首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional wastewater treatment relies on a complex microbiota; however, much of this community is still to be characterized. To better understand the origin, dynamics and fate of bacteria within a wastewater treatment plant: untreated primary wastewater, activated sludge and post-treatment effluent were characterized. From 3163 exact sequence variants (ESVs), 860 were annotated to species-level. In primary wastewater, 28% of ESVs were putative bacterial species previously associated with humans, 14% with animals and 5% as common to the environment. Differential abundance analysis revealed significant relative reductions in ESVs from potentially human-associated species from primary wastewater to activated sludge, and significant increases in ESVs from species associated with nutrient cycling. Between primary wastewater and effluent, 51% of ESVs from human-associated species did not significantly differ, and species such as Bacteroides massiliensis and Bacteroides dorei increased. These findings illustrate that activated sludge increased extracellular protease and urease-producing species, ammonia and nitrite oxidizers, denitrifiers and specific phosphorus accumulators. Although many human-associated species declined, some persisted in effluent, including strains of potential health or environmental concern. Species-level microbial assessment may be useful for understanding variation in wastewater treatment efficiency as well as for monitoring the release of microbes into surface water and the wider ecosystem.  相似文献   

2.
河流沉积物氮循环主要微生物的生态特征   总被引:3,自引:0,他引:3  
微生物驱动的氮循环过程是全球生物地球化学循环的重要组成部分,由于人类活动的影响,氮循环负荷加剧,氮素的生态平衡和微生物的功能特征也相应地受到干扰。河流生态系统是陆地与海洋联系的纽带,因人类活动过量活性氮的输入导致水体富营养化,明显影响着河流的生态功能以及河口沿岸海洋生态系统的平衡。富含微生物的沉积物对氮素的转化和去除起着至关重要的作用。本文主要介绍河流沉积物氮循环主要功能微生物,包括氨氧化细菌、氨氧化古菌、亚硝酸盐氧化菌、反硝化细菌和厌氧氨氧化细菌的群落特征和生态功能,总结氮相关营养盐、溶氧和季节变化等环境因子,以及河道控制管理措施和污水处理厂扰动等条件下氮循环过程主要功能类群的生态特征和响应关系。指出还需深入全面地研究河流沉积物生态系统氮循环过程的驱动机制和微生物的贡献效率,加强城市河流沉积物微生物功能作用的研究及河道生物修复技术的开发。  相似文献   

3.
Water samples were collected from three sites located in the middle reach of the Njoro River, Kenya, and analysed for total phosphorus (TP), orthophosphate, ammonia‐nitrogen, and nitrate‐nitrogen to evaluate stressor sources (e.g. factories and wastewater ponds) and the general stream water quality. The stream surface water was also analysed for biochemical oxygen demand (BOD5) to provide an overview of organic matter loading. Mugo, Egerton Bridge and the canning factory sites of the Njoro River had low water quality which is likely to be due to poor farming, partially treated effluents and poor provision of sanitation facilities to the riparian communities. The concentrations of the selected nutrients did not differ significantly among the three sites, presumably due to pollution of the whole stream reach by the catchment nutrient sources. High phosphate concentrations (i.e. ~0.76 mgPO4 l?1 and ~0.87 mgTP l?1) at Canning Factory were recorded during the low flow dry season. Nitrate‐nitrogen concentrations varied significantly with water discharge which explained between 63 and 87% of the nutrient variability in the three sites. BOD5 differed significantly among the three sites, with historical effects of wastewater and factory effluent discharge being reflected in the results of Egerton Bridge and Canning Factory. The concentrations of ammonia‐nitrogen, TP and orthophosphate were higher in the wastewater than in the river water whereas nitrate‐nitrogen was lower. This study indicates that the Njoro River is stressed by nutrients from the activities within its catchment. With the increasing population, the nutrient load to the river will continue to increase and the water quality will continue to deteriorate. Reductions of nutrient loads into the river as well as provision of sanitation facilities to the riparian communities are needed to control further water degradation.  相似文献   

4.
A novel DNA microarray analysis targeting key functional genes involved in most nitrogen cycling reactions was developed to comprehensively analyze microbial populations associated with the nitrogen cycle. The developed microarray contained 876 oligonucleotide probes based on the nucleotide sequences of the nif, amo, hao/hzo, nap, nar, nirK, nirS, nrf, cnor, qnor and nos genes. An analytical method combining detection by the designed microarray with whole community genome amplification was then applied to monitor the nitrogen cycling microorganisms in river water and wastewater treatment sludge samples. The developed method revealed that nitrogen cycling microorganisms in river water appeared to become less diverse in response to input of effluent from municipal wastewater treatment plants. Additionally, the nitrogen cycling community associated with anaerobic ammonium oxidation and partial nitrification reactors could be reasonably analyzed by the developed method. However, the results obtained for two activated sludge samples from municipal wastewater treatment plants with almost equivalent wastewater treatment performance differed greatly from each other. These results suggested that the developed method is useful for comprehensive analysis of nitrogen cycling microorganisms, although its applicability to complex samples with abundant untargeted populations should be further examined.  相似文献   

