首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, shrimp shell powder, prepared by treating shrimp-processing waste by boiling and crushing, was used as a substrate for isolation of chitinase-producing microorganism. These organisms may have an important economic role in the biological control of rice and other fungal pathogens. Two hundred strains of bacteria with the ability to degrade chitin from shrimp shell waste were isolated from paddy soil, and of these, 40 strains showed chitinase activity in a solid state cultivation. One of the most potent isolates (strain R 176) was identified as Bacillus thuringiensis. Identification was carried out using morphological and biochemical properties along with 16S rRNA sequence analysis. This strain was able to produce high levels of extracellular chitinase in solid media containing shrimp shells as sole carbon source [1.36 U/g initial dry substrate (IDS)], which was 0.36-fold higher than the productivity in a liquid culture with colloidal chitin. The effects of medium composition and physical parameters on chitinase production by this organism were studied. The optimal medium contained shrimp shell mixed with rice straw in 1:1 ratio added with ball-milled chitin 0.5 % (w/v) and ammonium sulfate 0.5 % (w/v). The highest enzyme production (3.86 U/g IDS) by B. thuringiensis R 176 was obtained at pH 7, 37 °C after 14 days growth. With respect to the high amount of chitinase production by this strain in a simple medium, this strain could be a suitable candidate for the production of chitinase from chitinous solid substrates, and further investigations into its structure and characteristics are merited.  相似文献   

2.
A thermostable chitinase was purified by chitin affinity from the culture supernatant of Bacillus cereus TKU028 with shrimp head powder (SHP) as the sole carbon/nitrogen source. TKU028 chitinase was purified using a one-step affinity adsorbent system, and the molecular mass of TKU028 chitinase (approximately 40 kDa) was then determined using SDS-PAGE. The enzyme was stable for 60 min at temperatures below 60 °C and stable over a broad pH range of 4–9 for 60 min. In addition, the temporal changes of a bacterial community in mangrove river sediment of the Tamsui River with added SHP were also analysed by PCR–denaturing gradient gel electrophoresis to investigate the effects of B. cereus TKU028 on the degradation of SHP. The 6-week incubation sample of SHP and B. cereus TKU028-amended mangrove river sediment displayed the highest amount of biomass, reducing sugar and total sugar, and some variance of bacterial community composition existed in the soils.  相似文献   

3.
The Clostridium paraputrificum chiB gene, encoding chitinase B (ChiB), consists of an open reading frame of 2,493 nucleotides and encodes 831 amino acids with a deduced molecular weight of 90,020. The deduced ChiB is a modular enzyme composed of a family 18 catalytic domain responsible for chitinase activity, two reiterated domains of unknown function, and a chitin-binding domain (CBD). The reiterated domains are similar to the repeating units of cadherin proteins but not to fibronectin type III domains, and therefore they are referred to as cadherin-like domains. ChiB was purified from the periplasm fraction of Escherichia coli harboring the chiB gene. The molecular weight of the purified ChiB (87,000) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, was in good agreement with the value (86,578) calculated from the deduced amino acid sequence excluding the signal peptide. ChiB was active toward chitin from crab shells, colloidal chitin, glycol chitin, and 4-methylumbelliferyl beta-D-N,N'-diacetylchitobioside [4-MU-(GlcNAc)2]. The pH and temperature optima of the enzyme were 6.0 and 45 degrees C, respectively. The Km and Vmax values for 4-MU-(GlcNAc)2 were estimated to be 6.3 microM and 46 micromol/min/mg, respectively. SDS-PAGE, zymogram, and Western blot analyses using antiserum raised against purified ChiB suggested that ChiB was one of the major chitinase species in the culture supernatant of C. paraputrificum. Deletion analysis showed clearly that the CBD of ChiB plays an important role in hydrolysis of native chitin but not processed chitin such as colloidal chitin.  相似文献   

4.
Chitin was isolated from a crustacean by keeping the original body shape for the first time. The isolation method followed in this study was simple and time and energy saving unlike the labor-intensive classical methods. Chitin samples preserving the original shape were isolated from Isopoda (Oniscus sp.) successfully in a total of 20 min including filtration time. FT-IR, XRD and TGA analysis and chitinase digestion test demonstrated that the chitin was pure, low crystalline (Crystalline index: 51 %) and had low thermal stability (maximum degradation temperature: 328.8 °C). SEM analysis revealed the highly fibrous structure of chitin. The chitin content of the whole body was found significantly higher (29.6?±?4.2 %) than the earlier reports. Interaction of chitin isolates with Bovine Serum Albumin protein were studied at different pH. It was concluded that this three dimensional raw material shaped chitin can be effectively used in any adsorption studies due to 1) highly fibrous and porous nature, 2) low crystallinity and 3) low thermal stability. And also this biodegradable and biocompatible biopolymer can be suggested as a carrier matrix in further studies thanks to its three dimensional shape.  相似文献   

