首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
To examine endocrine and biochemical differences between dominant and subordinate follicles and how the dominant follicle affects the hypothalamic-pituitary-ovarian axis in Holstein cows, the ovary bearing the dominant follicle was unilaterally removed on Day 5 (n = 8), 8 (n = 8), or 12 (n = 8) of synchronized estrous cycles. Follicular development was followed daily by ultrasonography from the day of detected estrus (Day 0) until 5 days after ovariectomy. Aromatase activity and steroid concentrations in first-wave dominant and subordinate follicles were measured. Intact dominant and subordinate follicles were cultured in 4 ml Minimum Essential Medium supplemented with 100 microCi 3H-leucine to evaluate de novo protein synthesis. Five days after unilateral ovariectomy, cows were resynchronized and the experiment was repeated. Follicular growth was characterized by the development of single large dominant follicles, which was associated with suppression of other follicles. Concentrations of estradiol-17 beta (E2) in follicular fluid and aromatase activity of follicular walls were higher in dominant follicles (438.9 +/- 45.5 ng/ml; 875.4 +/- 68.2 pg E2/follicle) compared to subordinate follicles (40.6 +/- 69.4 ng/ml; 99.4 +/- 104.2 pg E2/follicle). Aromatase activity in first-wave dominant follicles was higher at Days 5 (1147.1 +/- 118.1 pg E2/follicle) and 8 (1028.2 +/- 118.1 pg E2/follicle) compared to Day 12 (450.7 +/- 118.1 pg E2/follicle). Concentrations of E2 and androstenedione in first-wave dominant follicles were higher at Day 5 (983.2 +/- 78.2 and 89.5 +/- 15.7 ng/ml) compared to Days 8 (225.1 +/- 78.6 and 5.9 +/- 14.8 ng/ml) and 12 (108.5 +/- 78.6 and 13.0 +/- 14.8 ng/ml). Concentrations of progesterone in subordinate follicles increased linearly between Days 5 and 12 of the estrous cycle. Plasma concentrations of FSH increased from 17.9 +/- 1.4 to 32.5 +/- 1.4 ng/ml between 0 and 32 h following unilateral removal of the ovary with the first-wave dominant follicle. Increases in plasma FSH were associated with increased numbers of class 1 (3-4 mm) follicles in cows that were ovariectomized at Day 5 or 8 of the cycle. Unilateral ovariectomy had no effects on plasma concentrations of LH when a CL was present on the remaining ovary. First-wave dominant follicles incorporated more 3H-leucine into macromolecules and secreted high (90,000-120,000) and low (20,000-23,000) molecular weight proteins that were not as evident for subordinate follicles at Days 8 and 12.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The pattern of follicular growth was studied in 17 suckled zebu cows with average body condition and under extensive management in a tropical environment (23 degrees C, 78% humidity; 2200 mm annual rainfall; 1000 m altitude). The study covered the period from parturition to weaning at 12 months postpartum (PP). Data were collected by transrectal ultrasonography (7.5 MHz) at 48 h intervals, and progesterone (P4) measurements were performed by RIA. The sequential development of ovarian follicles greater than 4 mm was followed until regression or ovulation. Ovarian activity as characterized by growth and regression of follicles of 4 to 6 mm, with sporadic dominance, and a long interdominance interval was observed in every cow and from as early as 26 +/- 2 days PP. This follicular pattern was highly variable during the first 6 months: cows presented 2 to 20 follicular waves (FW) in which a dominant follicle (DF) grew to 8 +/- 1 mm with daily growth rates of 1.1 +/- 0.5 mm/day. The duration of dominance varied from 2 to 8 days and the interdominance time interval was 0 (overlapped waves) to 60 days. Neither behavioural oestrus nor ovulation was observed during this period. From 6 to 12 months PP, cows presented 7 to 20 FW, some with ovulation and/or corpora lutea (CL) formation. The ovulation was preceded by oestrus in some cases (43%). The mean (+/- sem) diameter of DF was 9 +/- 2.7 mm, their mean growth rate 1.4 +/- 0.2 mm/day, their duration of dominance was 2 to 8 days and the interdominance interval was 0 to 14 days. Progesterone concentrations (P4) from 1.0 to 13 ng/ml were found when a CL was present. Once cyclicity re-commenced at 217 to 278 days PP, the cows presented either normal (21 +/- 3 days), short (10 +/- 2 days), or long (50 +/- 4 days) cycles. The resumption of cyclicity was characterized by an increased frequency of emerging follicular waves. Under the conditions of this study, the suckled Bos indicus cows re-commenced ovarian follicular activity as early as described in B. taurus breeds, but the establishment of cyclicity was substantially later. These data add further to the panorama of postpartum reproductive physiology in tropical cattle.  相似文献   