5.
Salinization of freshwater ecosystems as a result of human activities has markedly increased in recent years. Much attention is currently directed at evaluating the effects of increased salinity on freshwater biota. In the Central Appalachian region of the eastern United States, specific conductance from alkaline discharges associated with mountain top mining practices has been implicated in macroinvertebrate community declines in streams receiving coal mining discharges. Whole effluent toxicity testing of receiving stream water was used to test the hypothesis that mine discharges are toxic to laboratory test organisms and further, that toxicity is related to ionic concentrations as indicated by conductivity. Chronic toxicity testing using Ceriodaphnia dubia was conducted by contract laboratories at 72 sites with a total of 129 tests over a 3.5 year period. The database was evaluated to determine the ionic composition of mine effluent dominated streams and whether discharge constituents were related to toxicity in C. dubia. As expected, sulfate was found to be the dominant anion in streams receiving mining discharges with bicarbonate variable and sometimes a substantial component of the dissolved solids. Overall, the temporal variability in conductance was low at each site which would indicate fairly stable water quality conditions. Results of the toxicity tests show no relationship between conductance and survival of C. dubia in the mining influenced streams with the traditional toxicity test endpoints. However, consideration of the entire dataset revealed a significant inverse relationship between conductivity and neonate production. While conductivity explained very little of the high variability in the offspring production (r2 = 0.1304), the average numbers of offspring were consistently less than 20 neonates at the highest conductivities.  相似文献   

6.
Wastewater discharges associated with urbanisations, farming activities and industry may dramatically reduce the ecological health of river ecosystems. During the reconstruction of the Friuli Venezia Giulia region following the 1976 earthquake, a lot of resources were used to build large numbers of wastewater treatment plants to minimize the impact of human activities on lotic ecosystems. Their efficiency is usually assessed through monitoring of the physical and chemical environment near the discharge point. However, discontinuous monitoring of the abiotic environment may fail to detect periodic malfunctioning and do not recognize indirect effects on the ecosystem. We assessed the potential of an alternative approach to assess the impact of wastewater discharges, based on the monitoring of ostracod density, richness and community composition. We repeatedly measured physical, chemical and microbial parameters and collected ostracod samples at stations up- and downstream from wastewater discharge points scattered over a 21-km stretch of the Ledra River (NE Italy). The results indicate that monitoring ostracods is a potentially valuable approach, for two reasons. Communities appeared to be well differentiated even in the small spatial area of this study, indicating that they can provide sufficient resolution to pick up even minor impacts. Secondly, despite the seasonal succession in species composition, spatial differentiation was consistent over time, suggesting that ostracods provide a time-integrated picture of the water quality. The traditional approach failed to detect any consistent impact of wastewater discharges, apart from an ambiguous increase in nutrient levels. The density and/or richness of the ostracod communities was altered by some wastewater discharges, but not by others. We identified a general trend for wastewater discharges to systematically replace regionally rare ostracod species with common species. In particular, the species Ilyocypris inermis was very sensitive to discharges, and may be used as an indicator species for good ecosystem health.  相似文献   

7.
Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river.  相似文献   

8.
A thorough outlook on the effect of palm oil mill effluent (POME) final discharge towards bacterial community dynamics in the receiving river is provided in this study by using a high-throughput MiSeq. The shift of bacterial composition could be used to determine the potential bacterial indicators to indicate contamination caused by POME. This study showed that the POME final discharge did not only alter the natural physicochemical properties of the river water but also caused the reduction of bacterial diversity in the receiving river. The Chromatiaceae and Alcaligenaceae which were not detected in the upstream but were detected in the downstream part of the river are proposed as the indicator bacteria to indicate the river water contamination caused by POME final discharge. The emergence of either one or both bacteria in the downstream part of the river were shown to be carried over by the effluent. Therefore, an accurate pollution monitoring approach using bacterial indicator is expected to complement the conventional POME pollution assessment method which is currently dependent on the physicochemical properties of the final discharge. This is the first study that reported on the potential indicator bacteria for the assessment of river water contamination caused by POME final discharge.  相似文献   