5.
Bacillus licheniformis CBFOS-03 is a chitinase producing bacteria isolated from oyster (Crassostrea gigas) shell waste. We have cloned and expressed the chi18B gene of B. licheniformis CBFOS-03, which encodes a glycohydrolase family 18 chitinase (GH18). Chi18B is a predicted 598 amino acid protein that consists of a catalytic domain (GH18), a fibronectin type III domain (Fn3), and a chitin binding domain (CBD). Purified Chi18B showed optimum chitinase activity at pH 9 and 55 °C, and activity was stimulated with 25 mM Mn2+. In kinetic analysis, Chi18B showed Km values of 9.07?±?0.65 μM and 129.27?±?0.38 μM with the substrates 4-methylumbelliferyl-N-N′-diacetylchitobiose and α-chitin, respectively. Studies of C-terminal deletion constructs revealed that the GH18 domain with one amino acid in C-terminal region was sufficient for chitinase activity; however, fusions of full length and CBD-deleted constructs to green florescent protein (GFP) and yellow florescent protein (YFP) suggest that the C-terminus is supposedly important in binding to shell powder. Full length Chi18B with GFP showed green fluorescence with oyster shell powder, but GH18+Fn3 with GFP did not. Similarly, full length Chi18B with YFP showed yellow fluorescence with clam (Chamelea gallina) shell and disk abalone (Haliotis discus) shell powder, but GH18+Fn3 with YFP construct did not. So, the CBD domain of Chi18B appears to play an important role in binding of oyster and other marine shells. It is likely to be used as a probe to identify the presence of chitin in marine shells like oyster shell, clam shell, and disk abalone shell using fusions of Chi18B with fluorescent proteins.  相似文献   

6.
This study aimed to optimize the biodegradation of shrimp shell waste by Aeromonas hydrophila SBK1 for the co-production of chitinase and chitosaccharides (CS) under submerged fermentation and evaluation of their bioactivities. Canonical analysis and parametric optimization wrought the peakest production of chitinase (21.48 U/ml) and CS (124 μg/ml) after 66.4 h of fermentation at 37.6 °C. The medium containing 2.64% (w/v) shrimp shell powder, 0.38% (w/v) NaCl, 6.86 × 106 cfu/ml inoculum concentration and an agitation speed of 120 rpm were found best. These optimized parameters were also authenticated by scale up of fermentation in 5 L fermentor and a reproducible results obtained with specific yield of chitinase (YP/Schi) of 958.82 U/g and CS (YP/SCS) 5.5 mg/g. A 59 kD chitinase was purified from culture filtrate by sequential chromatography techniques. The enzyme exhibited high degree of antifungal activity particularly against pathogenic Aspergillus flavus and Fusarium oxysporum by dissolving their cell wall components. The IC50 values for A. flavus and F. oxysporum were 3.7 and 4.5 U/ml of purified chitinase, respectively. Chitosaccharides were extracted from the culture filtrate, quantitatively identified as admixture of N-acetylglucosamine monomer (57.5%) and dimer (39.2%). These chitosaccharides have potential antioxidant activity as detected by in vitro free radical scavenging assay.  相似文献   

7.
The strain ofSerratia marcescens QM B1466 produces selectively large amount of chitinolytic enzymes (about 1mg/L medium). Enzymatic hydrolysis of chitin to N-acetyl-β-D-glucosamine (NAG) was performed with a system consisting of two hydrolases (chitinase and chitobiase) produced by optimization of a microbial host consuming chitin particles. For the development of Large-scale biological process for the production of NAG from chitinaceous waste, the selection and optimization of a microbial host, particle size of chitin and pretreatment of chitin source were investigated. Also, the effect of crab/shrimp chitin sources and initial induction time using chitin as a sole carbon source on chitinase/chitobiase production and NAG production were examined. Crab-shell chitin(1.5%) treated by dilute acid and, ball-milled with a nominal diameter less than 250m gave the highest chitinase activity over a 7 days culture. Crude chitinase/chitobiase solution obtained in a 10 L fed-batch fermentation showed a maximum activities of 23.6 U/mL and 5.1 U/mL, respectively with a feeding time of 3 hrs, near pH 8.5 at 30°C.  相似文献   