3.
Lactating Holstein cows were utilized over two replicate periods (July and September, 1990) to examine the effect of summer heat stress on follicular growth and steroidogenesis. On day of synchronized ovulations, cows were assigned to shade (n=11) or no shade (n=12) management systems. Follicular development was monitored daily by ultrasonography until ovariectomy on Day 8 post estrus. At time of ovariectomy, dominant and second largest follicles were dissected from the ovary. Aromatase activity and steroid concentrations in dominant and subordinate follicles were measured. Acute heat stress had no effects on patterns of growth of first wave dominant and subordinate follicles between Days 1 and 7 of the cycle. Compared with shaded cows, the heat stressed cows did not have suppression of medium size (6 to 9 mm) follicles between Days 5 and 7. A treatment x follicle interaction was detected (P<0.01) for follicular diameter and fluid volume at Day 8. Dominant follicles in shade were bigger (16.4>14.5 mm) and contained more fluid (1.9>1.1 ml) than dominant follicles in no shade. Conversely, subordinate follicles in no shade were bigger (10.1>7.9 mm) and contained more fluid (0.4>0.2 ml) than subordinate follicles in shade. Concentrations of estradiol in plasma and follicular fluid were higher (P<0.01) in July than in September. Heat stress appears to alter the efficiency of follicular selection and dominance, and to have adverse effects on the quality of ovarian follicles.  相似文献   

4.
The purpose of the study was to determine the influence of energy status on metabolic and endocrine measures, follicular development, and the quality of oocytes obtained from cows during early and mid-lactation (ML). We selected Holstein cows at calving to be assigned to the early lactation (EL) group (n = 8), while we assigned cows at about day 90 postpartum to the ML group (n = 7). We obtained blood samples twice weekly from 4 weeks before aspiration to the aspiration periods for metabolite and hormone determinations. We performed ultrasound-guided transvaginal follicular aspiration (TVFA) twice weekly on all cows for a 10-week period. We obtained follicular fluid from the largest follicle > 10 mm in diameter for hormone determinations. We analyzed data by ANOVA, using the general linear model (GLM) procedures. Energy balance was positive (2.43 +/- 0.32 Mcal/kg) for ML cows and negative (-1.55 +/- 0.33 Mcal/kg) for EL cows. Serum progesterone (P4) for ML cows decreased rapidly from the first aspiration session (2.7 +/- 0.1 ng/ml) and reached a nadir at Week 8 (0.33 +/- 0.1 ng/ml), while follicular fluid P4 increased from 0.9 +/- 0.5 to 5.6 +/- 0.05 ng/ml. Serum and follicular fluid P4 remained relatively constant over the entire aspiration period for EL cows. Follicular fluid insulin-like growth factor I (TGF-I) concentrations increased linearly for EL and ML cows, but the increase was more rapid (159 +/- 36 to 200 +/- 36 ng/ml) for ML cows than for EL cows (145 +/- 36 to 164 +/- 36 ng/ml). Serum IGF-I followed the same pattern for ML cows but declined for EL cows. Early lactation cows experienced a rapid decrease in serum nonesterified fatty acids (NEFA; 0.32 +/- 0.2 to 0.22 +/- 0.2 meq/l), while serum NEFA concentrations were relatively stable (0.19 +/- 0.2 to 0.22 +/- 0.2 meq/l) for ML cows over the aspiration period. The number of follicles obtained from the twice weekly aspiration sessions increased linearly for both EL and ML cows (P < 0.05) over the 10-week period. However, the number of follicles increased from 14.2 +/- 0.5 (Day 119) to 18.1 +/- 0.5 (Day 190) in the ML cows, compared to the changes from 14.9 +/- 0.3 (Day 32) to 15.7 +/- 0.5 (Day 90) for the EL cows. These results indicate that cows are physiologically under more production stress during EL, but increasing follicular fluid and serum IGF-I throughout ML may reflect potential differences in follicle and oocyte measures, compared to cows in EL.  相似文献   