9.
10.
The contamination of surface water by nitrogen due to fertilizer application and discharge of wastewater is an increasingly serious problem. A multifunctional device, which combines water-lifting and aeration (WLA) with oligotrophic biological contact oxidation (OBCO), was developed for pretreatment of raw water to reduce nitrogen. The performance of nitrogen removal and changes in microbial community structure were investigated. The results showed that the combined technique of WLA-OBCO was feasible, and that ammonium, nitrate, total nitrogen and total organic carbon were effectively removed. Meanwhile, nitrite was mostly undetectable. The PCR-DGGE and clone sequencing results revealed that α-proteobacterium was the largest bacterial group, and Pseudomonas strains Y3 and J8 were the dominant bacteria.  相似文献   

11.
In order to evaluate the impact of an urban effluent on antibiotic resistance of freshwater bacterial populations, water samples were collected from the Arga river (Spain), upstream and downstream from the wastewater discharge of the city of Pamplona. Strains of Enterobacteriaceae (representative of the human and animal commensal flora) (110 isolates) and Aeromonas (typically waterborne bacteria) (118 isolates) were selected for antibiotic susceptibility testing. Most of the Aeromonas strains (72%) and many of the Enterobacteriaceae (20%) were resistant to nalidixic acid. Singly nalidixic acid-resistant strains were frequent regardless of the sampling site for Aeromonas, whereas they were more common upstream from the discharge for enterobacteria. The most common resistances to antibiotics other than quinolones were to tetracycline (24.3%) and beta-lactams (20.5%) for Enterobacteriaceae and to tetracycline (27.5%) and co-trimoxazole (26.6%) for Aeromonas. The rates of these antibiotic resistances increased downstream from the discharge at similar degrees for the two bacterial groups; it remained at high levels for enterobacteria but decreased along the 30-km study zone for Aeromonas. Genetic analysis of representative strains demonstrated that these resistances were mostly (enterobacteria) or exclusively (Aeromonas) chromosomally mediated. Moreover, a reference strain of Aeromonas caviae (CIP 7616) could not be transformed with conjugative R plasmids of enterobacteria. Thus, the urban effluent resulted in an increase of the rates of resistance to antibiotics other than quinolones in the riverine bacterial populations, despite limited genetic exchanges between enterobacteria and Aeromonas. Quinolone resistance probably was selected by heavy antibiotic discharges of unknown origin upstream from the urban effluent.  相似文献   

12.
In this study, a lab-scale anaerobic/anoxic/zeolite biofilter-membrane bioreactor (A1/A2/ZB-MBR) was designed to treat coking wastewater. The 454 pyrosequencing was used to obtain the composition and dynamics of microbial community about the treatment system. The results showed that the system yielded stable effluent chemical oxidation demand (158.5?±?21.8 mg/L) and ammonia (8.56?±?7.30 mg/L), but fluctuant total nitrogen (31.4–165.1 mg/L) concentrations. In addition, 66,256 16S rRNA gene sequences were obtained from A2 and ZB-MBR, and the microbial diversity and richness for five samples were determined. Although community compositions in the five samples were quite different, bacteria assigned to phylum Proteobacteria and class Flavobacteria commonly existed and dominated the microbial populations. The pyrosequencing analysis revealed that the microbial community shifted in the ZB-MBR with the presence of zeolite. Some taxa began to appear in ZB-MBR and contributed to the system performance. Additionally, Nitrosomonas and Nitrobacter gradually became the dominant ammonia-oxidizing bacteria and nitrite-oxidizing bacteria during the operation, respectively, which are favorable for the stabilized ammonia removal. Our results proved that the ZB-MBR is an alternative technique for treating coking wastewater.  相似文献   

13.
Inorganic chloramines are formed when chlorine and ammonia are combined in water. These substances are frequently used as a secondary disinfectant for drinking water and are by-products of processes involving the disinfection of wastewaters and the control of biological fouling in cooling water systems. For chloraminate drinking water, the total residual chlorine (TRC) concentration may be almost completely due to monochloramine. Based on 1995 and 1996 survey data, the most significant and prevalent TRC loading to the Canadian environment is from municipal wastewater releases. Drinking water releases are the next most important source of chloramine entry into the Canadian environment, while TRC releases from other sources, such as cooling water, zebra mussel control practices and industrial wastewater, are much less important. A probabilistic water quality model was used to model two wastewater discharges and a cooling water discharge to different freshwater systems. The resulting exposure distributions were then compared with three incipient lethality endpoints, i.e., 50% mortality to the invertebrate Ceriodaphnia dubia and 50% and 20% mortality to juvenile chinook salmon (Oncorhynchus tshawytscha). For each discharge scenario studied, there were moderate to high probabilities of significant adverse effects on aquatic life up to 1.9?km from the effluent sources.  相似文献   