8.
Concurrent production of chitin from shrimp shells and fungi   总被引:5,自引:0,他引:5  
Crustacean shells constitute the traditional and current commercial source of chitin. Conversely, the control of fungal fermentation processes to produce quality chitin makes fungal mycelia an attractive alternative source. Therefore, the exploitation of both of these sources to produce chitin in a concurrent process should be advantageous and is reported here. Three proteolytic Aspergillus niger (strains 0576, 0307 and 0474) were selected from a screening for protease activity from among 34 zygomycete and deuteromycete strains. When fungi and shrimp shell powder were combined in a single reactor, the release of protease by the fungi facilitated the deproteinization of shrimp-shell powder and the release of hydrolyzed proteins. The hydrolyzed proteins in turn were utilized as a nitrogen source for fungal growth, leading to a lowering of the pH of the fermentation medium, thereby further enhancing the demineralization of the shrimp-shell powder. The shrimp-shell powders and fungal mycelia were separated after fermentation and extracted for chitin with 5% LiCl/DMAc solvent. Chitin isolates from the shells were found to have a protein content of less than 5%, while chitin isolates from the three fungal mycelia strains had protein content in the range of 10-15%. The relative molecular weights as estimated by GPC for all chitin samples were in the 10(5) dalton range. All samples displayed characteristic profiles for chitin in their FTIR and solid-state NMR spectra. All chitin samples evaluated with MTT and Neutral Red assays with three commercial cell lines did not display cytotoxic effects.  相似文献   

9.
Chitinase is one of the important mycolytic enzymes with industrial significance, and is produced by a number of organisms, including bacteria. In this study, we describe isolation, characterization and media optimization for chitinase production from a newly isolated thermotolerant bacterial strain, BISR-047, isolated from desert soil and later identified as Paenibacillus sp. The production of extracellularly secreted chitinase by this strain was optimized by varying pH, temperature, incubation period, substrate concentrations, carbon and nitrogen source,etc. The maximum chitinase production was achieved at 45 °C with media containing (in g/l) chitin 2.0, yeast extract 1.5, glycerol 1.0, and ammonium sulphate 0.2 % (media pH 7.0). A three-fold increase in the chitinase production (712 IU/ml) was found at the optimized media conditions at 6 days of incubation. The enzyme showed activity at broad pH (3–10) and temperature (35–100 °C) ranges, with optimal activity displayed at pH 5.0 and 55 °C, respectively. The produced enzyme was found to be highly thermostable at higher temperatures, with a half-life of 4 h at 100 °C.  相似文献   

10.
11.
We have previously reported a non-processive endo-type chitinase, ChiA, from a newly isolated marine psychrophilic bacterium, Pseudoalteromonas sp. DL-6. In this study, a processive exo-type chitinase, ChiC, was cloned from the same bacterium and characterized in detail. ChiC could hydrolyze crystalline chitin into (GlcNAc)2 as the only observed product. It exhibited high catalytic activity even at low temperatures, e.g. close to 0 °C, or in the presence of 5 M NaCl, suggesting that ChiC was a cold-adapted and highly salt-tolerant chitinase. ChiC could also hydrolyze other substrates, including chitosan and Avicel, indicating its broad substrate specificity. Sequence features indicated that ChiC was a multi-domain protein having a deep substrate-binding groove that was regarded as characteristic of processive exo-chitinases. Enzymatic hydrolysis of chitin by ChiC could be remarkably boosted in the presence of ChiA, suggesting the synergy of ChiC and ChiA. This work provided a new evidence to prove that marine psychrophilic bacteria utilized a synergistic enzyme system to degrade recalcitrant chitin.  相似文献   

