首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human sulfatase family has 17 members, 13 of which have been characterized biochemically. These enzymes specifically hydrolyze sulfate esters in glycosaminoglycans, sulfolipids, or steroid sulfates, thereby playing key roles in cellular degradation, cell signaling, and hormone regulation. The loss of sulfatase activity has been linked to severe pathophysiological conditions such as lysosomal storage disorders, developmental abnormalities, or cancer. A novel member of this family, arylsulfatase K (ARSK), was identified bioinformatically through its conserved sulfatase signature sequence directing posttranslational generation of the catalytic formylglycine residue in sulfatases. However, overall sequence identity of ARSK with other human sulfatases is low (18–22%). Here we demonstrate that ARSK indeed shows desulfation activity toward arylsulfate pseudosubstrates. When expressed in human cells, ARSK was detected as a 68-kDa glycoprotein carrying at least four N-glycans of both the complex and high-mannose type. Purified ARSK turned over p-nitrocatechol and p-nitrophenyl sulfate. This activity was dependent on cysteine 80, which was verified to undergo conversion to formylglycine. Kinetic parameters were similar to those of several lysosomal sulfatases involved in degradation of sulfated glycosaminoglycans. An acidic pH optimum (∼4.6) and colocalization with LAMP1 verified lysosomal functioning of ARSK. Further, it carries mannose 6-phosphate, indicating lysosomal sorting via mannose 6-phosphate receptors. ARSK mRNA expression was found in all tissues tested, suggesting a ubiquitous physiological substrate and a so far non-classified lysosomal storage disorder in the case of ARSK deficiency, as shown before for all other lysosomal sulfatases.  相似文献   

2.
Sulfotransferases and sulfatases are the major enzymes responsible for sulfate transfer processes. The past two years have seen the elucidation of new functions for these enzymes, and a great progression in their structural characterization, which confirms that these two types of enzymes possess a highly conserved fold. For catalytic activity, sulfatases must contain a formylglycine residue, which is generated by various formylglycine-generating enzymes. Mechanistic and structural details have recently been obtained for a group of cofactor-independent formylglycine-generating enzymes termed FGEs. Finally, an increasing light has been cast upon the mechanism of sulfatase inactivation by a group of clinically important agents, the aryl sulfamates.  相似文献   

3.
Nutrient sulfate is essential for numerous physiological functions in mammalian growth and development. Accordingly, disruptions to any of the molecular processes that maintain the required biological ratio of sulfonated and unconjugated substrates are likely to have detrimental consequences for mammalian physiology. Molecular processes of sulfate biology can be broadly grouped into four categories: firstly, intracellular sulfate levels are maintained by intermediary metabolism and sulfate transporters that mediate the transfer of sulfate across the plasma membrane; secondly, sulfate is converted to 3′-phosphoadenosine 5′-phosphosulfate (PAPS), which is the universal sulfonate donor for all sulfonation reactions; thirdly, sulfotransferases mediate the intracellular sulfonation of endogenous and exogenous substrates; fourthly, sulfate is removed from substrates via sulfatases. From the literature, we curated 91 human genes that encode all known sulfate transporters, enzymes in pathways of sulfate generation, PAPS synthetases and transporters, sulfotransferases and sulfatases, with a focus on genes that are linked to human and animal pathophysiology. The predominant clinical features linked to these genes include neurological dysfunction, skeletal dysplasias, reduced fecundity and reproduction, and cardiovascular pathologies. Collectively, this review provides reference information for genetic investigations of perturbed mammalian sulfate biology.  相似文献   

