 after exposure to the conditioned medium from the irradiated mp53 cells. However, the decay of accumulated p53 was stimulated by chronic irradiation with gamma-rays. At the same time, the accumulation of Hdm2 was observed; suggesting that chronic irradiation with gamma-rays may stimulate the degradation of p53 accumulated by NO-mediated bystander effects.  相似文献   

15.
Early stages of p53-induced apoptosis are reversible   总被引:2,自引:0,他引:2  
Apoptosis is a type of physiological cell death that occurs during development, normal tissue homeostasis, or as a result of different cellular insults. The phenotype of an apoptotic cell is relatively consistent in most cases of apoptosis and involves at least changes in the cell membrane, proteolysis of cytoplasmic and nuclear proteins, and eventual destruction of nuclear DNA. Our laboratory is interested in the reversibility of apoptosis. We have initial evidence that DNA repair is activated early in p53-induced apoptosis and may be involved in its reversibility. The present work further strengthens our proposition that p53-induced apoptosis is reversible. We show that p53 activation induces phosphatidylserine (PS) externalization early in apoptosis, and that these early apoptotic cells with externalized PS can be rescued and proliferate if the apoptotic stimulus is removed. In addition, we show that unscheduled DNA synthesis occurs in early apoptotic cells, and that if DNA repair is inhibited by aphidicolin, apoptosis is accelerated. These results confirm that early p53-induced apoptotic cells can be rescued from the apoptotic program, and that DNA repair can modulate that cell death process.  相似文献   

16.
The p53 tumor suppressor gene is critically involved in cell cycle regulation, DNA repair, and programmed cell death. Several lines of evidence suggest that p53 death signals lead to caspase activation; however, the mechanism of caspase activation by p53 still is unclear. Expressing wild type p53 by means of an adenoviral expression vector, we were able to induce apoptotic cell death, as characterized by morphological changes, phosphatidylserine externalization, and internucleosomal DNA fragmentation, in p53(null) Saos-2 cells. This cell death was accompanied by caspase activation as well as by cleavage of caspase substrates and was preceded by mitochondrial cytochrome c release. The addition of the broad-spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) directly after transduction almost completely prevented p53-induced apoptotic cell death but did not inhibit mitochondrial cytochrome c release. In contrast, N-acetylcysteine, even at high concentrations, could not prevent induction of programmed cell death by p53 expression. Cytosolic extracts from Saos-2 cells transduced with p53, but not from Saos-2 cells transduced with the empty adenoviral vector, contained a cytochrome c-releasing activity in vitro, which was still active in the presence of zVAD-fmk. When Bax was immunodepleted from the cytosolic extracts of p53-expressing cells before incubation with isolated mitochondria, the in vitro cytochrome c release was abolished. Thus, we could demonstrate in cells and in vitro that p53 activates the apoptotic machinery through induction of the release of cytochrome c from the mitochondrial intermembrane space. Furthermore, we provide in vitro evidence for the requirement of cytosolic Bax for this cytochrome c-releasing activity of p53 in Saos-2 cells.  相似文献   

17.
Cell death induced by the Fas/Fas ligand pathway and its role in pathology.   总被引:12,自引:0,他引:12  
Engagement of the cell death surface receptor Fas by Fas ligand (FasL) results in apoptotic cell death, mediated by caspase activation. Cell death mediated via Fas/FasL interaction is important for homeostasis of cells in the immune system and for maintaining immune-privileged sites in the body. Killing via the Fas/FasL pathway also constitutes an important pathway of killing for cytotoxic T cells. Fas ligand is induced in activated T cells, resulting in activation-induced cell death by the Fas/FasL pathway. Recently it has been shown that the Fas receptor can also be up-regulated following a lesion to the cell, particularly that induced by DNA-damaging agents. This can then result in killing of the cell by a Fas/FasL-dependent pathway. Up-regulation of Fas receptor following DNA damage appears to be p53 dependent.  相似文献   

18.
Sphingolipids such as ceramide are important mediators of apoptosis and growth arrest triggered by ligands such as tumor necrosis factor and Fas-L binding to their receptors. When LM (expressing p53) and LME6 (lacking p53) cells were exposed to the genotoxin N-methyl-N-nitro-N-nitrosoguanidine (MNNG), both cell lines underwent cytolysis in a very similar manner, suggesting the presence of a p53-independent apoptotic response to this genotoxic stress. To determine whether sphingolipids such as ceramide might serve as mediators in this system, the responses of these cells to exogenous sphingolipids as well as their changes in endogenous sphingolipid levels after DNA damage were examined. Treatment with exogenous C2-ceramide and sphingosine led to cell death in both LM and LME6, and treatment of the LME6 cells with MNNG resulted in a transient increase in intracellular ceramide of approximately 50% over a period of 3 h. Finally, treatment with the de novo inhibitor of ceramide synthesis ISP-1 protected LME6 cells from MNNG-triggered cell death. This MNNG-triggered induction of ceramide was not observed in the p53-expressing LM cells, suggesting that it may be down-regulated by p53. Although ceramide-mediated cell death can proceed in the absence of p53, exogenously added C2-ceramide increased the cellular p53 level in LM cells, suggesting that the two pathways do interact.  相似文献   

19.
DNA damaging agents typically induce an apoptotic cascade in which p53 plays a central role. However, absence of a p53-mediated response does not necessarily abrogate programmed cell death, due to the existence of p53-independent apoptotic pathways, such as those mediated by the pro-apoptotic molecule ceramide. We compared ceramide levels before and after DNA damage in human osteosarcoma (U2OS) and colon cancer (HCT116) cells that were either expressing or deficient in p53. When treated with mitomycin C, p53-deficient cells, but not p53-expressing cells, showed a marked increase in ceramide levels. Microarray analysis of genes involved in ceramide metabolism identified acid ceramidase (ASAH1, up-regulated), ceramide glucosyltransferase (UGCG, down-regulated), and galactosylceramidase (GALC, up-regulated) as the three genes most affected. Experiments employing pharmacological and siRNA agents revealed that inhibition of UGCG is sufficient to increase ceramide levels and induce cell death. When inhibition of UGCG and treatment with mitomycin C were combined, p53-deficient, but not p53-expressing cells, showed a significant increase in cell death, suggesting that the regulation of sphingolipid metabolism could be used to sensitize cells to chemotherapeutic drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号