首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Ma T  Li G  Li J  Liang F  Liu R 《Biotechnology letters》2006,28(14):1095-1100
The desulfurization (dsz) genes from Rhodococcus erythropolis DS-3 were successfully integrated into the chromosomes of Bacillus subtilis ATCC 21332 and UV1 using an integration vector pDGSDN, yielding two recombinant strains, B. subtilis M29 and M28 in which the integrated dsz genes were expressed efficiently under the promoter, Pspac. The dibenzothiophene (DBT) desulfurization efficiency of M29 was 16.2 mg DBT l−1 h−1 at 36 h, significantly higher than that of R. erythropolis DS−3 and B. subtilis M28 and also showed no product inhibition. The interfacial tension of the supernatant fermented by M29 varied from 48 mN m−1 to 4.2 mN m−1, lower than that of the recombinant strain, M28, reveals that the biosurfactant secreted from M29 may have an important function in the DBT desulfurization process.  相似文献   

2.
Gordonia alkanivorans strain 1B is able to desulfurize dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP), the final product of the 4S pathway. However, both the cell growth and the rate of desulfurization can be largely affected by the nutrient composition of the growth medium due to cofactor requirements of many enzymes involved in the biochemical pathways. In this work, the effect of several metal ions on the growth and DBT desulfurization by G. alkanivorans was studied. From all the metal ions tested, only the absence of zinc significantly affected the cell growth and the desulfurization rate. By increasing the concentration of Zn from 1 to 10 mg L−1, 2-HBP productivity was improved by 26%. The absence of Zn2+, when sulfate was also used as the only sulfur source, did not cause any difference in the bacterial growth. Resting cells grown in the presence of Zn2+ exhibited a 2-HBP specific productivity of 2.29 μmol g−1 (DCW) h−1, 7.6-fold higher than the specific productivity obtained by resting cells grown in the absence of Zn2+ (0.30 μmol g−1 (DCW) h−1). These data suggests that zinc might have a key physiological role in the metabolism of DBT desulfurization.  相似文献   

3.
The effect of osmotic stress on cell growth and phenylethanoid glycosides (PeGs) biosynthesis was investigated in cell suspension cultures of Cistanche deserticola Y. C. Ma, a desert medicinal plant grown in west region of China. Various initial sucrose concentrations significantly affected cell growth and PeGs biosynthesis in the suspension cultures, and the highest dry weight and PeGs accumulation reached 15.9 g l−1-DW and 20.7 mg g−1-DW respectively at the initial osmotic stress of 300 mOsm kg−1 where the sucrose concentration was 175.3 mM. Stoichiometric analysis with different combinations of sucrose and non-metabolic sugar (mannitol) or non-sugar osmotic agents (PEG and NaCl) revealed that osmotic stress itself was an important factor for enhancing PeGs biosynthesis in cell suspension cultures of C. deserticola. The maximum PeGs contents of 26.9 and 23.8 mg g−1-DW were obtained after 21 days at the combinations of 87.6 mM sucrose with 164.7 mM mannitol (303 mOsm kg−1) or 20 mM PEG respectively, which was higher than that of C. deserticola cell cultures grown under an initial sucrose concentration of 175.3 mM after 30 days. The stimulated PeGs accumulation in the cell suspension cultures was correlated to the increase of phenylalanine ammonium lyase (PAL) activity induced by osmotic stress.  相似文献   

4.
This work was aimed at producing inulinase by solid-state fermentation of sugarcane bagasse, using factorial design to identify the effect of corn steep liquor (CSL) and soybean bran concentration, particle size of bagasse and size of inoculum. Maximum inulinase activity achieved was 250 U per g of dry substrate (gds) at 20% (w/w) of CSL, 5% (w/w) of soybean bran, 1 × 1010 cells mL−1 and particle size of bagasse in the range 9/32 mesh. The use of soybean bran decreased the time to reach maximum activity from 96 to 24 h and the maximum productivity achieved was 8.87 U gds−1 h−1. The maximum activity was obtained at pH 5.0 and 55.0°C. Within the investigated range, the enzyme extract was more thermostable at 50.0°C, showing a D-value of 123.1 h and deactivation energy of 343.9 kJ gmol−1. The extract showed highest stability from pH 4.5 to 4.8. Apparent K m and V max are 7.1 mM and 17.79 M min−1, respectively.  相似文献   