5.
The goal of this study was to record the hormonal and follicular turnover in Jersey crossbred cows when subjected for follicular wave synchronization using GnRH. Six healthy, non-lactating and regularly cycling Jersey crossbred cows (5-6 y) were used for the study. In the control group, the follicular wave pattern was ultrasonographically investigated in 18 cycles (3 cycles/cow). In the treatment group, GnRH analogue (buserelin acetate 10 μg im) was administered on Day 6 of the cycle and follicular wave pattern was studied in 12 cycles (2 cycles/animal). Follicular population was categorized based on their diameter Class I, ≤5 mm; Class II, >5-<9 mm; Class III, ≥9 mm) and the number of follicles in each category was determined on Day 6, Day 8 and Day 10. Plasma FSH and progesterone concentrations were estimated in both control and treatment groups. Out of 18 estrous cycles studied, 14 cycles (77.8%), three cycles (16.7%) and one cycle (5.6%) exhibited three-, two- and four-follicular waves per cycle, respectively. It was evident that the DF of Wave I established its dominance and was in the growing phase by Day 6 of the estrous cycle in all the normally cycling crossbred cows. The DF ovulated in all the animals (100%) in the mean interval of 27.7 ± 0.2 h after GnRH administration. A synchronized homogenous group of follicles emerged two days after GnRH injection (Day of 8.0 ± 0.0) in all the animals (100%). The combination of LH surge induced ovulation of DF (abrupt termination of Wave I) and FSH surge stimulated homogenous recruitment of Class I follicles, led to a synchronized emergence of follicular wave. All the GnRH treated cows had three follicular waves because of early emergence and short period of dominance of Wave II DF.  相似文献   

6.
Objectives were to determine factors associated with conception rate (CR) and pregnancy loss (PL) in high producing lactating Holstein cows. In Study 1, CR was evaluated in 7633 artificial inseminations (AI) of 3161 dairy cows in two dairy farms. Pregnancy diagnosis was performed by palpation per rectum 39+/-3 days after AI. Environmental temperature was recorded at different intervals prior to and after AI. In Study 2, 1465 pregnancies from 1393 cows diagnosed at 31+/-3 days after AI by ultrasonography on three dairy farms were re-examined 14 days later to determine PL. Temperature > or =29 degrees C was considered to be heat stress (HS). Exposure to HS was defined as following: NH, no heat stress; HS1, exposure to at least 1 day of maximum temperature > or =29 degrees C and average daily maximum temperature (ADMT) <29 degrees C; and HS2, exposure to ADMT > or =29 degrees C. In Study 1, exposure of cows to HS1 and HS2 from 50 to 20 prior to AI was associated with reduced CR compared to cows not exposed to HS (28.8, 23.0, and 31.3%, respectively). Post-AI HS was not associated with CR. Cows inseminated following estrus detection or timed AI had similar CR. As the number of AI increased, CR decreased. Multiparous cows had lower CR than primiparous cows, and occurrence of milk fever and retained placenta was associated with decreased CR. In Study 2, PL was not associated with exposure to HS either prior to or after AI. Cows diagnosed with clinical mastitis experienced increased PL, but parity, number of AI, AI protocol, milk production, and days postpartum at AI were not associated with PL. In conclusion, CR was affected by HS prior to AI, parity, number of AI, and postparturient diseases, whereas PL was affected by clinical mastitis.  相似文献   

7.
Two experiments were conducted to test the hypothesis that there are dynamic changes in follicular blood flow during follicular deviation and that nitric oxide (NO) in follicular fluid (FF) plays a role in regulation of follicular blood flow. In Experiment I, follicular blood flow of the two largest follicles was monitored by using Power Doppler ultrasonography during follicular deviation in sixteen follicular waves during eight estrous cycles in eight cows. Blood flow did not differ (P>0.05) between the dominant follicle (DF) and the largest subordinate follicle (SF) until the beginning of the deviation of the follicular size, but was higher (P<0.05) in DF than in the largest SF one and two days after the beginning of diameter deviation in ovulatory (n=5) and atretic (n=11) waves; respectively. In Experiment II, FF was aspirated from DF and the largest SF on the day of diameter deviation (DF, n=6; SF, n=6) and two days later (DF, n=12; SF, n=9). Nitric oxide did not differ (P>0.05) between DF and the largest SF on the day of diameter deviation but, one or two days after observed diameter deviation NO concentrations were lower (P<0.01) in DF compared to the largest SF. On the day of diameter deviation and two days later E2 levels in FF were higher (P<0.01) in DF than in the largest SF. P4 concentrations in FF were higher (P<0.05) in DF than in the largest SF on the day of diameter deviation, but did not (P>0.05) differ two days later. E2/P4 ratio in FF was the same (P>0.05) in DF and the largest SF on the day of diameter deviation, but was higher (P<0.01) in DF than in the largest SF one or two days later. In conclusion, area of follicular blood flow of DF and the largest SF increased in parallel with follicular size during follicular deviation. Furthermore, there were relationships between changes in follicular blood flow, NO concentrations and E2/P4 ratio in FF following the beginning of diameter deviation in cattle.  相似文献   