4.
The genome of Mycobacterium tuberculosis (Mtb) encodes nine putative sulfatases, none of which have a known function or substrate. Here, we characterize Mtb’s single putative type II sulfatase, Rv3406, as a non-heme iron (II) and α-ketoglutarate-dependent dioxygenase that catalyzes the oxidation and subsequent cleavage of alkyl sulfate esters. Rv3406 was identified based on its homology to the alkyl sulfatase AtsK from Pseudomonas putida. Using an in vitro biochemical assay, we confirmed that Rv3406 is a sulfatase with a preference for alkyl sulfate substrates similar to those processed by AtsK. We determined the crystal structure of the apo Rv3406 sulfatase at 2.5 Å. The active site residues of Rv3406 and AtsK are essentially superimposable, suggesting that the two sulfatases share the same catalytic mechanism. Finally, we generated an Rv3406 mutant (Δrv3406) in Mtb to study the sulfatase’s role in sulfate scavenging. The Δrv3406 strain did not replicate in minimal media with 2-ethyl hexyl sulfate as the sole sulfur source, in contrast to wild type Mtb or the complemented strain. We conclude that Rv3406 is an iron and α-ketoglutarate-dependent sulfate ester dioxygenase that has unique substrate specificity that is likely distinct from other Mtb sulfatases.  相似文献   

5.
Evidence is presented showing that arylsulfatases reacting at acidic pH are more active towards p-nitrocatechol sulfate substrate, while the reverse is true for the enzymes having alkaline pHmax. An explanation of this phenomenon is suggested based on the ionization of p-nitrocatechol sulfate (pKa = 6.4) and a much higher reactivity of sulfatases with the acidic form of the substrate.  相似文献   

6.
Arylsulfatase G, a novel lysosomal sulfatase   总被引:1,自引:0,他引:1  
The sulfatases constitute a conserved family of enzymes that specifically hydrolyze sulfate esters in a wide variety of substrates such as glycosaminoglycans, steroid sulfates, or sulfolipids. By modifying the sulfation state of their substrates, sulfatases play a key role in the control of physiological processes, including cellular degradation, cell signaling, and hormone regulation. The loss of sulfatase activity has been linked with various severe pathophysiological conditions such as lysosomal storage disorders, developmental abnormalities, or cancer. A novel member of this family, arylsulfatase G (ASG), was initially described as an enzyme lacking in vitro arylsulfatase activity and localizing to the endoplasmic reticulum. Contrary to these results, we demonstrate here that ASG does indeed have arylsulfatase activity toward different pseudosubstrates like p-nitrocatechol sulfate and 4-methylumbelliferyl sulfate. The activity of ASG depends on the Cys-84 residue that is predicted to be post-translationally converted to the critical active site C(alpha)-formylglycine. Phosphate acts as a strong, competitive ASG inhibitor. ASG is active as an unprocessed 63-kDa monomer and shows an acidic pH optimum as typically seen for lysosomal sulfatases. In transfected cells, ASG accumulates within lysosomes as indicated by indirect immunofluorescence microscopy. Furthermore, ASG is a glycoprotein that binds specifically to mannose 6-phosphate receptors, corroborating its lysosomal localization. ARSG mRNA expression was found to be tissue-specific with highest expression in liver, kidney, and pancreas, suggesting a metabolic role of ASG that might be associated with a so far non-classified lysosomal storage disorder.  相似文献   

7.
Despite the importance of the microbiota in human physiology, the molecular bases that govern the interactions between these commensal bacteria and their host remain poorly understood. We recently reported that sulfatases play a key role in the adaptation of a major human commensal bacterium, Bacteroides thetaiotaomicron, to its host (Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. (2011) J. Biol. Chem. 286, 25973–25982). We hypothesized that sulfatases are instrumental for this bacterium, and related Bacteroides species, to metabolize highly sulfated glycans (i.e. mucins and glycosaminoglycans (GAGs)) and to colonize the intestinal mucosal layer. Based on our previous study, we investigated 10 sulfatase genes induced in the presence of host glycans. Biochemical characterization of these potential sulfatases allowed the identification of GAG-specific sulfatases selective for the type of saccharide residue and the attachment position of the sulfate group. Although some GAG-specific bacterial sulfatase activities have been described in the literature, we report here for the first time the identity and the biochemical characterization of four GAG-specific sulfatases. Furthermore, contrary to the current paradigm, we discovered that B. thetaiotaomicron possesses an authentic GAG endosulfatase that is active at the polymer level. This type of sulfatase is the first one to be identified in a bacterium. Our study thus demonstrates that bacteria have evolved more sophisticated and diverse GAG sulfatases than anticipated and establishes how B. thetaiotaomicron, and other major human commensal bacteria, can metabolize and potentially tailor complex host glycans.  相似文献   

