首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nacharaju P  Lewis J  Easson C  Yen S  Hackett J  Hutton M  Yen SH 《FEBS letters》1999,447(2-3):195-199
Tau is the major component of the neurofibrillar tangles that are a pathological hallmark of Alzheimers' disease. The identification of missense and splicing mutations in tau associated with the inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 demonstrated that tau dysfunction can cause neurodegeneration. However, the mechanism by which tau dysfunction leads to neurodegeneration remains uncertain. Here, we present evidence that frontotemporal dementia and Parkinsonism linked to chromosome 17 missense mutations, P301L, V337M and R406W, cause an accelerated aggregation of tau into filaments. These results suggest one mechanism by which these mutations can cause neurodegeneration and frontotemporal dementia and Parkinsonism linked to chromosome 17.  相似文献   

2.
Alzheimer's disease is characterised by the degeneration of selected populations of nerve cells that develop filamentous inclusions prior to degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias, such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The discovery of mutations in the tau gene in familial frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has provided a direct link between tau dysfunction and dementing disease. Known mutations produce either a reduced ability of tau to interact with microtubules, or an overproduction of tau isoforms with four microtubule-binding repeats. This leads in turn to the assembly of tau into filaments similar or identical to those found in Alzheimer's disease brain. Several missense mutations also have a stimulatory effect on heparin-induced tau filament formation. Assembly of tau into filaments may be the gain of toxic function that is believed to underlie the demise of affected brain cells.  相似文献   

3.
Multiple tau gene mutations are pathogenic for hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), with filamentous tau aggregates as the major lesions in the CNS of these patients. Recent studies have shown that bacterially expressed recombinant tau proteins with FTDP-17 missense mutations cause functional impairments, i.e., a reduced ability of mutant tau to bind to or promote the assembly of microtubules. To investigate the biological consequences of FTDP-17 tau mutants and assess their ability to form filamentous aggregates, we engineered Chinese hamster ovary cell lines to stably express tau harboring one or several different FTDP-17 mutations and showed that different tau mutants produced distinct pathological phenotypes. For example, delta K, but not several other single tau mutants (e.g., V337 M, P301L, R406W), developed insoluble amorphous and fibrillar aggregates, whereas a triple tau mutant (VPR) containing V337M, P301L, and R406W substitutions also formed similar aggregates. Furthermore, the aggregates increased in size over time in culture. Significantly, the formation of aggregated delta K and VPR tau protein correlated with reduced affinity of these mutants to bind microtubules. Reduced phosphorylation and altered proteolysis was also observed in R406W and delta K tau mutants. Thus, distinct pathological phenotypes, including the formation of insoluble filamentous tau aggregates, result from the expression of different FTDP-17 tau mutants in transfected Chinese hamster ovary cells and implies that these missense mutations cause diverse neurodegenerative FTDP-17 syndromes by multiple mechanisms.  相似文献   

4.
Coding region and intronic mutations in the tau gene cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We have previously reported that ABalphaC, a major form of protein phosphatase 2A (PP2A) in brain, binds tightly to tau protein in vitro and is a major tau phosphatase in vivo. Using in vitro assays, we show here that the FTDP-17 mutations G272V, DeltaK280, P301L, P301S, S305N, V337M, G389R, and R406W inhibit by approximately 20-95% the binding of recombinant three-repeat and four-repeat tau isoforms to the ABalphaC holoenzyme and the AC core enzyme of PP2A. Reduction in binding was maximal for tau proteins with the G272V, DeltaK280, and V337M mutations. We also show that tau protein can be specifically coimmunoprecipitated with endogenous PP2A from both rat brain and transfected cell extracts. It is significant that, by using similar coimmunoprecipitation assays, we show that all FTDP-17 mutations tested, including the N279K mutation, alter the ability of tau to associate with cellular PP2A. Taken together, these results indicate that FTDP-17 mutations induce a significant decrease in the binding affinity of tau for PP2A in vivo. We propose that altered protein-protein interactions between PP2A and tau may contribute to FTDP-17 pathogenesis.  相似文献   