5.
In this work, we characterized an ecto-ATPase activity in intact mycelial forms of Fonsecaea pedrosoi, the primary causative agent of chromoblastomycosis. In the presence of 1 mM EDTA, fungal cells hydrolyzed adenosine-5′-triphosphate (ATP) at a rate of 84.6 ± 11.3 nmol Pi h−1 mg−1 mycelial dry weight. The ecto-ATPase activity was increased at about five times (498.3 ± 27.6 nmol Pi h−1 mg−1) in the presence of 5 mM MgCl2, with values of V max and apparent K m for Mg-ATP2−corresponding to 541.9 ± 48.6 nmol Pi h−1 mg−1 cellular dry weight and 1.9 ± 0.2 mM, respectively. The Mg2+-stimulated ecto-ATPase activity was insensitive to inhibitors of intracellular ATPases such as vanadate (P-ATPases), bafilomycin A1 (V-ATPases), and oligomycin (F-ATPases). Inhibitors of acid phosphatases (molybdate, vanadate, and fluoride) or alkaline phosphatases (levamizole) had no effect on the ecto-ATPase activity. The surface of the Mg2+-stimulated ATPase in F. pedrosoi was confirmed by assays in which 4,4′-diisothiocyanostylbene-2,2′-disulfonic acid (DIDS), a membrane impermeant inhibitor, and suramin, an inhibitor of ecto-ATPase and antagonist of P2 purinoreceptors. Based on the differential expression of ecto-ATPases in the different morphological stages of F. pedrosoi, the putative role of this enzyme in fungal biology is discussed.  相似文献   

6.
In vitro cultures of Berberis buxifolia were established using thidiazuron (4.5, 23 and 45 mM) or picloram (4 and 40 mM) as plant growth regulators for sustaining growth. For producing berberine, a two-stage culture was performed. In the first step, thidiazuron or picloram were used for biomass production followed by the production stage where benzylaminopurine (4.4 mM) was added as a plant growth regulator. Berberine yields (102 mg g−1 DW) and in vitro shoot cultures (200 mg g−1 DW) were significantly lower than those of whole plants in the field (416 mg g−1 DW). The highest productivity (0.18 mg 1−1 day−1) was attained using picloram (either 4 on 40 mM) in the first stage for producing biomass.  相似文献   

7.
Artemisinin production by hairy roots of Artemisia annua L. was increased 6-fold to 1.8 μg mg−1 dry wt over 6 days by adding 150 mg chitosan l−1. The increase was dose-dependent. Similar treatment of hairy roots with methyl jasmonate (0.2 mM) or yeast extract (2 mg ml−1) increased artemisinin production to 1.5 and 0.9 μg mg−1 dry wt, respectively.  相似文献   

8.
Lin X  Liu H  Zhu F  Wei X  Li Q  Luo M 《Biotechnology letters》2012,34(6):1029-1032
A 700 ml membrane-aerated, stirred glass reactor equipped with four vertical baffles was constructed. Biodesulfurization of model oil (n-dodecane containing dibenzothiophene—DBT) and hydrodesulfurized diesel was carried out using Pseudomonas delafieldii strain R-8. Microbubble aeration gave an activity of 1.3 mg DBT removed g−1 h−1 and 277 μg sulfur g−1 h−1 for model oil and hydrodesulfurized diesel, respectively. These values were 1.9- and 1.6-times higher than using a traditional bubble aeration process. This is a promising method for the biodesulfurization of petroleum feedstocks.  相似文献   