8.
Administration of 10 mg estradiol valerate (EV) to nonlactating Holstein cows on Days 16 of the estrous cycle prevented ovulation in 7 of 8 cows for 14 days post-injection. In these 7 cows, the timing of luteolysis and the luteinizing hormone (LH) surge was variable but within the normal range. At 14 days post-treatment, each of these cows had a large (greater than 10 mm) follicle, with 558 +/- 98 ng/ml estradiol-17 beta, 120 +/- 31 ng/ml testosterone, and 31 +/- 2 ng/ml progesterone in follicular fluid (means +/- SE). A second group of animals was then either treated with EV as before (n = 22), or not injected (control, n = 17) and ovariectomized on either Day 17, Day 18.5, Day 20, or Day 21.5 (24, 60, 96, or 132 h post-EV). Treatment with EV did not influence the timing of luteolysis, but surges of LH occurred earlier (59 +/- 8 h post-EV vs. 100 +/- 11 h in controls). The interval from luteolysis to LH peak was reduced from 44 +/- 6 h (controls) to 6.9 +/- 1.5 h (treated). Histologically, the largest follicle in controls tended to be atretic before luteolysis, but nonatretic afterwards, whereas the largest follicle in treated animals always tended to be atretic. Nonatretic follicles contained high concentrations of estradiol (408 +/- 59 ng/ml) and moderate amounts of testosterone (107 +/- 33 ng/ml) and progesterone (101 +/- 21 ng/ml), whereas atretic follicles contained low concentrations of estradiol (8 +/- 4 ng/ml) and testosterone (12 +/- 4 ng/ml), and either low (56 +/- 24 ng/ml) or very high (602 +/- 344 ng/ml) concentrations of progesterone. This study suggests that EV prevents ovulation by inducing atresia of the potential preovulatory follicle, which is replaced by a healthy large follicle by 14 days post-treatment.  相似文献   

9.
The objective was to determine whether exposure of Gir (Bos indicus) cows to heat-stress (HS) causes immediate and delayed deleterious effect on follicular dynamics, hormonal profile and oocyte competence. The cows were kept in tie-stalls for an adaptive thermoneutral period of 28 days (Phase I, Days -28 to -1). In Phase II (Days 0-28) cows were randomly allocated into control (CG, n=5) and HS (HS, n=5) treatments. The HS cows were placed in an environmental chamber at 38 degrees C and 80% relative humidity (RH) during the day and 30 degrees C, 80% RH during the night for 28 days. The CG group was maintained in shaded tie-stalls (ambient temperature) for 28 days. During Phase III (Days 28-147) animals were placed in tie-stalls (Days 28-42) followed by pasture (Days 42-147) under thermoneutrality. In each phase, weekly ovum pick up (OPU) sessions were to evaluate follicular development, morphology of cumulus-oocyte complexes (COCs), and developmental competence after in vitro maturation, fertilization, and culture. Serum concentrations of progesterone (P(4)) and cortisol were evaluated by radioimmunoassay. Exposure of Gir cows to HS had no immediate effect on reproductive function, but exerted a delayed deleterious effect on ovarian follicular growth, hormone concentrations, and oocyte competence. Heat-stress increased the diameter of the first and second largest follicles from Days 28 to 49. Indeed, HS increased the number of >9 mm follicles (characterized as follicular codominance) during this phase. Cows exposed to HS had longer periods of non-cyclic activity (P(4)<1 ng/mL), as well as shorter estrous cycles. However, HS did not affect cortisol concentration as compared to CG. Although HS had no significant effect on cleavage rate, it reduced blastocyst development during Phase III. In conclusion, long-term exposure of B. indicus cattle to HS had a delayed deleterious effect on ovarian follicular dynamics and oocyte competence.  相似文献   

10.
The aim of this study was to characterize the immediate effects of heat stress on plasma FSH and inhibin concentrations, and its involvement in follicular dynamics during a complete oestrous cycle, and to examine a possible delayed effect of heat stress on follicular development. Holstein dairy cows were oestrous synchronized and randomly assigned to either cooled (n = 7) or heat-stressed (n = 6) treatment groups. During a complete oestrous cycle, control cows, which were cooled, maintained normothermia, whereas heat-stressed cows, which were exposed to direct solar radiation, developed hyperthermia. At the end of this oestrous cycle (treated cycle), both groups were cooled and maintained normothermia for the first 10 days of the subsequent oestrous cycle. Throughout this period, follicular development was examined by ultrasonography, and plasma samples were collected. During the second follicular wave of the treated oestrous cycle, a significantly larger cohort of medium sized follicles (6-9 mm) was found in heat-stressed cows than in cooled cows (P < 0.05). The enhanced growth of follicles in this wave in heat-stressed cows was associated with a higher plasma FSH increase which lasted 4 more days (days 8-13 of the oestrous cycle; P < 0.05), and coincided with a decrease in the plasma concentration of immunoreactive inhibin (days 5-18 of the oestrous cycle; P < 0.05). During the follicular phase (days 17-20 of the treated cycle), heat-stressed cows showed an increase in the number of large follicles (>/= 10 mm), and the preovulatory plasma FSH surge was significantly higher in heat-stressed cows than in cooled cows (P < 0.01). The effect of heat stress was also observed during the first follicular wave of the subsequent cycle: the postovulatory plasma FSH concentration was higher (P < 0.01), but fewer medium follicles developed, and the first follicular wave decreased at a slower rate in previously heat-stressed cows than in cooled cows (0.40 and 0.71 follicles per day, respectively). This study shows both immediate and delayed effects of heat stress on follicular dynamics, which were associated with high FSH and low inhibin concentrations in plasma. These alterations may have physiological significance that could be associated with low fertility of cattle during the summer and autumn.  相似文献   