5.
Regulation of tau isoform expression and dementia   总被引:8,自引:0,他引:8  
In the central nervous system (CNS), aberrant changes in tau mRNA splicing and consequently in protein isoform ratios cause abnormal aggregation of tau and neurodegeneration. Pathological tau causes neuronal loss in Alzheimer's disease (AD) and a diverse group of disorders called the frontotemporal dementias (FTD), which are two of the most common forms of dementia and afflict more than 10% of the elderly population. Autosomal dominant mutations in the tau gene cause frontotemporal dementia with parkinsonism-chromosome 17 type (FTDP-17). Just over half the mutations affect tau protein function and decrease its affinity for microtubules (MTs) or increase self-aggregation. The remaining mutations occur within exon 10 (E10) and intron 10 sequences and alter complex regulation of E10 splicing by multiple mechanisms. FTDP-17 splicing mutations disturb the normally balanced levels of distinct protein isoforms that result in altered biochemical and structural properties of tau. In addition to FTDP-17, altered tau isoform levels are also pathogenically associated with other FTD disorders such as progressive supranuclear palsy (PSP), corticobasal degeneration and Pick's disease; however, the mechanisms remain undefined and mutations in tau have not been detected. FTDP-17 highlights the association between splicing mutations and the pronounced variability in pathology as well as phenotype that is characteristic of inherited disorders.  相似文献   

6.
Coding region and intronic mutations in the gene for microtubule-associated protein tau cause frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Most coding region mutations effect a reduced ability of tau protein to interact with microtubules and lead to the formation of a filamentous pathology made of hyperphosphorylated tau. Here we show that trimethylamine N-oxide (TMAO) restores the ability of tau with FTDP-17 mutations to promote microtubule assembly. To mimic phosphorylation, serine and threonine residues in tau were singly or multiply mutated to glutamic acid, resulting in a reduced ability of tau to promote microtubule assembly. With the exception of the most heavily substituted protein (27 glutamic acid residues), TMAO increased the ability of mutant tau to promote microtubule assembly. However, it had no significant effect on heparin-induced assembly of tau into filaments.  相似文献   

7.
Mutations in the tau gene cause frontotemporal dementia and parkinsonism linked to chromosome-17 (FTDP-17). Functionally, about half of the known mutations increase the alternative mRNA splicing of exon 10 of the tau gene, resulting in the overproduction of tau isoforms with four microtubule-binding repeats. The other mutations reduce the ability of tau to interact with microtubules, with some mutations also increasing the propensity of tau to assemble into filaments. Here we have examined the functional effects of the recently described tau gene mutations deltaN296 and N296H. Both mutations reduced the ability of tau to promote microtubule assembly, without having a significant effect on tau filament formation. By exon trapping, they increased the splicing of exon 10. DeltaN296 and N296H thus define a class of tau mutations with effects at both the RNA and the protein level.  相似文献   

8.
Mutations in microtubule-associated protein tau recently have been identified in familial cases of frontotemporal dementia (FTD). We report the frequency of tau mutations in a large population-based study of FTD carried out in the Netherlands from January 1994 to June 1998. Thirty-seven patients had >/=1 first-degree relative with dementia. A mutation in the tau gene was found in 17.8% of the group of patients with FTD and in 43% of patients with FTD who also had a positive family history of FTD. Three distinct missense mutations (G272V, P301L, R406W) accounted for 15.6% of the mutations. These three missense mutations, and a single amino acid deletion (DeltaK280) that was detected in one patient, strongly reduce the ability of tau to promote microtubule assembly. We also found an intronic mutation at position +33 after exon 9, which is likely to affect the alternative splicing of tau. Tau mutations are responsible for a large proportion of familial FTD cases; however, there are also families with FTD in which no mutations in tau have been found, which indicates locus and/or allelic heterogeneity. The different tau mutations may result in disturbances in the interactions of the protein tau with microtubules, resulting in hyperphosphorylation of tau protein, assembly into filaments, and subsequent cell death.  相似文献   

9.
Aggregation or phosphorylation of the microtubule-associated protein tau is the pathological hallmark in a number of diseases termed tauopathies, which include the most common neurodegenerative disorder, Alzheimer’s disease; or frontotemporal dementia, linked to mutations in the gene MAPT encoding tau. Although misfolded tau has strong familial and histopathological (as in intracellular tangles) association with neurodegenerative disorders, the cellular mechanism of tau-induced pathology remains to be controversial. Here we studied the effect of tau on the cytosolic and mitochondrial calcium homeostasis using primary cortical cultures treated with the protein and iPSC-derived neurons bearing the 10 + 16 MAPT mutation linked to frontotemporal dementia. We found that incubation of the primary cortical co-cultures of neurons and astrocytes with tau induced spontaneous Ca2+ oscillations in the neurons, which were also observed in iPSC-neurons with the 10 + 16 MAPT mutation. Importantly, tau inhibited mitochondrial calcium efflux via the mitochondrial Na+/Ca2+ exchanger (NCLX) in both neurons and astrocytes. This inhibition led to mitochondrial depolarisation in response to physiological and pathological calcium stimuli and made these cells vulnerable to calcium-induced caspase 3 activation and cell death. Thus, inhibition of the mitochondrial NCLX in neurons with misfolded or mutated tau can be involved in the mechanism of neurodegeneration.  相似文献   

