共查询到20条相似文献,搜索用时 8 毫秒
1.
We describe here the purification and quantification of a water-soluble cyclic form of enterobacterial common antigen (ECA(CYC)) from Escherichia coli K-12 as well as information regarding its subcellular location and the genetic loci involved in its assembly. Structural characterization of purified ECA(CYC) molecules obtained from E. coli K-12 revealed that they uniformly contained four trisaccharide repeat units, and they were substituted with from zero to four O-acetyl groups. Cells from overnight cultures contained approximately 2 microg ECA(CYC) per milligram (dry weight), and cell fractionation studies revealed that these molecules were localized exclusively in the periplasm. The synthesis and assembly of ECA(CYC) were found to require the wzxE and wzyE genes of the wec gene cluster. These genes encode proteins involved in the transmembrane translocation of undecaprenylpyrophosphate-linked ECA trisaccharide repeat units and the polymerization of trisaccharide repeat units, respectively. Surprisingly, synthesis of ECA(CYC) was dependent on the wzzE gene, which is required for the modulation of the polysaccharide chain lengths of phosphoglyceride-linked ECA (ECA(PG)). The presence of ECA(CYC) in extracts of several other gram-negative enteric organisms was also demonstrated; however, it was not detected in cell extracts of Pseudomonas aeruginosa. These data suggest that in addition to ECA(PG), ECA(CYC) may be synthesized in many, if not all, members of the Enterobacteriaceae. 相似文献
2.
Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12 总被引:6,自引:0,他引:6
Subhash G. Vasudevan Wilfred L. F. Armarego Denis C. Shawl Penelope E. Lilley Nicholas E. Dixon Robert K. Poole 《Molecular & general genetics : MGG》1991,226(1-2):49-58
Summary In the course of an attempt to identify genes that encode Escherichia coli dihydropteridine reductase (DHPR) activities, a chromosomal DNA fragment that directs synthesis of two soluble polypeptides of Mr 44000 and 46000 was isolated. These proteins were partially purified and were identified by determination of their N-terminal amino acid sequences. The larger was serine hydroxymethyltransferase, encoded by the glyA gene, while the smaller was the previously described product of an unnamed gene closely linked to glyA, and transcribed in the opposite direction. Soluble extracts of E. coli cells that overproduced the 44 kDa protein had elevated DHPR activity, and were yellow in colour. Their visible absorption spectra were indicative of a CO-binding b-type haemoprotein that is high-spin in the reduced state. The sequence of the N-terminal 139 residues of the protein, deduced from the complete nucleotide sequence of the gene, had extensive homology to almost all of Vitreoscilla haemoglobin. We conclude that E. coli produces a soluble haemoglobin-like protein, the product of the hmp gene (for haemoprotein). Although the protein has DHPR activity, it is distinct from the previously purified E. coli DHPR. 相似文献
3.
O acetylation of the enterobacterial common antigen polysaccharide is catalyzed by the product of the yiaH gene of Escherichia coli K-12 下载免费PDF全文
Kajimura J Rahman A Hsu J Evans MR Gardner KH Rick PD 《Journal of bacteriology》2006,188(21):7542-7550
The carbohydrate component of the enterobacterial common antigen (ECA) of Escherichia coli K-12 occurs primarily as a water-soluble cyclic polysaccharide located in the periplasm (ECA(CYC)) and as a phosphoglyceride-linked linear polysaccharide located on the cell surface (ECA(PG)). The polysaccharides of both forms are comprised of the amino sugars N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-mannosaminuronic acid (ManNAcA), and 4-acetamido-4,6-dideoxy-D-galactose (Fuc4NAc). These amino sugars are linked to one another to form trisaccharide repeat units with the structure -->3-alpha-D-Fuc4NAc-(1-->4)-beta-D-ManNAcA-(1-->4)-alpha-D-GlcNAc-(1-->. The hydroxyl group in the 6 position of the GlcNAc residues of both ECA(CYC) and ECA(PG) are nonstoichiometrically esterified with acetyl groups. Random transposon insertion mutagenesis of E. coli K-12 resulted in the generation of a mutant defective in the incorporation of O-acetyl groups into both ECA(CYC) and ECA(PG). This defect was found to be due to an insertion of the transposon into the yiaH locus, a putative gene of unknown function located at 80.26 min on the E. coli chromosomal map. Bioinformatic analyses of the predicted yiaH gene product indicate that it is an integral inner membrane protein that is a member of an acyltransferase family of enzymes found in a wide variety of organisms. The results of biochemical and genetic experiments presented here strongly support the conclusion that yiaH encodes the O-acetyltransferase responsible for the incorporation of O-acetyl groups into both ECA(CYC) and ECA(PG). Accordingly, we propose that this gene be designated wecH. 相似文献
4.