11.
Variability in the superovulation response is an important problem for the embryo transfer industry. The objective of this study was to determine whether FSH treatment at the beginning of the cycle would improve the ovulation rate and embryo yield in dairy cows. Twenty-eight postpartum cyclic dairy cows were allocated at random to 4 treatment groups (A, B, C and D). Group A cows (n = 10) received FSH (35 mg) at a decreasing dose, starting on Day 9 (Day 0 = day of estrus) for 5 days followed by PGF(2alpha) (35 mg) on Day 12. Cows assigned to Groups B, C and D (n = 6 cows each, respectively) were given 35 mg FSH at a decreasing dose from Days 2 to 6 followed by PGF(2alpha) on Day 7. Group C and D cows received PRID inserts from Day 3 to Day 7. Cows in Group D additionally received 1000 IU hCG 60 hours after PGF(2alpha) treatment. Ovaries were scanned daily using a real time ultrasound scanner from the beginning of FSH treatment until embryo recovery, to monitor follicular development, ovulation and the number of unovulated follicles. Embryos were recovered from the uterus by a nonsurgical flushing technique 7 days after breeding. There were no differences (P>0.01) in the number of follicles > 10 mm at 48 hours after PGF(2alpha) treatment among the 4 groups. The mean numbers of follicles were 10.6 +/- 1.2, 9.3 +/- 1.3, 12.2 +/- 1.3 and 15.0 +/- 2.9 for Groups A, B, C and D, respectively. A significantly (P<0.001) higher number of ovulations was observed and a larger number of embryos was recovered in Group A than in the other groups. The results of this study indicate that superovulation with FSH at the beginning of the cycle causes sufficient follicular development but results in very low ovulation and embryo recovery rates.  相似文献   

12.
A GnRH analogue was used to synchronize ovarian follicular development prior to an injection of PGF(2alpha) for the synchronization of estrus in lactating Holstein cows. On Day 12 (estrus = Day 0) of the experimental cycle, cows (n = 8) were injected with 8 mug Buserelin (BUS group), followed by 25 mg PGF(2alpha) 7 d later (Day 19). Control cows (n = 7) received PGF(2alpha) on Day 12 (PGF group). Ovaries were scanned daily via ultrasonography, and plasma progesterone and estradiol concentrations were determined. Sizes of all visible follicles were recorded. Follicles were classified as small (3 to 5 mm), medium (6 to 9 mm), or large (>/= 10 mm). Between Days 12 and 16 of the cycle, the number of large follicles in PGF cows remained unchanged (1.2), whereas in the BUS group, the number of large follicles decreased from 1.3 on Day 12 to 0.5 on Day 15. Only 4 of 7 PGF cows ovulated a second-wave dominant follicle. In the BUS group, 7 of 8 cows ovulated a GnRH analogue induced dominant follicle that was first identified on Day 15. During the follicular phase (last 5 d prior to estrus), plasma progesterone declined in association with CL regression in both groups, and estradiol concentrations increased, reaching higher (P<.0.05) preovulatory peak concentration in BUS cows than in PGF cows (14.0 +/- 1.0 vs 10.4 +/- 1.1 pg/ml). The number of medium-size follicles was smaller and the number of small-size follicles tended to be higher in BUS cows than in the PGF-treated group. On the day of estrus, the size of the ovulatory follicle (16.1 vs 13.3 mm) and the size difference between the ovulatory and second largest follicle (11.4 vs 6.2 mm) were both larger in BUS cows than in PGF-treated cows, suggesting a more potent dominance effect of the ovulatory follicle in the BUS cows. This study suggests that a GnRH analogue can alter follicular development prior to synchronization of estrus with an injection of PGF(2alpha) in lactating dairy cows.  相似文献   

