首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The purpose of this study is to find new molecular targets for the detection of Salmonella. With the online BLAST Program, we compared homology of genomic sequences and specificity in GenBank among Salmonella serovars and non-Salmonella strains and found 98 Salmonella specific target sequences. We selected 33 target sequences of Gene ID from 3335000 to 3337003 for the specificity evaluation, and finally 8 specific fragments screened out, they are 3334138, 3335583, 3335471, 3335211, 3335068, 3336466, 3336736 and 3336998. Primer SC8 of gene 3335583 and SC9 of gene 3335471 were the best in specificity and sensitivity among these primers. The detection sensitivity of Primer SC9 was 1.23 fg/μl for DNA templates and 720 cfu/ml for whole cells, while primer SC8’s was 12.3 fg/μl and 720 cfu/ml, respectively. Salmonella could be detected successfully by the PCR method developed in this study after 8 h enrichment when the milk samples were artificially contaminated by this organism at 7 cfu per 10 ml milk.  相似文献   

2.
The application of rapid, specific, and sensitive methods for pathogen detection and quantification is very advantageous in diagnosis of human pathogens in several applications, including food analysis. The aim of this study was the evaluation of a method for the multiplexed detection and quantification of three significant foodborne pathogenic species (Escherichia coli O157, Salmonella spp., and Listeria monocytogenes). The assay combines specific DNA extraction by multiplex magnetic capture hybridization (mMCH) with multiplex real-time PCR. The amplification assay showed linearity in the range 106–10 genomic units (GU)/PCR for each co-amplified species. The sensitivity corresponded to 1 GU/PCR for E. coli O157 and L. monocytogenes, and 10 GU/PCR for Salmonella spp. The immobilization process and the hybrid capture of the MCH showed good efficiency and reproducibility for all targets, allowing the combination in equal amounts of the different nanoparticle types in mMCH. MCH and mMCH efficiencies were similar. The detection limit of the method was 10 CFU in samples with individual pathogens and 102 CFU in samples with combination of the three pathogens in unequal amounts (amount’s differences of 2 or 3 log). In conclusion, this multiplex molecular platform can be applied to determine the presence of target species in food samples after culture enrichment. In this way, this method could be a time-saving and sensitive tool to be used in routine diagnosis.  相似文献   

3.
Alternative ligands such as nucleic acid aptamers can be used for pathogen capture and detection and offer advantages over antibodies, including reduced cost, ease of production and modification, and improved stability. DNA aptamers demonstrating binding specificity to Salmonella enterica serovar Typhimurium were identified by whole-cell-systematic evolution of ligands by exponential enrichment (SELEX) beginning with a combinatorial library of biotin-labeled single stranded DNA molecules. Aptamer specificity was achieved using whole-cell counter-SELEX against select non-Salmonella genera. Aptamers binding to Salmonella were sorted, cloned, sequenced, and characterized for binding efficiency. Out of 18 candidate aptamers screened, aptamer S8-7 showed relatively high binding affinity with an apparent dissociation constant (K d value) of 1.73?±?0.54 μM and was selected for further characterization. Binding exclusivity analysis of S8-7 showed low apparent cross-reactivity with other foodborne bacteria including Escherichia coli O157: H7 and Citrobacter braakii and moderate cross-reactivity with Bacillus cereus. Aptamer S8-7 was successfully used as a ligand for magnetic capture of serially diluted Salmonella Typhimurium cells, followed by downstream detection using qPCR. The lower limit of detection of the aptamer magnetic capture-qPCR assay was 102–103?CFU equivalents of Salmonella Typhimurium in a 290-μl sample volume. Mean capture efficiency ranged from 3.6 to 12.6 %. Unique aspects of the study included (a) the use of SELEX targeting whole cells; (b) the application of flow cytometry for aptamer pool selection, thereby favoring purification of ligands with both high binding affinity and targeting abundant cell surface moieties; and (c) the use of pre-labeled primers that circumvented the need for post-selection ligand labeling. Taken together, this study provides proof-of-concept that biotinylated aptamers selected by whole-cell SELEX can be used in a qPCR-based capture-detection platform for Salmonella Typhimurium.  相似文献   