12.
An alkaliphilic actinomycete, Nocardiopsis prasina OPC-131, secretes chitinases, ChiA, ChiB, and ChiBΔ, in the presence of chitin. The genes encoding ChiA and ChiB were cloned and sequenced. The open reading frame (ORF) of chiA encoded a protein of 336 amino acids with a calculated molecular mass of 35,257 Da. ChiA consisted of only a catalytic domain and showed a significant homology with family 18 chitinases. The chiB ORF encoded a protein of 296 amino acids with a calculated molecular mass of 31,500 Da. ChiB is a modular enzyme consisting of a chitin-binding domain type 3 (ChtBD type 3) and a catalytic domain. The catalytic domain of ChiB showed significant similarity to Streptomyces family 19 chitinases. ChiBΔ was the truncated form of ChiB lacking ChtBD type 3. Expression plasmids coding for ChiA, ChiB, and ChiBΔ were constructed to investigate the biochemical properties of these recombinant proteins. These enzymes showed pHs and temperature optima similar to those of native enzymes. ChiB showed more efficient hydrolysis of chitin and stronger antifungal activity than ChiBΔ, indicating that the ChtBD type 3 of ChiB plays an important role in the efficient hydrolysis of chitin and in antifungal activity. Furthermore, the finding of family 19 chitinase in N. prasina OPC-131 suggests that family 19 chitinases are distributed widely in actinomycetes other than the genus Streptomyces.  相似文献   

13.
With the goal of understanding the chitinolytic mechanism of the potential biological control strain Serratia marcescens CFFSUR-B2, genes encoding chitinases ChiA, ChiB and ChiC, chitobiase (Chb) and chitin binding protein (CBP) were cloned, the protein products overexpressed in Escherichia coli as 6His-Sumo fusion proteins and purified by affinity chromatography. Following affinity tag removal, the chitinolytic activity of the recombinant proteins was evaluated individually and in combination using colloidal chitin as substrate. ChiB and ChiC were highly active while ChiA was inactive. Reactions containing both ChiB and ChiC showed significantly increased N-acetylglucosamine trimer and dimer formation, but decreased monomer formation, compared to reactions with either enzyme alone. This suggests that while both ChiB and ChiC have a general affinity for the same substrate, they attack different sites and together degrade chitin more efficiently than either enzyme separately. Chb and CBP in combination with ChiB and ChiC (individually or together) increased their chitinase activity. We report for the first time the potentiating effect of Chb on the activity of the chitinases and the synergistic activity of a mixture of all five proteins (the three chitinases, Chb and CBP). These results contribute to our understanding of the mechanism of action of the chitinases produced by strain CFFSUR-B2 and provide a molecular basis for its high potential as a biocontrol agent against fungal pathogens.  相似文献   

14.
A strain of Brevibacillus formosus, capable of producing a high level of chitinase, was isolated and characterized for the first time from the Great Indian Desert soils. The production of extracellularly secreted chitinase was analyzed for its biocontrol potential and optimized by varying media pH, temperature, incubation period, substrate concentrations, carbon and nitrogen sources, etc. A twofold increase in chitinase production (798 IU/mL) was achieved in optimized media containing (g l?1) chitin 2.0, malt extract 1.5, glycerol 1.0, ammonium nitrate 0.3 %, T-20 (0.1 %) and media pH 7.0 at 37 °C. The produced enzyme was purified using a three-step purification procedure involving ultra-filtration, ammonium sulphate precipitation and adsorption chromatography. The estimated molecular weight of the purified enzyme was 37.6 kDa. The enzyme was found thermostable at higher temperatures and showed a t ½ of more than 5 h at 100 °C. Our results show that the chitinase produced by B. formosus BISR-1 is thermostable at higher temperatures.  相似文献   

15.
Actinomycetes were screened from soil in the centre of Poland on chitin medium. Amongst 30 isolated strains one with high activity of chitinase was selected. It was identified as Streptomyces sporovirgulis. Chitinase activity was detected from the second day of cultivation, then increased gradually and reached maximum after 4 days. The maximum chitinase production was observed at pH 8.0 and 25–30°C in the medium with sodium caseinate and asparagine as carbon and nitrogen sources and with shrimp shell waste as inducer of enzyme. Chitinase of S. sporovirgulis was purified from a culture medium by fractionation with ammonium sulphate as well as by chitin affinity chromatography. The molecular weight of the enzyme was 27 kDa. The optimum temperature and pH for the chitinase were 40°C and pH 8.0. The enzyme activity was characterised by high stability at the temperatures between 35 and 40°C after 240 min of preincubation. The activity of the enzyme was strongly inhibited in the presence of Pb2+, Hg2+ and stabilized by the ions Mg2+. Purified chitinase from S. sporovirgulis inhibited growth of fungal phytopathogen Alternaria alternata. Additionally, the crude chitinase inhibited the growth of potential phytopathogens such as Penicillium purpurogenum and Penillium sp.  相似文献   