13.
This study, compared the endocrine function of dominant follicles of the first and second follicular waves (DF1 and DF2, respectively) and the corpora lutea that were subsequently formed. In the experiments conducted in vitro, ovaries were collected from dairy cows on day 6.1 +/- 0.2 or day 14.8 +/- 0.2 of the oestrous cycle to obtain steroidogenically active DF1 (n = 8) and DF2 (n = 7). Granulosa and thecal cells were isolated, dispersed and incubated for 16 h with testosterone (granulosa cells) or forskolin or bLH (thecal cells). Both types of cell were subsequently cultured for 9 days with forskolin and insulin. The viability of the granulosa cells was similar in DF1 and DF2, but the concentration of oestradiol in the follicular fluid was higher in DF1 than in DF2. Production of oestradiol and progesterone by granulosa cells was similar in DF1 and DF2, but androstenedione and progesterone production by thecal cells were 3.5-6.5-fold higher in DF1 than in DF2. During the 9 days of luteinization, progesterone production was similar in DF1- and DF2-derived granulosa cells, but was two- to three-fold higher in DF1- than in DF2-derived thecal cells. Experiments were also conducted in vivo. In Expt 1 in vivo, lactating cows that were assigned to ovulate DF1 or DF2 (n = 9 and 13 in replicate 1 and 2, respectively) were injected with PGF2 alpha on days 6 and 7 or on days 14 and 15 of the oestrous cycle, respectively. A wave by replicate interaction was detected for plasma progesterone concentration in the subsequent cycle: in the first replicate, progesterone production was approximately 40% higher in cows that ovulated DF1; in the second replicate, progesterone production was similar in cows that ovulated DF1 or DF2. In Expt 2, pooled plasma progesterone in the mid-luteal phase (days 12-15) after insemination of pregnant and non-pregnant cows was approximately 30% higher in cows that had ovulated DF1 (n = 32) than in cows that had ovulated DF2 (n = 22). This study showed DF1 had a higher steroidogenic capacity compared with DF2, which may be related to the hormonal environment in which the follicles developed.  相似文献   

14.
This study aimed to investigate the developmental competence of ovum pick-up collected oocytes on three stages of the follicular wave: Days 2, 5 and 8. A group of 11 cows was used in successive cycles to perform ovum pick-up on either Day 2, 5 or 8 of an induced follicular wave (three sessions per stage). Follicular waves were initiated by puncturing the dominant follicle and all other follicles sized > or = 5 mm at Days 5-7 of the cycle. The plasma progesterone concentrations did not differ between the days of ovum pick-up: 4.0 +/- 1.8, 5.1 +/- 1.6 and 5.2 +/- 1.7 ng/ml for Days 2, 5 and 8, respectively. The proportion of oocytes with three or more layers of non-expanded cumulus cells was higher for Day 5 than Day 8, while Days 2 and 5 did not significantly differ from each other (85, 96 and 68% of 113, 60 and 101 oocytes for Days 2, 5 and 8, respectively). The proportion of oocytes competent to develop a blastocyst in an in vitro production system was higher for Days 2 and 5 than for Day 8: 27, 29 and 15% for the oocytes with fair to good cumulus investment and 23, 27 and 11%, respectively, when all oocytes were taken in account. This indicates that the dominant follicle reduces the developmental competence of oocytes from subordinate follicles at a relatively late stage of dominance. This finding has practical consequences for the handling of cows that undergo ovum pick-up only once or very irregularly. The embryo yield can then be improved by performing the ovum pick-up at Days 2-5 of the cycle or 2-5 days after ablation of the large follicles.  相似文献   

15.
The resumption of ovarian activity after normal calvings was studied in 18 lactating Friesian cows. Since, in 17 cows, first post-partum ovulation occurred without overt oestrous behaviour being detected, the resultant cycles were called 'ovarian cycles'. The mean (+/- s.d.) length of the ovarian cycles was 21.0 +/- 8.7 days. The duration of cycles tended to be normal (18-24 days) or long (greater than or equal to 25 days) when the ovulatory dominant follicles were identified before Day 10 post partum; they were consistently short (9-13 days) when dominant follicles identified after Day 20 post partum ovulated. When such follicles were detected between Days 10 and 20 post partum, long, normal and short ovarian cycles were detected. The number of waves of follicular growth with associated dominant follicles observed during the ovarian cycles tended to be related to cycle length; short cycles had 1 dominant follicle, normal cycles predominantly 2, and long cycles mostly 3 dominant follicles. The mean (+/- s.d.) duration of 13 oestrous cycles studied was 23.1 +/- 2.1 days. Of these cycles, 7 had 3 and 6 had 2 dominant follicles. The oestrous cycles with 3 dominant follicles had a mean (+/- s.d.) duration of 24.0 +/- 1.2 days and the respective dominant non-ovulatory follicles reached maximum sizes on Days 8 and 18, respectively; oestrous cycles with 2 dominant follicles were 22.2 +/- 2.6 days in duration, and the dominant non-ovulatory follicle reached maximum size by Day 8. Ovarian follicular development during the first 45 days of pregnancy was characterized by the growth and regression of successive dominant follicles, each lasting 10-12 days. These results show that the first ovarian cycle was predominantly short when the ovulatory dominant follicle was first detected after Day 20 post partum.  相似文献   