Identification of the structural gene for the TDP-Fuc4NAc:lipid II Fuc4NAc transferase involved in synthesis of enterobacterial common antigen in Escherichia coli K-12. 下载免费PDF全文
The polysaccharide chains of enterobacterial common antigen (ECA) are comprised of the trisaccharide repeat unit Fuc4NAc-ManNAcA-GlcNAc, where Fuc4NAc is 4-acetamido-4,6-dideoxy-D-galactose, ManNAcA is N-acetyl-D-mannosaminuronic acid, and GlcNAc is N-acetyl-D-glucosamine. Individual trisaccharide repeat units are assembled as undecaprenyl-linked intermediates in a sequence of reactions that culminate in the transfer of Fuc4NAc from TDP-Fuc4NAc to ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid II) to yield Fuc4NAc-ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid III), the donor of trisaccharide repeat units for ECA polysaccharide chain elongation. Most of the genes known to be involved in ECA assembly are located in the wec gene cluster located at ca. 85.4 min on the Escherichia coli chromosome. The available data suggest that the structural gene for the TDP-Fuc4NAc:lipid II Fuc4NAc transferase also resides in the wec gene cluster; however, the location of this gene has not been unequivocally defined. Previous characterization of the nucleotide sequence of the wec gene cluster in the region between o416 and wecG revealed that it contained three open reading frames: o74, o204, and o450. In contrast, the results of experiments described in the current investigation revealed that it contains only two open reading frames, o359 and o450. Mutants of E. coli possessing null mutations in o359 were unable to synthesize ECA, and they accumulated lipid II. In addition, the in vitro incorporation of [(3)H]FucNAc from TDP-[(3)H]Fuc4NAc into lipid II was not observed in reaction mixtures using cell extracts obtained from these mutants as a source of enzyme. The ECA-negative phenotype of these mutants was complemented by plasmid constructs containing the wild-type o359 allele, and Fuc4NAc transferase activity was demonstrated by using cell extracts obtained from the complemented mutants. Furthermore, partially purified o359 gene product, expressed as recombinant C-terminal His-tagged protein, was able to catalyze the in vitro transfer of [(3)H]Fuc4NAc from TDP-[(3)H]Fuc4NAc to lipid II. Our data support the conclusion that o359 of the wec gene cluster of E. coli is the structural gene for the TDP-Fuc4NAc:lipid II Fuc4NAc transferase involved in the synthesis ECA trisaccharide repeat units. 相似文献
5.
LexA2 repressor was partially inactivated after mitomycin C or UV light treatment in a recA+ or recA85(Prtc) (protease constitutive) host background. LexA2 protein was cleaved, but the reaction was slower than that observed for LexA+ repressor. lexA2 had a C-to-T transition at nucleotide 461 (Thr-154 to Ile). 相似文献
6.
7.