4.
Enteroinvasive Escherichia coli (EIEC), heat-labile enterotoxin (LT) E. coli, Shigella spp., and Salmonella spp. are common enteric pathogens, which cause food-borne diseases if consumed in contaminated milk products. The rapid and reliable methods for detecting are imperative for reduction in hazard of infection. In this study, we selected primers, optimized the polymerase chain reaction (PCR) conditions, and analyzed the sensitivity and specificity of the multiplex PCR assay to screen raw milk from these enteric bacteria. Furthermore, EIEC, LT-E. coli, Shigella spp., Salmonella spp., and 11 non-targeted pathogenic strains were performed for the specificity of the multiplex PCR. Specific bands showed in EIEC, LT-E. coli, Shigella spp., and Salmonella spp. but no bands showed in other 11 pathogenic strains. The sensitivity of multiplex PCR was relatively high, was rounded to 200 CFU/ml (Shigella spp. and EIEC), 320 CFU/ml (Salmonella spp.), and 100 CFU/ml (LT-E. coli). This method for simultaneous and rapid detection of enteric pathogens (EIEC, LT-E. coli, Shigella spp., and Salmonella spp.) in raw milk showed high sensitivity and specificity, and led to faster track to report results.  相似文献   

5.
A multiplex PCR and DNA array for quick detection of Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. was developed using specific genetic markers derived from virulence-related genes. The genetic markers of cytK, sei, prfA, rfB, and hilA gene specifically amplified DNA fragments of 320 bp, 500 bp, 700 bp, 1.0 kb and 1.2 kb from B. cereus, S. aureus, L. monocytogenes, E. coli O157:H7, and Salmonella spp., respectively. These markers are specific for the detection of the corresponding target pathogens. The sensitivity of the genetic markers was down to ~0.5 fg genomic DNA and ~101 CFU/ml (one bacterial cell per reaction) of bacterial culture. The combination of mPCR and DNA macroarray hybridization sensitively and specifically detected B. cereus, S. aureus, L. monocytogenes, E. coli O157:H7, and Salmonella spp., in complex mixed cultures and food matrices. Thus, this mPCR and macroarray-based approach serves as rapid and reliable diagnostic tool for the detection of these five pathogens.  相似文献   

6.
Loop-mediated isothermal amplification (LAMP) assay was effective in detecting Salmonella enterica in naturally contaminated liquid egg samples. Salmonella was detected in 110 samples taken from four egg-breaking plants. The egg samples were pre-enriched in buffered peptone water (BPW) at 37°C for 20 h. The selective enrichment was done in Rappaport-Vassiliadis or tetrathionate broth and plated onto xylose lysine deoxycholate agar and brilliant green agar, modified. In addition, the PCR assay was used to detect Salmonella after pre-enrichment in BPW at 37°C for 20 h. The culture method and PCR assay were compared to the LAMP assay, which was also performed after pre-enrichment in BPW. PCR failed to detect Salmonella in 10% of 110 samples, whereas the culture method and LAMP assay successfully identified Salmonella in all samples. However, the LAMP assay was found to be much more rapid than the culture method and as sensitive in detecting Salmonella from liquid eggs. In all of the egg-breaking plants studied, Salmonella was isolated on most tested days. The positive samples showed that more than 75% of the Salmonella strains had identical genetic patterns when analyzed by pulsed-field gel electrophoresis. This suggests that the same Salmonella strains having survived long periods of time in the plants were contaminating the production line. The LAMP assay is rapid, specific, and sensitive for Salmonella detection in liquid eggs and is able to monitor Salmonella contamination in egg-handling plants more reliably.  相似文献   