16.
Two experiments were conducted to (1) investigate developmental endocrinology of ovarian follicular cysts (cysts) in cattle and (2) evaluate effects of cysts on hypothalamic and hypophysial characteristics. Cysts were induced with oestradiol-17 beta (15 mg) and progesterone (37.5 mg) dissolved in alcohol and injected s.c. twice daily for 7 days. Cysts were defined as the presence of follicular structures (which may or may not have been the same structure) of 2.0 cm in diameter or greater that were present for 10 days without ovulation and corpus luteum development. In Exp. 1,22 non-lactating, non-pregnant Holstein cows were allocated to 3 groups. Beginning on Day 5 (oestrus = Day 0) of the oestrous cycle, 7 cows (Controls) were treated with twice daily s.c. injections of ethanol (2 ml/injection) for 7 days. Luteolysis was then induced with PGF-2 alpha and blood samples were collected daily every 15 min for 6 h from the morning after the PGF-2 alpha injection (Day 13) until oestrus. Steroids to induce cysts were injected as previously described into the remaining cows (N = 15). Three blood samples were collected at 15-min intervals every 12 h throughout the experimental period. Additional blood samples were collected every 15 min for 6 h on a twice weekly basis. After steroid injections, follicular and luteal structures on ovaries were not detected via rectal palpation for a period of 36 +/- 4 days (static phase). Then follicles developed which ovulated within 3-7 days (non-cystic; N = 7) or increased in size with follicular structures present for 10 days (cystic; N = 8). Mean (+/- s.e.m.) concentrations of LH, FSH, oestradiol-17 beta and progesterone in serum remained low and were not different during the static phase between cows that subsequently developed cysts or ovulated. During the follicular phase, mean serum concentration of LH (ng/ml) was higher (P less than 0.1) in cows with cysts (2.9 +/- 0.2) than in cows without cysts (1.1 +/- 0.1) or control cows (1.4 +/- 0.2). In addition, LH pulse frequency (pulses/6 h) and amplitude (ng/ml) were higher (P less than 0.1) in cows with cysts (3.6 +/- 0.3 and 2.2 +/- 0.3, respectively) than in non-cystic (2.3 +/- 0.2 and 1.0 +/- 0.2, respectively) and control (1.8 +/- 0.1 and 1.1 +/- 0.2, respectively) groups during the follicular phase. There were no differences in the FSH, oestradiol-17 beta or progesterone characteristics in cows of any of the 3 groups during the follicular phase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
In an attempt to program ovarian function in the early post partum period, 52 lactating Holstein cows were injected with 25 mg prostaglandin F(2alpha) (PGF) and given a CIDR device containing 1.9 g progesterone for 15 d starting on Day 25 post partum. Ovarian follicles were measured by ultrasound on 0, 5, 10 and 15 d after insertion and on alternate days after CIDR removal until estrus. Not all cows were devoid of corpora lutea (CL) during the CIDR (11, 9 and 8 cows had a CL on Days 5, 10 and 15, respectively). There was a CL by day interaction (P<0.01) for the number of 10- to 15-mm follicles per cow; the average number of large follicles (>15 mm) was twice greater (0.75 vs 0.37) for those cows not having a CL during the period of CIDR exposure. The average size of the largest follicle increased to a maximum of 19.3 +/- 0.7 mm by 15 d after insertion in cows not having a CL. Plasma estradiol increased for 10 d after insertion, then decreased to the end of the CIDR period. After removal of the CIDR, 34 cows ovulated, eight cows developed ovarian follicular cysts, and eight cows did not ovulated by 14 d. Cows becoming cystic or not ovulating had a declining number of follicles during the CIDR compared with those cows ovulating (P<0.07). The diameter of the largest follicle in cystic cows was equivalent to noncystic cows until removal of the CIDR, but then it increased markedly. Interval to estrus was longer in cows having more 6- to 9-mm follicles on Day 15 (day of CIDR removal). These results demonstrate the existence and maintenance of a large dominant follicle after CIDR insertion and PGF injection which was influenced apparently by the presence of a CL. Furthermore, subsequent reproductive responses after the CIDR treatment was a function of follicular populations prior to withdrawal of the CIDR device. This system may be appropriate for the study of factors regulating follicular growth and fertility in domestic cattle.  相似文献   