10.
Abnormal tau-containing filaments in neurodegenerative diseases   总被引:1,自引:0,他引:1  
It has been known for some time that the neurofibrillary pathology in Alzheimer's disease consists of so-called paired helical and straight filaments made up of the microtubule-associated protein tau. The degree of dementia observed in the disease correlates better with the extent of neurofibrillary pathology than with the Abeta amyloid deposits, the other characteristic defining pathological fibrous deposit in Alzheimer's disease. However, no familial cases of Alzheimer's disease have been genetically linked to the tau protein locus. Recently a group of frontotemporal dementias with parkinsonism linked to chromosome 17 has been shown to be caused by mutations in the tau gene. Some are missense mutations giving altered tau proteins, whereas others affect the splicing of the pre-mRNA and change the balance between different tau isoforms. Histologically these diseases are all characterised by various kinds of filamentous tau protein deposits, mostly in the complete absence of Abeta deposits. The abnormal tau filaments show different morphologies, depending on the nature of the tau mutation. These diseases show that tau mutations can be a prime cause of inherited dementing illness and may throw some light on the pathological process in the much larger number of sporadic cases of Alzheimer's disease.  相似文献   

11.
We have studied biochemical and structural parameters of several missense and deletion mutants of tau protein (G272V, N279K, DeltaK280, P301L, V337M, R406W) found in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). The mutant proteins were expressed on the basis of both full-length tau (htau40) and constructs derived from the repeat domain. They were analyzed with respect to the capacity to enhance microtubule assembly, binding of tau to microtubules, secondary structure content, and aggregation into Alzheimer-like paired helical or straight filaments. We find that the mutations cause a moderate decrease in microtubule interactions and stabilization, and they show no gross structural changes compared with the natively unfolded conformation of the wild-type protein, but the aggregation into PHFs is strongly enhanced, particularly for the mutants DeltaK280 and P301L. This gain of pathological aggregation would be consistent with the autosomal dominant nature of the disease.  相似文献   

12.
Tolnay M  Probst A 《IUBMB life》2003,55(6):299-305
Abundant neurofibrillary lesions made of abnormal and hyperphosphorylated microtubule-associated protein tau constitute one of the defining neuropathological features of Alzheimer's disease. However, tau containing filamentous deposits in neurons and/or glial cells also define a heterogeneous group of neurodegenerative disorders clinically characterized by dementia and/or motor syndromes. Thus, all these disorders are collectively grouped under the generic term of tauopathies. In the present review we outline the morphological and biochemical characteristics of some major tauopathies, including Alzheimer's disease, Pick's disease, progressive supranuclear palsy, corticobasal degeneration and argyrophilic grain disease. The second part will deal with the recent discovery of tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 which demonstrates that tau dysfunction can lead to neurodegeneration. Finally, we will discuss the very recent finding of 'tau-deficient' tauopathy in a subset of frontotemporal dementia cases.  相似文献   

13.
Yen S  Easson C  Nacharaju P  Hutton M  Yen SH 《FEBS letters》1999,461(1-2):91-95
Frontal temporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17) is caused by splice site and missense mutations in the tau gene, and characterized by the accumulation of filamentous tau in cerebral neurons and glia. The missense mutations reduce the ability of tau to promote microtubule assembly and increase the ability of tau to form filaments. In this report we demonstrate that mutants V337M and R406W are less susceptible than mutant P301L or corresponding wild type tau to degradation by calpain I. The differences were at least in part due to changes in accessibility of a cleavage site located about 100 amino acids off the carboxy-terminus. The results suggest that the pathogenesis of some forms of FTDP-17 may involve tau accumulation due to decreased proteolytic degradation.  相似文献   

14.
15.
Alzheimer's disease and Parkinson's disease are the most common neurodegenerative diseases. They are characterized by the degeneration of selected populations of nerve cells that develop filamentous inclusions before degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Recent work has shown that the filamentous inclusions of Parkinson's disease are made of the protein alpha-synuclein and that rare, familial forms of Parkinson's disease are caused by missense mutations in the alpha-synuclein gene. Besides Parkinson's disease, the filamentous inclusions of two additional neurodegenerative diseases, namely dementia with Lewy bodies and multiple system atrophy, have also been found to be made of alpha-synuclein. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The recent discovery of mutations in the tau gene in familial forms of frontotemporal dementia has provided a direct link between tau dysfunction and dementing disease. The new work has established that tauopathies and alpha-synucleinopathies account for most late-onset neurodegenerative diseases in man. The formation of intracellular filamentous inclusions might be the gain of toxic function that leads to the demise of affected brain cells.  相似文献   