8.
Sulfatases hydrolyze sulfated metabolites to their corresponding alcohols and are present in all domains of life. These enzymes have found major application in metabolic investigation of drugs, doping control analysis and recently in metabolomics. Interest in sulfatases has increased due to a link between metabolic processes involving sulfated metabolites and pathophysiological conditions in humans. Herein, we present the first comprehensive substrate specificity and kinetic analysis of the most commonly used arylsulfatase extracted from the snail Helix pomatia. In the past, this enzyme has been used in the form of a crude mixture of enzymes, however, recently we have purified this sulfatase for a new application in metabolomics-driven discovery of sulfated metabolites. To evaluate the substrate specificity of this promiscuous sulfatase, we have synthesized a series of new sulfated metabolites of diverse structure and employed a mass spectrometric assay for kinetic substrate hydrolysis evaluation. Our analysis of the purified enzyme revealed that the sulfatase has a strong preference for metabolites with a bi- or tricyclic aromatic scaffold and to a lesser extent for monocyclic aromatic phenols. This metabolite library and mass spectrometric method can be applied for the characterization of other sulfatases from humans and gut microbiota to investigate their involvement in disease development.  相似文献   

9.
17 beta-Hydroxysteroid oxidoreductase, as well as estrone sulfate and dehydroepiandrosterone sulfate sulfatases, were found in the plasma membrane of microvilli of the fetal syncytiotrophoblast. Because of their location, these enzymes may influence feto-maternal transfer of steroids circulating as sulfates, the utilization of sulfated estrogen precursors and the proportion of estrone and estradiol delivered towards fetal and maternal circulations. Microvillar vesicles isolated from human term placentas were disrupted in hypotonic medium to obtain a membrane preparation. A fraction of the estradiol 17 beta-oxidoreductase (E2DH) activity in the vesicle remained associated to the membrane after disruption and treatment with 2 M NaCl. The membrane-associated activity was resistant to inhibition with trypsin and did not react with a polyclonal antibody which neutralized cytosolic E2DH activity. The membrane-associated enzyme was solubilized with a cholate-glycerol buffer solution and purified on Sephadex G-100. The estimated molecular weight of the solubilized enzyme (137 kDa) appears to correspond to a tetramer since it was found to be about twice the size of the cytosolic enzyme. Both enzymes focused in polyacrylamide gels at pH 5.2. The Km relative to E2 of the membrane-associated E2DH (1.3 microM) differs from those of mitochondrial (0.43 microM), microsomal (0.69 microM) and cytosolic (11 microM) fractions. The cytosolic and the microvillar membrane associated 17 beta-hydroxysteroid oxidoreductases also differ in their specificity for C18 and C19 steroid substrates and in their pH dependence patterns. Sulfatases acting on estrone sulfate and dehydroepiandrosterone sulfate in microvillar membranes were insensitive to trypsin and as resistant to washes with 2 M NaCl as alkaline phosphatase. This data indicated that steroid sulfatases are also microvillar membrane associated enzymes of potential physiologic importance in the hydrolysis of estrogen precursors.  相似文献   