7.
Traditional microbiological methods are dependent on the growth of microorganisms, and hence require prolonged periods. The methods used to detect resistance in Staphylococcus aureus should have high sensitivity and specificity, yet provide results in a timely manner. The aim of this study was to evaluate the use of Quicolor (QC) ES® agar for the rapid detection of resistance in S. aureus. We evaluated 100 clinical S. aureus isolates. Resistance detection was performed using traditional microbiological methods. Methicillin resistance detection was evaluated using traditional and molecular microbiological methods. Traditional antibiotic susceptibility testing methods, such as disc diffusion, were conducted using QC ES and Mueller–Hinton (MH) media. The plates were incubated at 36 °C for 5, 6 and 24 h. Rapid results obtained using QC ES agar after 5 h of incubation were consistent with those using the overnight procedure with MH agar for 83 of the 100 S. aureus (including methicillin-susceptible S. aureus) strains. However, the correlation for oxacillin between MH (24 h) and QC ES (5 h) was not satisfactory (r = 0.770). The total agreement between QC ES and MH agar was 83 % after 5 h, 89 % after 6 h, and 94 % after 24 h. The accurate and rapid detection of resistance in S. aureus is critical due to the associated therapeutic problems and infection control measures. We believe that the use of QC ES for S. aureus will reduce the delay in resistance detection, thus providing physicians and infection control practitioners with early information for better management.  相似文献   

8.
Diagnostic Real-Time PCR for Detection of Salmonella in Food   总被引:5,自引:0,他引:5       下载免费PDF全文
A robust 5′ nuclease (TaqMan) real-time PCR was developed and validated in-house for the specific detection of Salmonella in food. The assay used specifically designed primers and a probe target within the ttrRSBCA locus, which is located near the Salmonella pathogenicity island 2 at centisome 30.5. It is required for tetrathionate respiration in Salmonella. The assay correctly identified all 110 Salmonella strains and 87 non-Salmonella strains tested. An internal amplification control, which is coamplified with the same primers as the Salmonella DNA, was also included in the assay. The detection probabilities were 70% when a Salmonella cell suspension containing 103 CFU/ml was used as a template in the PCR (5 CFU per reaction) and 100% when a suspension of 104 CFU/ml was used. A pre-PCR sample preparation protocol including a preenrichment step in buffered peptone water followed by DNA extraction-purification was applied when 110 various food samples (chicken rinses, minced meat, fish, and raw milk) were investigated for Salmonella. The diagnostic accuracy was shown to be 100% compared to the traditional culture method. The overall analysis time of the PCR method was approximately 24 h, in contrast to 4 to 5 days of analysis time for the traditional culture method. This methodology can contribute to meeting the increasing demand of quality assurance laboratories for standard diagnostic methods. Studies are planned to assess the interlaboratory performance of this diagnostic PCR method.  相似文献   

9.
Quantifying Salmonella Population Dynamics in Water and Biofilms   总被引:1,自引:0,他引:1  
Members of the bacterial genus Salmonella are recognized worldwide as major zoonotic pathogens often found to persist in non-enteric environments including heterogeneous aquatic biofilms. In this study, Salmonella isolates that had been detected repeatedly over time in aquatic biofilms at different sites in Spring Lake, San Marcos, Texas, were identified as serovars Give, Thompson, Newport and -:z10:z39. Pathogenicity results from feeding studies with the nematode Caenorhabditis elegans as host confirmed that these strains were pathogenic, with Salmonella-fed C. elegans dying faster (mean survival time between 3 and 4 days) than controls, i.e., Escherichia coli-fed C. elegans (mean survival time of 9.5 days). Cells of these isolates inoculated into water at a density of up to 106?ml?1 water declined numerically by 3 orders of magnitude within 2 days, reaching the detection limit of our quantitative polymerase chain reaction (qPCR)-based quantification technique (i.e., 103 cells ml?1). Similar patterns were obtained for cells in heterogeneous aquatic biofilms developed on tiles and originally free of Salmonella that were kept in the inoculated water. Cell numbers increased during the first days to more than 107 cells cm?2, and then declined over time. Ten-fold higher cell numbers of Salmonella inoculated into water or into biofilm resulted in similar patterns of population dynamics, though cells in biofilms remained detectable with numbers around 104 cells cm?2 after 4 weeks. Independent of detectability by qPCR, samples of all treatments harbored viable salmonellae that resembled the inoculated isolates after 4 weeks of incubation. These results demonstrate that pathogenic salmonellae were isolated from heterogeneous aquatic biofilms and that they could persist and stay viable in such biofilms in high numbers for some time.  相似文献   