Evidence that the outer membrane protein gene nmpC of Escherichia coli K-12 lies within the defective qsr'' prophage. 总被引:1,自引:3,他引:1 下载免费PDF全文
Recombinants between phage lambda and the defective qsr' prophage of Escherichia coli K-12 were made in an nmpC (p+) mutant strain and in the nmpC+ parent. The outer membrane of strains lysogenic for recombinant qsr' phage derived from the nmpC (p+) strain contained a new protein identical in electrophoretic mobility to the NmpC porin and to the Lc porin encoded by phage PA-2. Lysogens of qsr' recombinants from the nmpC+ strain and lysogens of lambda p4, which carries the qsr' region, did not produce this protein. When observed by electron microscopy, the DNA acquired from the qsr' prophage showed homology with the region of the DNA molecule of phage PA-2 which contains the lc gene. Relative to that of the recombinant from the nmpC (p+) mutant, the DNA molecule of the recombinant from the nmpC+ parent contained an insertion near the lc gene. These results were supported by blot hybridization analysis of the E. coli chromosome with probes derived from the lc gene of phage PA-2. A sequence homologous to the lc gene was found at the nmpC locus, and the parental strains contained an insertion, tentatively identified as IS5B, located near the 3' end of the porin coding sequence. We conclude that the structural gene for the NmpC porin protein is located within the defective qsr' prophage at 12.5 min on the E. coli K-12 map and that this gene can be activated by loss of an insertion element. 相似文献
8.
9.
Identification and biosynthesis of cyclic enterobacterial common antigen in Escherichia coli 下载免费PDF全文
Phosphoglyceride-linked enterobacterial common antigen (ECA(PG)) is a cell surface glycolipid that is synthesized by all gram-negative enteric bacteria. The carbohydrate portion of ECA(PG) consists of linear heteropolysaccharide chains comprised of the trisaccharide repeat unit Fuc4NAc-ManNAcA-GlcNAc, where Fuc4NAc is 4-acetamido-4,6-dideoxy-D-galactose, ManNAcA is N-acetyl-D-mannosaminuronic acid, and GlcNAc is N-acetyl-D-glucosamine. The potential reducing terminal GlcNAc residue of each polysaccharide chain is linked via phosphodiester linkage to a phosphoglyceride aglycone. We demonstrate here the occurrence of a water-soluble cyclic form of enterobacterial common antigen, ECA(CYC), purified from Escherichia coli strains B and K-12 with solution nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and additional biochemical methods. The ECA(CYC) molecules lacked an aglycone and contained four trisaccharide repeat units that were nonstoichiometrically substituted with up to four O-acetyl groups. ECA(CYC) was not detected in mutant strains that possessed null mutations in the wecA, wecF, and wecG genes of the wec gene cluster. These observations corroborate the structural data obtained by NMR and ESI-MS analyses and show for the first time that the trisaccharide repeat units of ECA(CYC) and ECA(PG) are assembled by a common biosynthetic pathway. 相似文献
10.
U Meier-Dieter K Barr R Starman L Hatch P D Rick 《The Journal of biological chemistry》1992,267(2):746-753
The genetic determinants of enterobacterial common antigen (ECA) include the rfe and rff genes located between ilv and cya near min 85 on the Escherichia coli chromosome. The rfe-rff gene cluster of E. coli K-12 was cloned in the cosmid pHC79. The cosmid clone complemented mutants defective in the synthesis of ECA due to lesions in the rfe, rffE, rffD, rffA, rffC, rffT, and rffM genes. Restriction endonuclease mapping combined with complementation studies of the original cosmid clone and six subclones revealed the order of genes in this region to be rfe-rffD/rffE-rffA/rffC-rffT-rffM . The rfe gene was localized to a 2.54-kilobase ClaI fragment of DNA, and the complete nucleotide sequence of this fragment was determined. The nucleotide sequencing data revealed two open reading frames, ORF-1 and ORF-2, located on the same strand of DNA. The putative initiation codon of ORF-1 was found to be 570 nucleotides downstream from the termination codon of rho. ORF-1 and ORF-2 specify putative proteins of 257 and 348 amino acids with calculated Mr values of 29,010 and 39,771, respectively. ORF-1 was identified as the rfe gene since ORF-1 alone was able to complement defects in the synthesis of ECA and 08-side chain synthesis in rfe mutants of E. coli. Data are also presented which suggest the possibility that the rfe gene is the structural gene for the tunicamycin sensitive UDP-GlcNAc:undecaprenylphosphate GlcNAc-1-phosphate transferase that catalyzes the synthesis of GlcNAc-pyrophosphorylundecaprenol (lipid I), the first lipid-linked intermediate involved in ECA synthesis. 相似文献
11.
