首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Thermoalkaliphilic Bacillus sp. strain TAR-1 isolated from soil produced an extracellular xylanase. The enzyme (xylanase R) was purified to homogeneity by ammonium sulfate fractionation and anion-exchange chromatography. The molecular mass of xylanase R was 40 kDa and the isoelectric point was 4.1. The enzyme was most active over the range of pH 5.0 to 10.0 at 50°C. The optimum temperatures for activity were 75°C at pH 7.0 and 70°C at pH 9.0. Xylanase R was stable up to 65°C at pH 9.0 for 30 min in the presence of xylan. Mercury(ll) ion at 1 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher oligosaccharides, indicating that xylanase R was an endo-acting enzyme. Xylanase R had a Km of 0.82 mg/ml and a Vmax of 280 μmol min−1 mg−1 for xylan at 50°C and pH 9.0.  相似文献   

2.
During the course of investigation of haloalkalophilic bacteria, we screened some heavily polluted soil samples from the mudflats surrounding the city of Inchon, Korea, for their bioflocculant producing ability. Based on the screening, one isolate no. 450 tentatively identified as Bacillus sp. produced an extracellular polysaccharide having flocculation activity. The isolate produced the polysaccharide during the late logarithmic growth phase. The polymer could be recovered from the supernatant of the fermented medium by cold ethanol precipitation and purified by treating with cetylpyridinium chloride (CPC). The polymer was identified as an acidic polysaccharide containing neutral sugars, namely, galactose, fructose, glucose and raffinose, and uronic acids as major and minor components, respectively. The amount of neutral sugars, uronic acid and amino sugars were 52.4, 17.2 and 2.4%, respectively. The molecular weight of the polysaccharide was found to be 2.2×106 Da. The Fourier transform infrared spectrophotometer (FT-IR) revealed typical characteristics of polysaccharides. 1H NMR spectrum showed that the polymer is a heteroglycan. Thermogravimetric (TGA) analysis indicated the degradation temperature (Td) at 290 °C. The rheological analysis of the polymer 450 revealed the pseudoplastic property with shear-thinning effect, while the compression test indicated that the polymer had high gel strength, and the S.E.M. studies showed that the polymer has a porous structure with small pore-size distribution indicating the compactness of the polymer.  相似文献   

3.
An alkaline protease produced from a Bacillus sp. was stimulated by the metal ions Ca2+, Mg2+ and Mn2+; with Ca2+ having the maximum effect. The thermal stability of the enzyme was also enhanced to varying degrees in the presence of these ions.  相似文献   

4.
青霉菌m8产胞外木聚糖酶的纯化及其性质研究   总被引:5,自引:0,他引:5  
青霉菌m8产胞外木聚糖酶的适合培养基 (g/L) :含麦草粉 4 0 ,(NH4) 2 SO44.5 ,KH2 PO41.0 ,MgSO4·7H2 O 0 .5 ,NaCl 0 .3,Tween80 3.0 ,CaCO3 1.0。培养物中该酶经过离子交换和分子筛层析两步处理 ,粗酶被浓缩了 31倍 ,比活力达 4 6 7,收率为 5 0 %。该酶的最适 pH值为 4 .5 ,最适反应温度为 5 5℃ ,可被K+ ,Ca2 + ,Mg2 + 离子激活 ,而被Ag+ ,Fe3 + 和Cu2 + 离子纯化 ,其Km值为 4 .8× 10 -2 g/L。  相似文献   

5.
Ten xylanase isoforms produced by Myceliophthora sp. were characterized for their ability to bind to avicel. Three of the xylanases showing differential affinity for avicel were purified by column chromatography. The purified xylanase Xyl IIa, IIb and IIc showed molecular mass of 47, 41 and 30 kDa and pI of ∼3.5, 4.8 and 5.2, respectively. Xyl IIa was optimally active at pH 8.0 and temperature 70 °C, while Xyl IIb and IIc were optimally active at pH 9.0 and 60 °C and 7.0 and 80 °C, respectively. Xyl IIa and Xyl IIb showed higher stability under alkaline conditions (pH 9.0) and retained 80% of the original activity upto 1 h and 3 h respectively, at 50 °C. All three purified iso-xylanases showed enhanced activities in presence of Na+, Mg2+, Mn2+ and K+ ions, whereas, Zn2+ and Cu2+ showed negative effect on Xyl IIa. The activity of Xyl IIa increased in presence of reducing agents DTT and mercaptoethanol, however, SDS showed inhibitory effect. Kinetic studies showed that Xyl IIb and IIc degrade rye arabinoxylan, much more efficiently than oat spelt xylan, whereas, Xyl IIa showed much higher Kcat/Km value for birch wood xylan as compared to oat spelt xylan. The purified xylanases were apparently classified in family 10.  相似文献   