10.
This study established a simple method of specifically detecting Salmonella species by amplifying fimW gene, which was involved in regulating Salmonella type I fimbriae expression. A pair of primers was designed to target and discriminate the 68 Salmonella strains of 23 Salmonella serovars available to us from 12 non-Salmonella strains of five different kinds of bacteria by polymerase chain reaction (PCR) amplification. Results showed that specific DNA fragment with an expected size of 477 bp was successfully amplified from all Salmonella serovars, while no target band was detected in non-Salmonella species. The sensitivity of this PCR-amplifying system reached to 1 pg DNA chromosome and 102 cfu of Salmonella enteritis strain CMCC(B) 50336. The above results demonstrated the method as a simple, sensitive, and specific way for Salmonella detection.  相似文献   

11.
In the present study, 58 samples of milk were analyzed for the presence of aflatoxin M1 (AFM1). The samples were purchased during the period April–May 2013 in a random manner from local stores (supermarkets, small retail shops, small groceries, and specialized suppliers) located in the surrounding of Bologna (Italy). The commercial samples of milk were either organic (n = 22) or conventional (n = 36); fresh milk samples and UHT milk samples, whole milk samples, and partially skim milk samples were present in both the two considered categories. For the quantification of AFM1 in milk, the extraction-purification technique based on the use of immunoaffinity columns was adopted and analyses were performed using HPLC-FD. AFM1 was detected in 35 samples, 11 from organic production and 24 from conventional production. No statistically (P > 0.05) significant differences were observed in the concentration of AFM1 in the two categories of product. The levels of contamination found in the positive samples ranged between 0.009 and 0.026 ng mL?1. No sample exceeded the limit defined at community level for AFM1 in milk (0.05 μg kg?1). This demonstrates the effectiveness of the checks before the placing on the market of these food products. Thus, the “aflatoxins” problem that characterized the summer of 2012 does not seem to have had effect on the contamination level of the considered milk samples.  相似文献   

12.
The objective of this study was to establish a loop-mediated isothermal amplification (LAMP) method for the detection of F5 fimbriae gene in Enterotoxigenic Escherichia coli. A set of four primers were designed based on the conservative sequence of coding F5 fimbriae. Temperature and time condition, specificity test, and sensitivity test were performed with the DNA of Escherichia coli (F5+). The results showed that the optimal reaction condition for LAMP was achieved at 61 °C for 45 min in a water bath. Ladder-like products were produced with those F5-positive samples by LAMP, while no product was generated with other negative samples. The assay of LAMP had a detection limit equivalent to 72 cfu/tube, which was more sensitive than PCR (7.2 × 102 cfu/tube). The agreement rate between LAMP and PCR was 100 % in detecting simulation samples. Thus, the LAMP assay may be a new method for rapid detection of F5 fimbriae gene of ETEC.  相似文献   

13.
An accelerated, direct immunofluorescent-antibody procedure was developed for the detection of Salmonella in food products. This method includes pre-enrichment and selective enrichment but eliminates many of the washing and smear treatments present in existing methods. Commercially available fluorescein-conjugated somatic antiserum was used in comparing this method with conventional culture, biochemical, and serological procedures. The 894 samples tested represented 39 different products. The fluorescent-antibody procedure detected Salmonella in 216 test samples as compared to 205 positives recovered by using the standard culture procedures. In no instance did the fluorescent-antibody procedure fail to detect a Salmonella positive which had been detected by the standard procedure. With a three-tube, most-probable-number procedure, the fluorescent-antibody method was able to detect Salmonella at a level of 0.036 organism per g. In addition to being a more rapid method for the detection of Salmonella, it has proven to be comparable to conventional culture procedures.  相似文献   