10.
Heparan sulfate proteoglycans (HSPGs), via their interactions with numerous effector molecules such as FGF-2, IL-8, and VEGF, regulate the biological activity of cells by acting as co-receptors that promote signaling. The extent and nature of their role as co-receptors is often misregulated in cancer as manifested by alterations in HSPG structure and expression level. This misregulation of HSPGs can aid in promoting the malignant phenotype. In addition to expression-related changes in HSPGs, recent discoveries indicate that HSPGs localized within the tumor microenvironment can be attacked by enzymes that alter proteoglycan structure resulting in dramatic effects on tumor growth and metastasis. This review focuses on remodeling of HSPGs by three distinct mechanisms that occur in vivo; (i) shedding of proteoglycan extracellular domains from cell surfaces, (ii) fragmentation of heparan sulfate chains by heparanase, and (iii) removal of sulfates from the 6-O position of heparan sulfate chains by extracellular sulfatases. Assessing or monitoring the remodeling of HSPGs has important implications for tumor diagnosis and patient prognosis while therapeutic manipulation of the remodeling process represents an exciting new possibility for treating cancer.  相似文献   

11.
BACKGROUND: Sulfatases constitute a family of enzymes with a highly conserved active site region including a Calpha-formylglycine that is posttranslationally generated by the oxidation of a conserved cysteine or serine residue. The crystal structures of two human arylsulfatases, ASA and ASB, along with ASA mutants and their complexes led to different proposals for the catalytic mechanism in the hydrolysis of sulfate esters. RESULTS: The crystal structure of a bacterial sulfatase from Pseudomonas aeruginosa (PAS) has been determined at 1.3 A. Fold and active site region are strikingly similar to those of the known human sulfatases. The structure allows a precise determination of the active site region, unequivocally showing the presence of a Calpha-formylglycine hydrate as the key catalytic residue. Furthermore, the cation located in the active site is unambiguously characterized as calcium by both its B value and the geometry of its coordination sphere. The active site contains a noncovalently bonded sulfate that occupies the same position as the one in para-nitrocatecholsulfate in previously studied ASA complexes. CONCLUSIONS: The structure of PAS shows that the resting state of the key catalytic residue in sulfatases is a formylglycine hydrate. These structural data establish a mechanism for sulfate ester cleavage involving an aldehyde hydrate as the functional group that initiates the reaction through a nucleophilic attack on the sulfur atom in the substrate. The alcohol is eliminated from a reaction intermediate containing pentacoordinated sulfur. Subsequent elimination of the sulfate regenerates the aldehyde, which is again hydrated. The metal cation involved in stabilizing the charge and anchoring the substrate during catalysis is established as calcium.  相似文献   

12.
Sulfatases are enzymes that hydrolyse a diverse range of sulfate esters. Deficiency of lysosomal sulfatases leads to human diseases characterized by the accumulation of either GAGs (glycosaminoglycans) or sulfolipids. The catalytic activity of sulfatases resides in a unique formylglycine residue in their active site generated by the post-translational modification of a highly conserved cysteine residue. This modification is performed by SUMF1 (sulfatase-modifying factor 1), which is an essential factor for sulfatase activities. Mutations in the SUMF1 gene cause MSD (multiple sulfatase deficiency), an autosomal recessive disease in which the activities of all sulfatases are profoundly reduced. In previous studies, we have shown that SUMF1 has an enhancing effect on sulfatase activity when co-expressed with sulfatase genes in COS-7 cells. In the present study, we demonstrate that SUMF1 displays an enhancing effect on sulfatases activity when co-delivered with a sulfatase cDNA via AAV (adeno-associated virus) and LV (lentivirus) vectors in cells from individuals affected by five different diseases owing to sulfatase deficiencies or from murine models of the same diseases [i.e. MLD (metachromatic leukodystrophy), CDPX (X-linked dominant chondrodysplasia punctata) and MPS (mucopolysaccharidosis) II, IIIA and VI]. The SUMF1-enhancing effect on sulfatase activity resulted in an improved clearance of the intracellular GAG or sulfolipid accumulation. Moreover, we demonstrate that the SUMF1-enhancing effect is also present in vivo after AAV-mediated delivery of the sulfamidase gene to the muscle of MPSIIIA mice, resulting in a more efficient rescue of the phenotype. These results indicate that co-delivery of SUMF1 may enhance the efficacy of gene therapy in several sulfatase deficiencies.  相似文献   