9.
The effects of UVB on the kinetics of stem elongation of wild type (WT) and photomorphogenic mutants of tomato were studied by using linear voltage transducers connected to a computer. Twenty-one or twenty-six-day-old plants, grown in 12 h white light (150 μmol m−2 s−1 PAR)/12 h dark cycles, were first transferred to 200 μmol m−2 s−1 monochromatic yellow light for 12 h, then irradiated with 0.1 or 4.5 μmol m−2 s−1 UVB for 12 h and finally kept in darkness for another 24 h. The measurements of the kinetics of stem elongation started after 4 h under yellow light. Significant differences in stem growth during the irradiation with yellow light, as well as during the dark period, were found between the genotypes. In darkness, the magnitude of stem growth followed the order: tri > AC = fri > MMau > hp1. Two factors determined the large differences of growth in darkness: 1) the different stem elongation rate (SER) and 2) the different duration of the growing phase among the genotypes. In darkness the stem growth of au and hp1 mutants lasted for about 18 h, whereas it continued for the whole experimental period (36 h) in the other genotypes. UVB irradiation substantially reduced elongation growth of all genotypes (4.5 μmol m−2 s−1 being more effective than 0.1 μmol m−2 s−1). Both fluence rates of UVB induced a detectable reduction of SER already after 15 min of irradiation. Red light inhibited, while far red light promoted stem growth of all the genotypes tested. fri (phyA null), tri (phyB1 null), hp1 (exhibiting exaggerated phytochrome responses) mutants and WT tomato showed similar levels of UVB–induced inhibition of growth, while the aurea mutant showed the largest growth inhibition during the 12 h of irradiation. These results indicate that phytochrome is not directly involved in UVB control of stem elongation. The results of dichromatic irradiations UVB + red or UVB + far red indicate the presence of distinct and additive action of UVB photoreceptor and of the phytochrome system in the photoregulation of stem growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Putrescine at 0.6 mM stimulated protocorm-like body growth and polysaccharide synthesis in suspension cultures of Dendrobium huoshanense. The specific growth rate of protocorm-like body increased from 0.047 to 0.056 day−1, and the maximum dry weight and polysaccharide production reached 33.2 and 2.94 g l−1, respectively, while they were 24.6 and 2.12 g l−1, respectively, in the control. The administration of polyamine inhibitor, α-dl-difluoromethylarginine, at 1 mM, decreased protocorm-like body growth and polysaccharide production to 21.4 and 1.76 g l−1, respectively.  相似文献   

11.
The toxic and growth inhibiting effects of methyl tert-butyl ether (MTBE) on the hydrocarbon-degrading Pseudomonas veronii T1/1 strain (isolated from gasoline contaminated soil) were studied. In our experiments, the MIC of MTBE was found to be 60 mM and the EC50 was 51.7 mM. In the concentration range 0–30 mM, MTBE did not significantly influence the growth parameters of this bacterium, but at concentrations over 30 mM MTBE exerted a significant growth inhibiting effect. In the presence of 70 mM MTBE, the specific growth rate dropped from 0.4731 to 0.1201 h−1, while the length of the lag period increased from 5.41 to 17.01 h and the yield coefficient declined from 0.2652 to 0.0718 g g−1. MTBE at 100 mM inhibited the growth of this strain completely. These findings may have important environmental implications, as high concentrations of MTBE could influence the efficiency of soil and groundwater bioremediation processes significantly.  相似文献   

12.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

13.
Tong P  Hong Y  Xiao Y  Zhang M  Tu X  Cui T 《Biotechnology letters》2007,29(2):295-301
A new basidiomycete, Trametes sp. 420, produced laccase at 6,810 U l−1 (268 mg, 25.4 U mg−1 protein for guaiacol) in glucose medium and 7,870 U l−1 (310 mg) in cellobiose medium with induction by 0.5 mM Cu2+ and 6 mM o-toluidine. Laccase isozyme E (LacE) was the sole laccase in the fermentation products. It was stable at pH 5–9 and below 70°C over 30 min. The K m values of LacE for four substrates (guaiacol ABTS, 2,6-dimethoxyphenol and syringaldazine) varied from 5 to 245 μM. The activity of LacE was strongly inhibited by NaN3 but not by EDTA or dimethylsulfoxide. LacE at 0.5 U l−1 could decolorize industrial dyes. The open reading frame of the lacE gene was 2,130 bp and was interrupted by 10 introns. It displayed a high homology to laccases from other fungi. Pingui Tong and Yuzhi Hong contributed equally to the study  相似文献   