14.
The aim of this study was to evaluate the antibacterial effect of nisin-loaded chitosan/alginate nanoparticles as a novel antibacterial delivery vehicle. The nisin-loaded nanoparticles were prepared using colloidal dispersion of the chitosan/alginate polymers in the presence of nisin. After the preparation of the nisin-loaded nanoparticles, their physicochemical properties such as size, shape, and zeta potential of the formulations were studied using scanning electron microscope and nanosizer instruments, consecutively. FTIR and differential scanning calorimetery studies were performed to investigate polymer–polymer or polymer–protein interactions. Next, the release kinetics and entrapment efficiency of the nisin-loaded nanoparticles were examined to assess the application potential of these formulations as a candidate vector. For measuring the antibacterial activity of the nisin-loaded nanoparticles, agar diffusion and MIC methods were employed. The samples under investigation for total microbial counts were pasteurized and raw milks each of which contained the nisin-loaded nanoparticles and inoculated Staphylococcus aureus (ATCC 19117 at 106 CFU/mL), pasteurized and raw milks each included free nisin and S. aureus (106 CFU/mL), and pasteurized and raw milks each had S. aureus (106 CFU/mL) in as control. Total counts of S. aureus were measured after 24 and 48 h for the pasteurized milk samples and after the time intervals of 0, 6, 10, 14, 18, and 24 h for the raw milk samples, respectively. According to the results, entrapment efficiency of nisin inside of the nanoparticles was about 90–95%. The average size of the nanoparticles was 205 nm, and the average zeta potential of them was ?47 mV. In agar diffusion assay, an antibacterial activity (inhibition zone diameter, at 450 IU/mL) about 2 times higher than that of free nisin was observed for the nisin-loaded nanoparticles. MIC of the nisin-loaded nanoparticles (0.5 mg/mL) was about four times less than that of free nisin (2 mg/mL). Evaluation of the kinetic of the growth of S. aureus based on the total counts in the raw and pasteurized milks revealed that the nisin-loaded nanoparticles were able to inhibit more effectively the growth of S. aureus than free nisin during longer incubation periods. In other words, the decrease in the population of S. aureus for free nisin and the nisin-loaded nanoparticles in pasteurized milk was the same after 24 h of incubation while lessening in the growth of S. aureus was more marked for the nisin-loaded nanoparticles than the samples containing only free nisin after 48 h of incubation. Although the same growth reduction profile in S. aureus was noticed for free nisin and the nisin-loaded nanoparticles in the raw milk up to 14 h of incubation, after this time the nisin-loaded nanoparticles showed higher growth inhibition than free nisin. Since, generally, naked nisin has greater interactions with the ingredients present in milk samples in comparison with the protected nisin. Therefore, it is concluded that the antibacterial activity of nisin naturally decreases more during longer times of incubation than the protected nisin with the chitosan/alginate nanoparticles. Consequently, this protection increases and keeps antibacterial efficiency of nisin in comparison with free nisin during longer times of storage. These results can pave the way for further research and use of these nanoparticles as new antimicrobial agents in various realms of dairy products.  相似文献   