13.
The majority of hydrolytic enzymes used in white biotechnology for the production of non-natural compounds--such as carboxyl ester hydrolases, lipases and proteases--show a certain preference for a given enantiomer. However, they are unable to alter the stereochemistry of the substrate during catalysis with respect to inversion or retention of configuration. The latter can be achieved by (alkyl) sulfatases, which can be employed for the enantio-convergent transformation of racemic sulfate esters into a single stereoisomeric secondary alcohol, with a theoretical yield of 100%. This is a major improvement over traditional kinetic resolution processes, which yield both enantiomers, each at 50%.  相似文献   

14.
In multiple sulfatase deficiency, a rare human lysosomal storage disorder, all known sulfatases are synthesized as catalytically poorly active polypeptides. Analysis of the latter has shown that they lack a protein modification that was detected in all members of the sulfatase family. This novel protein modification generates a 2-amino-3-oxopropanoic acid (Cα-formylglycine) residue by oxidation of the thiol group of a cysteine that is conserved among all eukaryotic sulfatases. The oxidation occurs in the endoplasmic reticulum at a stage when the nascent polypeptide is not yet folded. The aldehyde is part of the catalytic site and is likely to act as an aldehyde hydrate. One of the geminal hydroxyl groups accepts the sulfate during sulfate ester cleavage leading to the formation of a covalently sulfated enzyme intermediate. The other hydroxyl is required for the subsequent elimination of the sulfate and regeneration of the aldehyde group. In some prokaryotic members of the sulfatase gene family, the DNA sequence predicts a serine residue, and not a cysteine. Analysis of one of these prokaryotic sulfatases, however, revealed the presence of the Cα-formylglycine indicating that the aldehyde group is essential for all members of the sulfatase family and that it can be generated from either cysteine or serine. BioEssays 20 :505–510, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

15.
《Carbohydrate research》1986,154(1):217-228
Heparin trisaccharides having the sequence O-(2-amino-2-deoxy-α-d-glucopyranosyl)-(1→4)-O-α-l-idopyranosyluronic acid-(1→4)-2,5-anhydro-d-[1-3H]mannitol have been prepared, as substrate models for studying sulfatases of heparan sulfate catabolism, by α-l-iduronidase cleavage of previously reported heparin tetrasaccharides, with additional chemical and enzymic modification as required. Three series are described, including isomeric sulfate esters of that trisaccharide with no N-substituent, with N-acetyl substitution, and with N-sulfate substitution. New features of the substrate specificity of the hydrolases used, including iduronate sulfatase, α-l-iduronidase, glucosamine 6-sulfate sulfatase, and heparin sulfamidase, were observed, and simple procedures for partial purification of these hydrolases are reported. The structures assigned to the trisaccharides are supported by the mode of preparation, reactions, regularities in electrophoretic behavior, and identities of the products of deamination.  相似文献   

16.
Sulfur metabolism is ubiquitous and terminally synthesizes various biomolecules that are crucial for organisms, such as sulfur‐containing amino acids and co‐factors, sulfolipids and sulfated saccharides. Entamoeba histolytica, a protozoan parasite responsible for amoebiasis, possesses the unique sulfur metabolism features of atypical localization and its terminal product being limited to sulfolipids. Here, we present an overall scheme of E. histolytica sulfur metabolism by relating all sulfotransferases and sulfatases to their substrates and products. Furthermore, a novel sulfur metabolite, fatty alcohol disulfates, was identified and shown to play an important role in trophozoite proliferation. Cholesteryl sulfate, another synthesized sulfolipid, was previously demonstrated to play an important role in encystation, a differentiation process from proliferative trophozoite to dormant cyst. Entamoeba survives by alternating between these two distinct forms; therefore, Entamoeba sulfur metabolism contributes to the parasitic life cycle via its terminal products. Interestingly, this unique feature of sulfur metabolism is not conserved in the nonparasitic close relative of Entamoeba, Mastigamoeba, because lateral gene transfer‐mediated acquisition of sulfatases and sulfotransferases, critical enzymes conferring this feature, has only occurred in the Entamoeba lineage. Hence, our findings suggest that sulfolipid metabolism has a causal relationship with parasitism.  相似文献   