14.
A recombinant oxidation/reduction cycle for the conversion of D-fructose to D-mannitol was established in resting cells of Corynebacterium glutamicum. Whole cells were used as biocatalysts, supplied with 250 mM sodium formate and 500 mM D-fructose at pH 6.5. The mannitol dehydrogenase gene (mdh) from Leuconostoc pseudomesenteroides was overexpressed in strain C. glutamicum ATCC 13032. To ensure sufficient cofactor [nicotinamide adenine dinucleotide (reduced form, NADH)] supply, the fdh gene encoding formate dehydrogenase from Mycobacterium vaccae N10 was coexpressed. The recombinant C. glutamicum cells produced D-mannitol at a constant production rate of 0.22 g (g cdw)−1 h−1. Expression of the glucose/fructose facilitator gene glf from Zymomonas mobilis in C. glutamicum led to a 5.5-fold increased productivity of 1.25 g (g cdw)−1 h−1, yielding 87 g l−1 D-mannitol from 93.7 g l−1 D-fructose. Determination of intracellular NAD(H) concentration during biotransformation showed a constant NAD(H) pool size and a NADH/NAD+ ratio of approximately 1. In repetitive fed-batch biotransformation, 285 g l−1 D-mannitol over a time period of 96 h with an average productivity of 1.0 g (g cdw)−1 h−1 was formed. These results show that C. glutamicum is a favorable biocatalyst for long-term biotransformation with resting cells. Dedicated to Prof. Hermann Sahm on the occasion of his 65th birthday.  相似文献   

15.
The production of compound K and aglycon protopanaxadiol (APPD) from ginsenoside Rd and ginseng root extract was performed using a recombinant β-glycosidase from Pyrococcus furiosus. The activity for Rd was optimal at pH 5.5 and 95°C with a half-life of 68 h at 95°C. β-Glycosidase converted Rb1, Rb2, Rc, and Rd to APPD via compound K. With increases in the enzyme activity, the productivities of compound K and APPD increased. The substrate concentration was optimal at 4.0 mM Rd or 10% (w/v) ginseng root extract; 4 mM of Rd was converted to 3.3 mM compound K with a yield of 82.5% (mol/mol) and a productivity of 2,010 mg l−1 h−1 at 1 h and was hydrolyzed completely to APPD with 364 mg l−1 h−1 after 5 h. Rb1, Rb2, Rc, and Rd at 3.9 mM in 10% ginseng root extract were converted to 3.1 mM compound K with 79.5% and 1,610 mg l−1 h−1 at 1.2 h and were hydrolyzed completely to APPD with 300 mg l−1 h−1 after 6 h. The concentrations and productivities of compound K and APPD in the present study are the highest ever reported.  相似文献   

16.
In this investigation, clastogenic effects of Thymus kotschyanus var. glabrescens Boiss. extract (TE) and anticlastogenic effects of this extract against Mitomycin C (MMC) induced chromosome damage have been evaluated in human peripheral blood lymphocytes in vitro. Two series of experiments were conducted. In the first, only 10−5, 10−4, 10−3 and 10−2 μl ml−1 concentrations of TE were used for 48 h to detect potential clastogenicity. In the second, MMC (0.38 μg ml−1) plus 10−5, 10−4, 10−3 and 10−2 μl ml−1 concentrations of TE were used for 48 h to determine anticlastogenic effects. TE did not increase sister chromatid exchanges (SCEs) (except 10−2 μl ml concentration) and chromosome aberrations (CAs) significantly compared with negative and solvent controls. However, it decreased the frequency of MMC induced chromosome aberrations. Decreasing was significant at 10−4, 10−3 and 10−2 μl ml−1 concentrations. On the other hand, TE significantly increased MMC-induced SCEs for all treatment groups compared with positive control.  相似文献   