6.
Statistical optimization of culture conditions for production of a widely suited detergent protease from Bacillus sp. RGR-14 was carried out using a two-step approach. A quick identification of the important factors with simple screening experiment was followed by application of complex response surface design for further optimization. The production of extracellular alkaline protease by Bacillus sp. was favored in the presence of complex carbon and nitrogen sources, viz. starch, casamino acid and soybean meal. A reduced quadratic model was found to fit the alkaline protease production. Response surface analysis revealed the significant role of phosphate ions in determining alkaline protease production. A steep, stretched out response surface showed direct relation between the level of protease production and casamino acid and starch concentration in the medium. A 12.85 fold increase in protease production could be obtained within the design space. Protease production was found to be repressed in the presence of high concentrations of casamino acid. The model could be validated in up to 2 l shake flasks (3914 U ml−1). The same statistical design could explain economic protease production in cost-effective medium as well.  相似文献   

7.
The effect of changing dilution rate (D) on Bacillus sp. CCMI 1051 at dilution rates between 0.1 and 0.55 h−1 in a glucose-limited medium was studied. Biomass values varied between 0.88 and 1.1 g L−1 at D values of 0.15–0.35 h−1. Maximal biomass productivity was found to be 0.39 g L−1 h−1, obtained at D = 0.35 h−1 and corresponding to a 54.4% conversion of the carbon into cell mass. The highest rate of glucose consumption was 4.45 mmol g−1 h−1 occurring at D = 0.4 h−1. The glucose concentration inside the chemostat was below the detection level starting to accumulate around 0.4 h−1. Growth inhibition of fifteen strains of fungi by the broth of the steady-state cell-free supernatants was assessed. Results showed that the relative inhibition differ among the target species but was not influenced by the dilution rate changing.  相似文献   

8.
一株芽孢杆菌胞外多糖的分离纯化及其抗氧化性测定   总被引:3,自引:0,他引:3  
基于实验室从新疆罗布泊沙漠筛选到一株芽孢杆菌, 研究了该菌胞外多糖的分离纯化工艺及其抗氧化性质。发酵液经离心, 抽滤等预处理后, 使用Sevag试剂除蛋白, 并以无水乙醇作提取溶剂, 通过正交实验确定最佳提取条件为: pH为7.0, 温度为4°C, 时间为1.5 h, 料液比为1:4。粗多糖溶解后上活性炭柱(1.5 cm ′ 24 cm), 用蒸馏水、60%乙醇及95%乙醇洗脱, 分离得到主要部分, 再经Sephadex G-100凝胶柱, 用0.2 mol/L的NaCl溶液洗脱, 硫酸苯酚法和考马斯亮蓝  相似文献   

9.
A psychrotolerant Bacillus sp. from Antarctica produced an alkaline phosphatase in the culture supernatant. The strain showed 98.4% 16s rDNA sequence identity with Bacillus sphaericus. The 76 kDa protein was purified 11.1-fold showing alkaline phosphomonoesterase activity. Enzyme was optimally produced at 25 °C and pH 7.0. This cold active alkaline phosphatase is heat labile and gets completely inactivated at 60 °C in 50 min and is active in broad pH range.  相似文献   

10.
Enzymatic decomposition of gelatin layers on X-ray films and repeated utilization of enzyme for potential industrialization were investigated using thermostable alkaline protease from the alkaliphilic Bacillus sp. B21-2. The decomposition of gelatin layers at 50 °C with the mutant enzyme (Ala187 was replaced by Pro) was higher than those of the wild-type and other mutant enzymes. In the repeated experiment for every 60 min (20 U ml–1, 50 °C), the mutant enzyme could be satisfactorily used five times while three times for the wild-type enzyme.  相似文献   

11.
天然来源的多糖底物上常存在乙酰基取代,特异性的乙酰酯酶能够切割这些底物上的乙酰基,从而有利于聚糖底物的进一步降解.对Bacillus sp. N16-5甘露聚糖利用基因簇上编码的乙酰酯酶AesA进行了基因克隆和异源表达,并对其酶学性质进行了研究.aesA基因长957bp,编码318个氨基酸,属于碳水化合物酯酶第7家族.AesA对4-甲基伞形酮乙酸酯(4-methylumbelliferyl-acetate)表现出较好的催化活性,金属离子Fe3+,Fe2+,Mn2+及Cu2+对AesA活性均有不同程度的促进作用.AesA与甘露聚糖酶ManA对乙酰化的甘露聚糖底物具有显著的协同作用.此项研究有助于理解嗜碱芽孢杆菌Bacillus sp.N16-5对甘露聚糖的水解机制,并且在甘露聚糖降解中具有潜在的应用前景.  相似文献   