17.
Abstract– The enzymatic hydrolysis by brain homogenate of the sulfate esters of estrone, pregnenolone, dehydroepiandrosterone, testosterone, cholesterol and p-nitrophenol was studied. With homogenate of young rat brain, the pH optima of estrone sulfatase 4 4 The term steroid sulfatase is used as a general name for the enzyme(s) which hydrolyzes the sulfate ester of a steroid. Simplified terms, such as estrone sulfatase, instead of the more formal terms, such as estrone sulfate sulfohydrolase, have been used throughout.
and arysulfatase C (p-nitrophenyl sulfate as substrate) were 8.2 and all other steroid sulfatases had pH optima at 6.6. Apparent Kms for these steroid sulfates were widely different. The highest Km value was 32.2 μm for estrone sulfate and the lowest was 0.66 μm for testosterone sulfate; the Km for p-nitrophenyl sulfate was 30 fold higher than for estrone sulfate. Specific activity was also highest with estrone sulfatase and lowest with testosterone sulfatase; specific activity with aryl sulfatase C was over 3 fold higher than with estrone sulfatase. Estrone sulfatase activity was inhibited noncompetitively by sulfate esters of dehydroepiandrosterone, pregnenolone, and cholesterol; on the other hand, other steroid sulfatases were inhibited by these latter three sulfates competitively. Developmental changes of these sulfohydrolase activities in rat brain were almost identical with the exception of testosterone sulfatase activity; the latter sulfatase had a peak activity at 30 days old, while all other sulfatase had a peak at 20 days old. Thermal stability of all these activities was identical. Testosterone sulfatase activity in neurological mouse mutants, jimpy, msd, and quaking mice, was less than one half of littermate controls, while other steroid sulfatase levels in these mutants' brain were normal. All sulfatase activities were diminished in the brain of a metachromatic leukodystrophy patient with multiple sulfatase deficiency. The brains of classical metachromatic leukodystrophy patients contained normal levels of all steroid sulfatases and arylsulfatase C, with the single exception of testosterone sulfatase which level was less than 50% of control.  相似文献   

18.
Here, we present the high-quality draft genome sequence of the agar-degrading marine gammaproteobacterium Alteromonadaceae sp. strain G7, which was isolated from coastal seawater to be utilized as a bioresource for production of agar-derived biofuels. The 3.91-Mb genome contains a number of genes encoding algal polysaccharide-degrading enzymes such as agarases and sulfatases.  相似文献   

19.
Sulfatases hydrolytically cleave sulfate esters through a unique catalytic aldehyde, which is introduced by a posttranslational oxidation. To profile active sulfatases in health and disease, activity-based proteomic tools are needed. Herein, quinone methide (QM) traps directed against sulfatases are evaluated as activity-based proteomic probes (ABPPs). Starting from a p-fluoromethylphenyl sulfate scaffold, enzymatically generated QM-traps can inactivate bacterial aryl sulfatases from Pseudomonas aeruginosa and Klebsiella pneumoniae, and human steroid sulfatase. However, multiple enzyme-generated QMs form, diffuse, and non-specifically label purified enzyme. In complex proteomes, QM labeling is sulfatase-dependent but also non-specific. Thus, fluoromethylphenyl sulfates are poor ABPPs for sulfatases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号