18.
Argov N  Moallem U  Sklan D 《Theriogenology》2005,64(7):1475-1489
Summer heat stress (HS) is a major factor in decreased reproductive performance in high-producing dairy cattle, possibly by affecting the steroidogenic capacity of ovarian follicles and ovarian follicular dynamics. In the present study, mRNA expression of cholesterol receptors was determined in bovine ovarian cells. Two endocytotic receptors (very-low-density lipoprotein receptor (VLDLr) and low-density lipoprotein receptor (LDLr)), and two selective-uptake receptors (scavenger receptor class B type 1 receptor (SRB1) and the lipoprotein-receptor-related protein 8 (LRP8)) were evaluated. Ovarian follicles in four diameter categories were evaluated from cows under non-heat stress (NHS) and HS conditions. As follicle size increased, expression of mRNA in NHS cows increased for the selective-uptake receptors, SRB1 and LRP8, and decreased (P<0.004) for the endocytotic receptors, LDLr and VLDLr. In contrast, in HS cows, mRNA expression did not significantly change (with increasing follicle diameter) for either receptor type. With increasing follicle diameter, cholesterol and fatty acid concentrations in the follicular fluid did not change in HS cows, whereas in NHS cows, cholesterol increased (P<0.008) and fatty acid decreased (P<0.0001). These changes paralleled those in the different lipoprotein fractions in the follicular fluid. In follicles from HS cows, the altered mRNA expression patterns for the endocytotic and selective-uptake receptors caused changes in the regulation of cholesterol supply at critical stages of folliculogenesis, which may play a role in the low turnover rates of ovarian follicles during the summer.  相似文献   

19.
Weekly reproductive health examinations were performed on 46 multiparous Holstein cows from 14 to 100 d post partum. Sixteen cows developed 19 nonsimultaneous ovarian cysts, with a mean day of first detection at 34.3 +/- 4.5 d post partum and a mean duration of 31.0 +/- 4.3 d after first detection. Coccygeal blood was collected three times weekly, and plasma progesterone concentrations were determined by radioimmunoassay. Cysts were diagnosed by palpation per rectum or by ultrasonography and classified as follicular or luteal cysts; the cows were not treated. Cows with a mean plasma progesterone concentration of < 1 ng/ml from the first day of detection (Day 1) of a cyst until Day 10 were classified as having a follicular cyst, and those with a mean plasma progesterone concentration of >/= 1 ng/ml from Day 1 to Day 10 were classified as having a luteal cyst. According to this classification, 58% of the cysts were follicular and 42% were luteal. There was an overall 47% agreement between classification by palpation and by ultrasonography on Day 1 with progesterone concentration during Days 1 to 10 after detection of the cyst. Detailed graphs of progesterone concentrations and area of largest follicles or cysts and corpora lutea demonstrate the variability of ovarian structures and progesterone profiles in cystic cows. Detection of a cyst at any one time accompanied by simultaneous measurement of progesterone can lead to different diagnoses of cyst type depending on the method of classification, the presence and age of luteinized tissue in the cyst and undetected corpora lutea.  相似文献   

20.
A transvaginal ultrasound guided follicular aspiration technique was developed for the repeated collection of bovine oocytes from natural cycling cows. In addition, the feasibility of using this method for collecting immature oocytes for in vitro embryo production was also evaluated. Puncturing of visible follicles for ovum pick-up was performed in 21 cows over a three month period. All visible follicles larger than 3 mm were punctured and aspirated three times during the estrous cycle on Day 3 or 4, Day 9 or 10 and Day 15 or 16. The mean (+/- SEM) estrous cycle length after repeated follicle puncture was 22.2 +/- 0.3 days. The mean total number of punctured follicles per estrous cycle was 12.6 +/- 0.3. The largest (P<0.05) number of follicles punctured (5.1 +/- 0.3) for ovum pick-up was on Day 3 or 4 of the estrous cycle. The overall recovery rate of 541 punctured follicles was 55%. Most oocytes (P<0.05) were aspirated from follicles smaller than 10 mm. Following in vitro maturation and fertilization (IVM/IVF), 104 oocytes were transferred to sheep oviducts. Six days later, 75 ova/embryos were recovered, after flushing the oviduct of the sheep, of which 24% developed into transferable morulae and blastocysts. In this study, a reliable nonsurgical, follicular aspiration procedure was used for the repeated collection of immature oocytes which could be used successfully for in vitro production of embryos. This procedure offers a competitive alternative to conventional superovulation/embryo collection procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号