12.
Sinorhizobium meliloti produced 50% polyhydroxyalkanoate (PHA) in the biomass in the presence of sucrose as carbon substrate. Isolation of the intracellular PHA was achieved through a secondary fermentation involving a cell lytic actinomycetes species namely Microbispora sp. without further supplementation of nutrients to the S. meliloti fermented broth, at 30 °C, 150 rpm up to 72 h. Microbispora sp. cells that showed pelleted growth was removed by filtration and the released polymer contained in the filtrate was extracted by chloroform or an admixture of Triton X 100 (0.6%) a surfactant and ethylene diamine tetra acetic acid (EDTA) a chelating agent. Yield of PHA obtained was 49, 41 and 7% of biomass weight after 24, 48 and 72 h of lytic culture fermentation, respectively. Corresponding recovery of the polymer was 94, 82 and 15% of 90% purity. Alternatively Microbispora sp. lytic enzyme was obtained by its cultivation in nutrient broth with S. meliloti cells as substrate and the supernatant was used for the hydrolysis of the PHA containing biomass to release PHA. A620 lytic activity value for the broth was 200 at 72 h. The enzyme showed optimized activity at 50 °C, pH 7 and this was used to hydrolyze 5 g/l of thermally inactivated biomass of S. meliloti to recover 94% of total PHA present in the cells and the polymer produced was 92% pure. Decreased cell lytic activity in the presence of soluble protein added in the form of bovine serum albumin indicated that the hydrolytic activity may be due to proteases. The polymer was characterized by GC, NMR and DSC and was found to be polyhydroxybutyrate-co-hydroxyvalerate (97:3 mol%) with a melt temperature of 169 °C.  相似文献   

13.
The chitinase producing Penicillium sp. LYG 0704 was procured from soil of the Chonnam National University crop field. The chitinase activity was detected after the first day which increased gradually and reached its maximum after 3 days of cultivation. The chitinase was purified from a culture medium by precipitation with isopropanol and column chromatography with Mono Q and Butyl-Sepharose. The molecular mass of chitinase was estimated to be 47 kDa by SDS–PAGE. Optimal pH and temperature were 5.0 and 40 °C, respectively. The N-terminal amino acid sequence of the enzyme was determined to be 1AGSYRSVAYFVDWAI15. The fully cloned gene, 1287 bp in size, encoded a single peptide of 429 amino acids. BLAST search of the chitinase gene sequence showed similarity with chitinase of Aspergillus fumigatus Af293 chitinase gene (58%) and A. fumigatus class V chitinase ChiB1 gene (56%).  相似文献   

14.
为研究产生物表面活性剂的海洋芽胞杆菌dhs-330合成活性产物的分子机制,应用质粒pIC333介导的mini-Tn10转座子随机突变技术,构建了芽胞杆菌dhs-330的突变体库。通过表面活性测定和反向PCR克隆,从300个突变株中筛选出产表面活性剂水平提高的突变株2株,分别在ycsG和yvkC基因发生插入突变;表面活性降低的突变株4株,分别在fenC、yrkF、kinE和sigD基因发生插入突变。这些基因可能与芽胞杆菌dhs-330中表面活性剂的合成代谢和调控有关。  相似文献   

15.
Three bacterial strains identified as Paenibacillus sp., Aneurinibacillus aneurinilyticus and Bacillus sp. have been shown to decolourise kraft lignin in 6 days of incubation. The release of low molecular weight aromatic compounds by these bacterial strains during degradation of kraft lignin was analysed by GC–MS analysis. The total ion chromatograph (TIC) of ethyl acetate extract from kraft lignin sample inoculated by Paenibacillus sp. was similar to control except some minor changes in the chromatographic profile indicating incapability of this bacterium to modify kraft lignin. On the other hand the TIC of ethyl acetate extract from kraft lignin inoculated by A. aneurinilyticus and Bacillus sp. caused formation of several aromatic lignin-related compound that were not present in the extract of control. The compounds identified in extract of the sample degraded by A. aneurinilyticus were guaiacol, acetoguiacone, gallic acid and ferulic acid while t-cinnamic acid, 3,4,5 trimethoxy benzaldehyde, and ferulic acid by Bacillus sp. indicating oxidization of coniferylic (G units) and sinapylic (S units) alcohol of lignin polymer. Differences between the identified compounds from different bacterial treatment were strain-specific. Among the identified aromatic compounds, ferulic acid and 3,4,5-trimethoxy benzaldehyde could be useful to the industry of preservatives, aromas and perfumes.  相似文献   