15.
High-purity water (HPW) can be contaminated with pathogenic microorganisms, which may result in human infection. Current culture-based techniques for the detection of microorganisms from HPW can be slow and laborious. The aim of this study was to develop a rapid method for the quantitative detection and identification of pathogenic bacteria causing low-level contamination of HPW. A novel internally controlled multiplex real-time PCR diagnostics assay was designed and optimized to specifically detect and identify Pseudomonas aeruginosa and the Burkholderia genus. Sterile HPW, spiked with a bacterial load ranging from 10 to 103 cfu/100 ml, was filtered and the bacterial cells were removed from the filters by sonication. Total genomic DNA was then purified from these bacteria and subjected to testing with the developed novel multiplex real-time PCR diagnostics assay. The specific P. aeruginosa and Burkholderia genus assays have an analytical sensitivity of 3.5 genome equivalents (GE) and 3.7 GE, respectively. This analysis demonstrated that it was possible to detect a spiked bacterial load of 1.06 × 102 cfu/100 ml for P. aeruginosa and 2.66 × 102 cfu/100 ml for B. cepacia from a 200-ml filtered HPW sample. The rapid diagnostics method described can reliably detect, identify, and quantify low-level contamination of HPW with P. aeruginosa and the Burkholderia genus in <4 h. We propose that this rapid diagnostics method could be applied to the pharmaceutical and clinical sectors to assure the safety and quality of HPW, medical devices, and patient-care equipment.  相似文献   

16.
The development of rapid detection assays of cell viability is essential for monitoring the microbiological quality of water systems. Coupling propidium monoazide with quantitative PCR (PMA-qPCR) has been successfully applied in different studies for the detection and quantification of viable cells in small-volume samples (0.25–1.00 mL), but it has not been evaluated sufficiently in marine environments or in large-volume samples. In this study, we successfully integrated blue light-emitting diodes for photoactivating PMA and membrane filtration into the PMA-qPCR assay for the rapid detection and quantification of viable Enterococcus faecalis cells in 10-mL samples of marine waters. The assay was optimized in phosphate-buffered saline and seawater, reducing the qPCR signal of heat-killed E. faecalis cells by 4 log10 and 3 log10 units, respectively. Results suggest that high total dissolved solid concentration (32 g/L) in seawater can reduce PMA activity. Optimal PMA-qPCR standard curves with a 6-log dynamic range and detection limit of 102 cells/mL were generated for quantifying viable E. faecalis cells in marine waters. The developed assay was compared with the standard membrane filter (MF) method by quantifying viable E. faecalis cells in seawater samples exposed to solar radiation. The results of the developed PMA-qPCR assay did not match that of the standard MF method. This difference in the results reflects the different physiological states of E. faecalis cells in seawater. In conclusion, the developed assay is a rapid (~5 h) method for the quantification of viable E. faecalis cells in marine recreational waters, which should be further improved and tested in different seawater settings.  相似文献   

17.
In this study, a method combining Raman spectroscopy with chemometric analysis was developed for detection of phage presence in raw milk and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages which are among the main phages causing problems in dairy industry. For this purpose, S. thermophilus and L. bulgaricus phages were added into raw milk separately, and then some pretreatments such as fat separation, removal of casein, and filtration were applied to the raw milk samples. Raman spectra of the samples were collected and then analyzed using principal component analysis in order to discriminate these phages in raw milk. In the next step, dilutions of S. thermophilus phages in pretreated raw milk were prepared, and Raman spectra were collected. These spectra were analyzed by using partial least squares method to quantify phages in low titer. Consequently, it has been demonstrated that S. thermophilus and L. bulgaricus phages, which have titers sufficient to fail the fermentation (~?107 pfu/mL) and have lower titers (102–103 pfu/mL), could be discriminated from antibiotic and each other. Additionally, low concentrations of S. thermophilus phages (102 pfu/mL) could be detected through Raman spectroscopy with a short analysis time (60 min) and high coefficient of determination (R2) values for both calibration (0.985) and validation (0.906) with a root mean square error of calibration of 70.54 and root mean square error of prediction of 165.47. However, a lower success was achieved with L. bulgaricus phages and the obtained coefficient of determination values were not sufficiently high (0.649).  相似文献   