16.
Intracellular filamentous inclusions made of either the microtubule-associated protein tau or the protein alpha-synuclein define the majority of cases of neurodegenerative disease. Mutations in the tau gene in familial forms of frontotemporal dementia and in the alpha-synuclein gene in familial cases of Parkinson's disease have provided causal links between the dysfunction of these proteins and neurodegeneration. Over the past year, several novel tau gene mutations have been identified and more has been learned about possible mechanisms by which tau gene mutations lead to frontotemporal dementia. Experimental animal models have provided a link between tau filament formation and nerve cell degeneration. Along similar lines, animal models have been produced that result in the formation of alpha-synuclein filaments and the degeneration of dopaminergic nerve cells. Building on previous work, synthetic alpha-synuclein filaments have been shown to exhibit the characteristics of amyloid.  相似文献   

17.
Intraneuronal filamentous inclusions composed of the microtubule-associated protein tau are a feature of several neurodegenerative diseases (including Alzheimer's disease) known as tauopathies. A pivotal finding was the identification in 1998 of mutations in tau associated with frontotemporal dementia with parkinsonism linked to chromosome 17. This demonstrated that tau dysfunction is sufficient to cause neurodegeneration, and indicated that tau is likely to play a crucial role in the pathogenesis of other tauopathies. However, the mechanism by which tau filamentous lesions form and their role in neurodegeneration remains uncertain. Recent progress in the development of transgenic mouse models of human tauopathy is allowing these questions to be addressed.  相似文献   

18.
Familial forms of frontotemporal dementias are associated with mutations in the tau gene. A kindred affected by progressive subcortical gliosis (PSG), a rare form of presenile dementia, has genetic linkage to chromosome 17q21-22. This kindred (PSG-1) is included in the 'frontotemporal dementias and Parkinsonism linked to chromosome 17' group along with kindreds affected by apparently different forms of atypical dementias. Some of these kindreds have mutations in the tau gene. We report here that PSG-1 has a tau mutation at position +16 of the intron after exon 10. The mutation destabilizes a predicted stem-loop structure and leads to an over-representation of the soluble four-repeat tau isoforms, which assemble into wide, twisted, ribbon-like filaments and ultimately result in abundant neuronal and glial tau pathology. The mutations associated with PSG and other atypical dementias can be subdivided into three groups according to their tau gene locations and effects on tau. The existence of tau mutations with distinct pathogenetic mechanisms may explain the phenotypic heterogeneity of atypical dementias that previously led to their classification into separate disease entities.  相似文献   

19.
Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer''s disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies. Using a series of anti-tau antibodies, we observed, histologically, that nonphosphorylated transgenic human tau is enriched in synapses, whereas phosphorylated tau accumulates predominantly in cell bodies and axons. Subcellular fractionation confirmed that human tau is highly enriched in insoluble cytosolic and synaptosomal fractions, whereas endogenous mouse tau is virtually absent from synapses. Cytosolic tau was resistant to solubilization with urea and Triton X-100, indicating the formation of larger tau aggregates. By contrast, synaptic tau was partially soluble after Triton X-100 treatment and most likely represents aggregates of smaller size. MS corroborated that synaptosomal tau is nonphosphorylated. Tau enriched in the synapse of line 66 mice, therefore, appears to be in an oligomeric and nonphosphorylated state, and one that could have a direct impact on cognitive function.  相似文献   

20.
Several mutations in the gene encoding the microtubule-associated protein tau are responsible for the formation of neurofibrillary inclusions in frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). Here we present the high-resolution characterization of the conformational properties of two FTDP-17 mutants of the four-repeat domain of tau, P301L and DeltaK280, and their properties for binding to polyanions and microtubules. Multidimensional NMR spectroscopy shows that the mutations do no lead to a significant increase in the level of beta-structure in their monomeric state, even though the mutations strongly promote beta-structure during aggregation. However, local structural changes are induced in the second repeat. These changes only weakly affect the binding to the polyanion heparin, which promotes paired helical filament formation. The extent of binding to microtubules, however, is strongly decreased. Our results demonstrate that the reversible binding of tau to microtubules involves specific interactions, which are not essential for binding to polyanions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号