16.
A halostable cellulase with a molecular mass of 29 kDa was purified from culture supernatants of the halophilic bacterium Salinivibrio sp. NTU-05 by way of the Fast Protein Liquid Chromatography method and the biochemical properties of the halostable cellulase was studied. The enzyme was active over a range of 0–25% sodium chloride examined in culture broth. The optimum cellulase activity was observed at 5% sodium chloride. Results from the salinity stability test indicated 24% of enzyme activity was retained at 25% sodium chloride for 4 h. The enzyme was also shown to be slightly thermostable with 40% residual activity under 60 °C for 4 h. The enzyme has a Km of 3.03 mg/ml and a Vmax of 142.86 mol/min/mg when tested using carboxymethyl-cellulose (CMC). The enzyme activity increased in the presence of K+, Mg2+, Na+ ions and decreased when Hg2+ ions were present. The deduced internal amino acid sequence of the Salinivibrio sp. NTU-05 cellulase showed similarity to the sequence of the glycoside hydrolase family protein. These are some of the novel characteristics that make this enzyme have potential applications in cellulose biodegradation.  相似文献   

17.
Fluoroacetate dehalogenase catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. The enzyme is unique in that it catalyzes the cleavage of the highly stable carbon–fluorine bond in an aliphatic compound. The bacterial isolate FA1, which was identified as Burkholderia, grew on fluoroacetate as the sole carbon source to produce fluoroacetate dehalogenase (FAc-DEX FA1). The enzyme was purified to homogeneity and characterized. The molecular weights were estimated to be 79,000 and 34,000 by gel filtration and SDS-polyacrylamide gel electrophoresis (PAGE), respectively, suggesting that the enzyme is a dimer. The purified enzyme was specific to haloacetates, and fluoroacetate was the best substrate. The activities toward chloroacetate and bromoacetate were less than 5% of the activity toward fluoroacetate. The Km and Vmax values for the hydrolysis of fluoroacetate were 5.1 mM and 11 μmol per minute milligram, respectively. The gene coding for the enzyme was isolated, and the nucleotide sequence was determined. The open reading frame consisted of 912 nucleotides, corresponding to 304 amino acid residues. Although FAc-DEX FA1 showed high sequence similarity to fluoroacetate dehalogenase from Moraxella sp. B (FAc-DEX H1) (61% identity), the substrate specificity of FAc-DEX FA1 was significantly different from that of FAc-DEX H1: FAc-DEX FA1 was more specific to fluoroacetate than FAc-DEX H1.  相似文献   

18.
Ochrobactrum sp., was tested with regard to its phenol degradation capacity at different pH levels, and with different carbon sources (mineral salt medium with glucose (MSG) and the same medium with 0.5%, 1%, and 2% (v/v) molasses (MSM)) and phenol concentrations. The highest degradation was in mineral salt medium with 1% (v/v) molasses (45.9%), while degradation was 21.1% in mineral salt medium with 5 g l−1 glucose. These data show that the addition of molasses to mineral salt medium enhanced phenol degradation by Ochrobactrum sp. The bacterium can be used effectively to treat wastewaters containing phenol.  相似文献   

19.
An alginate lyase with high specific enzyme activity was purified from Vibrio sp. YKW-34, which was newly isolated from turban shell gut. The alginate lyase was purified by in order of ion exchange, hydrophobic and gel filtration chromatographies to homogeneity with a recovery of 7% and a fold of 25. This alginate lyase was composed of a single polypeptide chain with molecular mass of 60 kDa and isoelectric point of 5.5–5.7. The optimal pH and temperature for alginate lyase activity were pH 7.0 and 40 °C, respectively. The alginate lyase was stable over pH 7.0–10.0 and at temperature below 50 °C. The alginate lyase had substrate specificity for both poly-guluronate and poly-mannuronate units. The kcat/Km value for alginate (heterotype) was 1.7 × 106 s−1 M−1. The enzyme activity was completely lost by dialysis and restored by addition of Na+ or K+. The optimal activity exhibited in 0.1 M of Na+ or K+. This enzyme was resistant to denaturing reagents (SDS and urea), reducing reagents (β-mercaptoethanol and DTT) and chelating reagents (EGTA and EDTA).  相似文献   

20.
A microbial biosensor was developed for monitoring microbiologically influenced corrosion (MIC) of metallic materials in industrial systems. The Pseudomonas sp. isolated from corroded metal surface was immobilized on acetylcellulose membrane and its respiratory activity was estimated by measuring oxygen consumption. The microbial biosensor was used for the measurement of sulfuric acid in a batch culture medium contaminated by microorganisms. A linear relationship between the microbial sensor response and the concentration of sulfuric acid was observed. The response time of biosensor was 5 min and was dependent on the immobilized cell loading of Pseudomonas sp., pH, temperature and corrosive environments. The microbial biosensor response was stable, reproducible and specific for sensing of sulfur oxidizing bacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号