14.
The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs), generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA) from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge) of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant). Extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) were identified by gene sequencing. All non-wild-type isolates (n = 56) and a similar number of wild-type isolates (n = 54) were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5%) contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×106 CFU/l or/kg). Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination.  相似文献   

15.
Propionate and NH4+ were accumulated in the effluent during anaerobic treatment of five-fold diluted distillery wastewater from shochu making. Propionate could be removed efficiently during biological denitrification by the addition of NO3 (4.2 g/l) to the anaerobically treated wastewater. At a hydraulic retention time of more than 2 h, a TOC removal efficiency of 90% could be achieved. The wastewater was then treated aerobically by biological nitrification. With a hydraulic retention time of more than 14 h the efficiency of reduction of NH4+ could be maintained above 97%. In order to reduce the amount of NO3 addition necessary for the removal of propionate, simultaneous removal of propionate and NH4+ was studied by recirculating the effluent from a nitrification process to a denitrification process using denitrification and nitrification reactors connected in series. At a recirculation ratio of 2, the amount of NO3 that had to be added was reduced to 0.3 g/l of anaerobically treated wastewater, which corresponds to 6.9% of the theoretical value. Under the same conditions except for the addition of NO3 at 1.0 g/l, TOC and BOD in the effluent from the nitrification were 23 and 5 mg/l respectively, which are sufficiently low to allow discharge into river water. Moreover, the NO3 concentration in the effluent decreased with increases in the recirculation ratio.  相似文献   

16.
The antibiotic resistance (AR) patterns of 462 Escherichia coli isolates from wastewater, surface waters, and oysters were determined. Rates of AR and multiple-AR among isolates from surface water sites adjacent to wastewater treatment plant (WWTP) discharge sites were significantly higher (P < 0.05) than those among other isolates, whereas the rate of AR among isolates from oysters exposed to WWTP discharges was low (<10%).  相似文献   

17.
In this study, PCR-RFLP and GC-MS approaches were used to characterize the bacterial diversity, organic pollutants and metabolites during the tannery wastewater treatment process at common effluent treatment plant (CETP). Results revealed that the bacterial communities growing in aeration lagoon-I were dominated with Escherichia sp., Stenotrophomonas sp., Bacillus sp. and Cronobacter sp. while that of aeration lagoon-II prevailed with Stenotrophomonas sp., and Burkholderiales bacterium, respectively. The HPLC and GC-MS analysis revealed that most of the organic pollutants detected in untreated tannery wastewater samples were diminished from bacterial treated tannery wastewater samples. Only two pollutants i.e. L-(+)-lactic acid and acetic acid could not be degraded by bacteria whereas benzene and 2-hydroxy-3-methyl-butanoic acid was produced as new metabolites during the bacterial treatment of tannery wastewater in aeration lagoon II of CETP. Further, it was observed that after bacterial treatment, the toxicity of tannery effluent was reduced significantly allowing 90% seed germination.  相似文献   

18.
In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization.  相似文献   

19.
曝气充氧条件下污染河道氨挥发特性模拟   总被引:3,自引:0,他引:3  
刘波  王文林  凌芬  王国祥  杜旭  周锋  许宽  夏劲 《生态学报》2012,32(23):7270-7279
以污染河道为研究对象,模拟研究污染河道在曝气充氧(底泥曝气,ES组;水曝气,EW组)条件下氨挥发的特性,探讨主要影响因素及其作用过程.研究表明,污染河道水体具有一定氨挥发潜力,在实验室模拟条件下,氨挥发速率平均为2.51mg·m-2·h-1,相当于0.50 kgN· hm-2·d-1;曝气污染河道水体的氨挥发有一定的促进作用,与对照相比(EC组)氨挥发速率和累积氨挥发量存在显著差异(P< 0.05);不同曝气方式对氨挥发过程影响不同,氨挥发速率存在显著差异(P<0.05);至实验结束,EW组的累积挥发量为2809.76 mg/m2,分别是ES组和EC组的1.17和2.25倍;各实验组的氨挥发累积量用一级动力学方程能很好地拟合,根据模型可以预测氨挥发量;同一温度条件下,pH值、铵氮浓度和通气频率是影响氨挥发的主要因素;曝气可以通过增加通气频率和提高水体pH值来促进氨挥发进行;在曝气作用下随着硝化过程的进行对氨挥发有一定的限制作用;曝气条件下,氨挥发作用在硝化过程启动阶段最为明显.  相似文献   

20.
Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET) that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM) to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd) and salinity controls (SC: without canal water). CWd were prepared by diluting the water effluent (sampled during the pesticide application period) with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号