Revised nucleotide sequence of the gltP gene, which encodes the proton-glutamate-aspartate transport protein of Escherichia coli K-12. 下载免费PDF全文
The gene encoding the proton-glutamate carrier (GltP) of Escherichia coli K-12 was sequenced, and the primary structure of the protein was analyzed. The nucleotide sequence was found to differ in several aspects from the previously published sequence (B. Wallace, Y. Yang, J. Hong, and D. Lum, J. Bacteriol. 172:3214-3220, 1990). The corrected open reading frame encodes a protein of 437 (instead of 395) amino acids. Hydropathy analysis predicts 12 membrane-spanning alpha-helical regions. The complementary strand does contain an open reading frame possibly encoding a highly hydrophilic polypeptide of 272 amino acids. 相似文献
12.
13.
14.
Kulakov IuK Zheludkov MM Seliutina DF Skavronskaia AG 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1999,(4):15-19
The production of Brucella melitensis protein antigen with molecular weight of 38 kD in Escherichia coli K-12 cell lysates has been studied by immunoblotting with various antisera. E. coli strains differed by the vector plasmid and the size of B. melitensis 565 DNA fragment with 38 kD protein gene, cloned in this plasmid. The immunoblotting analysis detected increased production of 38 kD protein in the recombinant GSE830 strain in comparison with the B. melitensis strain 565, from which the gene was cloned, and other E. coli strains containing this protein gene. The production of 38 kD protein was determined by the size of the cloned B. melitensis 565 DNA fragment with this protein gene, but not by the conditions of culturing. 相似文献
15.
The nucleotide sequence of the Escherichia coli K12 dnaJ+ gene. A gene that encodes a heat shock protein 总被引:34,自引:0,他引:34
J C Bardwell K Tilly E Craig J King M Zylicz C Georgopoulos 《The Journal of biological chemistry》1986,261(4):1782-1785
The Escherichia coli dnaJ gene product is required for bacteriophage lambda DNA replication at all temperatures. It is also essential for bacterial viability in at least some conditions, since mutations in it result in temperature-sensitive bacterial growth. We have previously cloned the dnaJ gene and shown that its product migrates as a Mr 37,000 polypeptide under denaturing conditions. Here we present the primary DNA sequence of the dnaJ gene. It codes for a processed basic protein (63 basic and 51 acidic amino acids) composed of 375 amino acids totaling Mr 40,973. The predicted NH2-terminal amino acid sequence, overall amino acid composition, and isoelectric point agree well with those of the purified protein. We present evidence that the rate of expression of the dnaJ protein is increased by heat shock under the control of the htpR (rpoH) gene product. 相似文献
16.
17.
18.
We examined Escherichia coli K-12 lipopolysaccharide (LPS), which is known to be an R-form LPS, for its ability to form a hexagonal lattice structure in vitro. The LPS from E. coli K-12 strain JE1011 did not form a hexagonal lattice structure when it was precipitated by addition of two volumes of 10 mM MgCl2-ethanol, but it did form such a structure when it was electrodialyzed and then converted to the magnesium or calcium salt form. The lattice constant of the magnesium salt form was 15.2 +/- 0.3 nm and that of the calcium salt form 18.5 +/- 0.3 nm. Since prior treatment of the LPS with proteinase K in the presence of sodium dodecyl sulfate did not affect its capability of hexagonal assembly, the lattice formation by the LPS does not require the presence of proteins. 相似文献
19.