17.
In this study, the effects of Cd on root growth, respiration, and transmembrane electric potential (E m) of the outer cortical cells in maize roots treated with various Cd concentrations (from 1 μM to 1 mM) for several hours to one week were studied. The E m values of root cells ranged between −120 and −140 mV and after addition of Cd they were depolarized immediately. The depolarization was concentration-dependent reaching the value of diffusion potential (E D) when the Cd concentration exceeded 100 μM. The values of E D ranged between −65 to −68 mV (−66 ± 1.42 mV). The maximum depolarization of E m was registered approx. 2.5 h after addition of Cd to the perfusion solution and in some cases, partial (Cd > 100 μM) or complete repolarization (Cd < 100 μM) was observed within 8–10 h of Cd treatment. In the time-dependent experiments (0 to 168 h) shortly after the maximum repolarization of E m a continuous concentration-dependent decrease of E m followed at all Cd concentrations. Depolarization of E m was accompanied by both increased electrolyte leakage and inhibition of respiration, especially in the range of 50 μM to 1 mM Cd, with the exception of root cells treated with 1 and 10 μM Cd for 24 and 48 h. Time course analysis of Cd impact on root respiration revealed that at higher Cd concentrations (> 50 μM) the respiration gradually declined (∼ 6 h) and then remained at this lowest level for up to 24 h. All the Cd concentrations used in this experiment induced significant inhibition of root elongation and concentrations higher than 100 μM stopped the root growth within the first day of Cd treatment. Our results suggest that Cd does not cause irreversible changes in the electrogenic plasma membrane H+ ATPase because fusicoccin, an H+ ATPase activator diminished the depolarizing effect of Cd on the E m. The depolarization of E m in the outer cortical cells of maize roots was the result of a cumulative effect of Cd on ATP supply, plasmalemma permeability, and activity of H+ ATPase.  相似文献   

18.
Summary The penicillin G amidase (PGA) activity of a parent strain of E. coli (PCSIR-102) was enhanced by chemical mutagenization with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). After screening and optimization, a penicillinase deficient mutant (MNNG-37) was isolated and found effective for the production of penicillin G amidase as compared to the parent strain of E. coli (PCSIR-102). Penicillin G amidase activity of MNNG-37 appeared during an early stage of growth, whereas PCSIR-102 did not exhibit PGA activity due to the presence of penicillinase enzyme which inhibits the activity of enzyme PGA. However, MNNG-37 gave a three-fold increase in enzyme activity (231 IU mg−1) as compared to PCSIR-102 (77 IU mg−1) in medium containing 0.15 and 0.1% concentrations of phenylacetic acid, respectively which was added after 6 h of cultivation. The difference in K m values of the enzyme produced by parent strain PCSIR-102 (0.26 mM) and mutant strain MNNG-37 (0.20 mM) is significant (1.3-fold increase in K m value) which may show the superiority of the latter in terms of better enzyme properties.  相似文献   

19.
Lee S  Kim J  Shin SG  Hwang S 《Biotechnology letters》2008,30(6):1011-1016
The biokinetics of glucose metabolism were evaluated in Aeromonas hydrophila during growth in an anaerobic biosystem. After approx 34 h growth, A. hydrophila metabolized 5,000 mg glucose l−1 into the end-products ethanol, acetate, succinate and formate. The maximum growth rate, μ m, half saturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, and substrate inhibition coefficient, K si were 0.25 ± 0.03 h−1, 118 ± 31 mg glucose l−1, 0.12 μg DNA mg glucose−1, 0.01 h−1, and 3,108 ± 1,152 mg glucose l−1, respectively. These data were used to predict the performance of a continuous growth system with an influent glucose concentration of 5,000 mg l−1. Results of the analysis suggest that A. hydrophila will metabolize glucose at greater than 95% efficiency when hydraulic retention times (HRTs) exceed 7 h, whereas the culture is at risk of washing out at an HRT of 6.7 h.  相似文献   

20.
Dihydroorotase was purified to homogeneity fromPseudomonas putida. The relative molecular mass of the native enzyme was 82 kDa and the enzyme consisted of two identical subunits with a relative molecular mass of 41 kDa. The enzyme only hydrolyzed dihydro-l-orotate and its methyl ester, and the reactions were reversible. The apparentK m andV max values for dihydro-l-orotate hydrolysis (at pH 7.4) were 0.081 mM and 18 μmol min−1 mg−1, respectively; and those forN-carbamoyl-dl-aspartate (at pH 6.0) were 2.2 mM and 68 μmol min−1 mg−1, respectively. The enzyme was inhibited by metal ion chelators and activated by Zn2+. However, excessive Zn2+ was inhibitory. The enzyme was inhibited by sulfhydryl reagents, and competitively inhibited byN-carbamoylamino acids such asN-carbamoylglycine, with aK i value of 2.7 mM. The enzyme was also inhibited noncompetitively by pyrimidine-metabolism intermediates such as dihydrouracil and orotate, with aK i value of 3.4 and 0.75 mM, respectively, suggesting that the enzyme activity is regulated by pyrimidine-metabolism intermediates and that dihydroorotase plays a role in the control of pyrimidine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号