16.
17.
Aspergillus niger LOCK 62 produces an antifungal chitinase. Different sources of chitin in the medium were used to test the production of the chitinase. Chitinase production was most effective when colloidal chitin and shrimp shell were used as substrates. The optimum incubation period for chitinase production by Aspergillus niger LOCK 62 was 6?days. The chitinase was purified from the culture medium by fractionation with ammonium sulfate and affinity chromatography. The molecular mass of the purified enzyme was 43?kDa. The highest activity was obtained at 40?°C for both crude and purified enzymes. The crude chitinase activity was stable during 180?min incubation at 40?°C, but purified chitinase lost about 25?% of its activity under these conditions. Optimal pH for chitinase activity was pH 6–6.5. The activity of crude and purified enzyme was stabilized by Mg2+ and Ca2+ ions, but inhibited by Hg2+ and Pb2+ ions. Chitinase isolated from Aspergillus niger LOCK 62 inhibited the growth of the fungal phytopathogens: Fusarium culmorum, Fusarium solani and Rhizoctonia solani. The growth of Botrytis cinerea, Alternaria alternata, and Fusarium oxysporum was not affected.  相似文献   

18.
To discover the individual roles of the chitinases from Serratia marcescens 2170, chitinases A, B, and C1 (ChiA, ChiB, and ChiC1) were produced by Escherichia coli and their enzymatic properties as well as synergistic effect on chitin degradation were studied. All three chitinases showed a broad pH optimum and maintained significant chitinolytic activity between pH 4 and 10. ChiA was the most active enzyme toward insoluble chitins, but ChiC1 was the most active toward soluble chitin derivatives among the three chitinases. Although all three chitinases released (GlcNAc)2 almost exclusively from colloidal chitin, ChiB and ChiC1 split (GlcNAc)6 to (GlcNAc)3, while ChiA exclusively generated (GlcNAc)2 and (GlcNAc)4. Clear synergism on the hydrolysis of powdered chitin was observed in the combination between ChiA and either ChiB or ChiC, and the sites attacked by ChiA on the substrate are suggested to be different from those by either ChiB or ChiC1.  相似文献   

19.
A fermentation approach utilizing Paenibacillus sp. to process chitin was developed. The chitin obtained from this process is called fermentation-processed chitin (FPC), and it was further investigated with chitinase affinity adsorption studies together with three other adsorbents, i.e. crab shell chitin, colloid chitin, and enzyme-processed chitin. The results showed that FPC had the highest chitinase adsorption capacity. Under 15 °C and pH 5.0, FPC exhibited an optimal chitinase adsorption capacity of 85.9 U/g, which was 61.9% higher than that of the colloidal chitin. With 0.02 M acetic acid as the eluent, a purification-fold of 10.3 with 97% chitinase recovery was obtained. The results of surface morphology studies indicated that the FPC surface was modified to a fiber-like structure with deep pores. In comparison with the surface morphology of enzyme-processed chitin and colloidal chitin, it is inferred that the enhanced adsorption capacity of FPC for chitinase is attributed to both the effects of chitinase hydrolysis and the bacterial modification.  相似文献   

20.
A gene encoding a novel chitinase chi58 was cloned from the fungus Chaetomium cupreum by using inverse PCR. The DNA sequence of chi58 contains a 1,602 bp open reading frame and two introns that are 52 and 201 bp in length. Regarding our in silico analysis, chi58 is a modular enzyme composed of a family-18 catalytic domain, which is responsible for chitinase activity, and a chitin-binding domain containing several cysteines. Apparently, the function of these domains is to anchor the enzyme tightly onto the large insoluble polymeric substrate. Chi58 has a pI of 4.47 and a deduced molecular mass of 58 kDa. The optimal pH and temperature conditions were determined to be 5.8 and 45°C, respectively, when colloidal chitin was used as the substrate. SDS-PAGE and zymogram analyses indicated the presence of a single active chitinase. Cells with pPIC9K-chi58 produced an extracellular chitinase that had an activity of 39 U/ml protein. Metal ions such as Ba2+, Mg2+, K+, Cu2+, Fe3+, Zn2+, and Co2+ also influenced the activity of the recombinant enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号