18.
Salmonellae have been some of the most frequently reported etiological agents in fresh-produce-associated outbreaks of human infections in recent years. PCR assays using four innovative pairs of primers derived from hilA and sirA, positive regulators of Salmonella invasive genes, were developed to identify Salmonella enterica serotype Montevideo on and in tomatoes. Based on examination of 83 Salmonella strains and 22 non-Salmonella strains, we concluded that a pair of hilA primers detects Salmonella specifically. The detection limits of the PCR assay were 101 and 100 CFU/ml after enrichment at 37°C for 6 and 9 h, respectively. When the assay was validated by detecting S. enterica serotype Montevideo in and on artificially inoculated tomatoes, 102 and 101 CFU/g were detected, respectively, after enrichment for 6 h at 37°C. Our results suggest that the hilA-based PCR assay is sensitive and specific, and can be used for rapid detection of Salmonellae in or on fresh produce.  相似文献   

19.

Background

Enteric fever remains an important cause of morbidity in many low-income countries and Salmonella Paratyphi A has emerged as the aetiological agent in an increasing proportion of cases. Lack of adequate diagnostics hinders early diagnosis and prompt treatment of both typhoid and paratyphoid but development of assays to identify paratyphoid has been particularly neglected. Here we describe the development of a rapid and sensitive blood culture PCR method for detection of Salmonella Paratyphi A from blood, potentially allowing for appropriate diagnosis and antimicrobial treatment to be initiated on the same day.

Methods

Venous blood samples from volunteers experimentally challenged orally with Salmonella Paratyphi A, who subsequently developed paratyphoid, were taken on the day of diagnosis; 10 ml for quantitative blood culture and automated blood culture, and 5 ml for blood culture PCR. In the latter assay, bacteria were grown in tryptone soy broth containing 2.4% ox bile and micrococcal nuclease for 5 hours (37°C) before bacterial DNA was isolated for PCR detection targeting the fliC-a gene of Salmonella Paratyphi A.

Results

An optimized broth containing 2.4% ox bile and micrococcal nuclease, as well as a PCR test was developed for a blood culture PCR assay of Salmonella Paratyphi A. The volunteers diagnosed with paratyphoid had a median bacterial burden of 1 (range 0.1–6.9) CFU/ml blood. All the blood culture PCR positive cases where a positive bacterial growth was shown by quantitative blood culture had a bacterial burden of ≥ 0.3 CFU/ ml blood. The blood culture PCR assay identified an equal number of positive cases as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood), but utilized only half the volume of specimens.

Conclusions

The blood culture PCR method for detection of Salmonella Paratyphi A can be completed within 9 hours and offers the potential for same-day diagnosis of enteric fever. Using 5 ml blood, it exhibited a lower limit of detection equal to 0.3 CFU/ml blood, and it performed at least as well as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood) of clinical specimens despite using half the volume of blood. The findings warrant its further study in endemic populations with a potential use as a novel diagnostic which fills the present gap of paratyphoid diagnostics.  相似文献   

20.
A new two-step filtration protocol followed by a real-time PCR assay based on SYBR green I detection was developed to directly quantitate salmonellae in two types of biological samples: i.e., chicken rinse and spent irrigation water. Four prefiltration filters, one type of final filter, and six protocols for recovery of salmonellae from the final filter were evaluated to identify an effective filtration protocol. This method was then combined with a real-time PCR assay based on detection of the invA gene. The best results were obtained by subsequent filtration of 100 ml of chicken rinse or 100 ml of spent irrigation water through filters with pore diameters of >40 μm to remove large particles and of 0.22 μm to recover the Salmonella cells. After this, the Salmonella cells were removed from the filter by vortexing in 1 ml of physiological saline, and this sample was then subjected to real-time quantitative PCR. The whole procedure could be completed within 3 h from sampling to quantitation, and cell numbers as low as 7.5 × 102 CFU per 100-ml sample could be quantified. Below this limit, qualitative detection of concentrations as low as 2.2 CFU/100 ml sample was possible on occasion. This study has contributed to the development of a simple, rapid, and reliable method for quantitation of salmonellae in food without the need for sample enrichment or DNA extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号