首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optic Nerve Regeneration in Adult Fish and Apolipoprotein A-I   总被引:3,自引:2,他引:1  
Fish optic nerves, unlike mammalian optic nerves, are endowed with a high capacity to regenerate. Injury to fish optic nerves causes pronounced changes in the composition of pulse-labeled substances derived from the surrounding non-neuronal cells. The most prominent of these injury-induced changes is in a 28-kilodalton (kDa) polypeptide whose level increases after injury, as revealed by one-dimensional gel electrophoresis and autoradiography. The present study identified as apolipoprotein A-I (apo-A-I) a polypeptide of 28 kDa in media conditioned by regenerating fish optic nerves. The level of this polypeptide increased after injury by approximately 35%. Apo-A-I was isolated by gel-permeation chromatography from delipidated high-density lipoproteins (HDL) that had been obtained from carp plasma by sequential ultracentrifugation. Further identification of the purified protein as apo-A-I was based on its molecular mass (28 kDa) as determined by gel electrophoresis, amino acid composition, and microheterogeneity studies. The isolated protein was further analyzed by immunoblots of two-dimensional gels and was found to contain six isoforms. Western blot analysis using antibodies directed against the isolated plasma protein showed that the 28-kDa polypeptide in the preparation of soluble substances derived from the fish optic nerves (conditioned media, CM) cross-reacted immunologically with the isolated fish plasma apo-A-I. Immunoblots of two-dimensional gels revealed the presence of three apo-A-I isoforms in the CM of regenerating fish optic nerves (pIs: 6.49, 6.64, and 6.73). At least some of the apo-A-I found in the CM is derived from the nerve, as was shown by pulse labeling with [35S]methionine, followed by immunoprecipitation. The apo-A-I immunoactive polypeptides in the CM of the fish optic nerve were found in high molecular-weight, putative HDL-like particles. Immunocytochemical staining revealed that apo-A-I immunoreactive sites were present in the fish optic nerves. Higher labeling was found in injured nerves (between the site of injury and the brain) than in non-injured nerves. The accumulation of apo-A-I in nerves that are capable of regenerating may be similar to that of apo-E in sciatic nerves of mammals (a regenerative system); in contrast, although its synthesis is increased, apo-A-I does not accumulate in avian optic nerves nor does apo-E in rat optic nerves (two nonregenerative systems).  相似文献   

2.
The optic nerve of the bullfrog was transected and the regeneration process was investigated. We previously reported that alpha-tubulin mRNA in the retina increased to a maximum 1-2 h after optic nerve transection with no specific change in actin mRNA. In the present investigation, we examined the long-term effect of optic nerve transection. Northern blot analysis revealed that alpha-tubulin mRNA increased again gradually after the rapid and transient increase and actin mRNA increased to a maximum at 7 days (more than twofold compared to the control retinas). The period during which actin mRNA reaches a maximal increase almost corresponds to the time lag between the axotomy and the initiation of axonal outgrowth. The main cytoskeletons of neuronal growth cones have been shown to consist of actin-containing microfilaments. Therefore, the transient increase of actin mRNA may have a relationship to the initial outgrowth of axons. On the other hand, the rapid and transient increase of alpha-tubulin mRNA observed in our previous studies is probably one of the initial responses of retinal ganglion cells to the axotomy, and the gradual increase in alpha-tubulin mRNA observed in this study can probably be interpreted as provision of the structural materials necessary for axonal elongation.  相似文献   

3.
RNA isolated from goldfish retinas before and during optic nerve regeneration, when translated in vitro, directed the synthesis of neurofilament proteins that are normally found in high levels in the optic nerve. The major neurofilament proteins of the goldfish optic nerve comprise a group of four isoelectric variants of molecular weight 58,000 (58K) which we have identified previously as ON1-ON4. The levels of ON1 and ON2 within the optic nerve had been shown to decrease shortly after optic nerve crush and then increase to precrush levels during the regeneration process. Employing two-dimensional electrophoretic analysis of in vitro translation products and immunoprecipitations with antibodies specific for the ON proteins and an anti-intermediate filament monoclonal antibody, we show that ON1 and ON2 are encoded by mRNA synthesized in the retinas. The synthesis of ON3 and ON4 by retina RNA was undetected. This confirms data from previous ex vivo experiments that indicated that ON1 and ON2 are of neuronal origin whereas ON3 and ON4 are nonneuronal. ON1 and ON2 synthesis increases dramatically during optic nerve regeneration to levels 10- and 30-fold over precrush levels, respectively. In addition to ON1 and ON2, the synthesis of a previously unidentified 52K protein is observed at relatively high levels 20 and 32 days after optic nerve crush, but is unobserved before regeneration. Thus, optic nerve regeneration can be correlated with specific changes in intermediate filament gene expression within the retina.  相似文献   

4.
In vivo phosphorylation of axonal proteins was investigated in normal and regenerating optic nerves of goldfish by two-dimensional gel electrophoresis. By 6-24 h after intraocular injection of H3(32)PO4, approximately 20 optic nerve proteins ranging in size from 19 to 180 kilodaltons and in pI from 4.4 to 6.8 were seen to have incorporated radiolabel. Five of these proteins showed a robust increase in incorporation of phosphate during regeneration. Among the latter was an acidic (pI 4.5) 45-kilodalton protein, which has previously been shown to be conveyed by fast axonal transport and to increase dramatically in its rate of synthesis during regeneration of goldfish optic axons.  相似文献   

5.
The predominant proteins (58K) of the intermediate filament complex in the goldfish visual pathway consist of a series of isoelectric variants. Previous biochemical studies have shown that proteins ON1 and ON2 are of neuronal origin, whereas ON3 and ON4 are of nonneuronal origin. Polyclonal antibodies, purified by affinity chromatography, that are specific for ON1 and ON2 or ON3 and ON4 have been used to localize histologically the ON proteins within the normal and crushed optic nerve. Anti-ON1/ON2 antiserum presented a pattern consistent with intraaxonal staining. A nonneuronal staining pattern was observed with anti-ON3/ON4 antiserum. The two patterns were distinct from and complementary to each other. The data suggest that ON3 and ON4 represent a novel glial fibrillary acidic protein. The results are discussed in terms of the function of these proteins in development, plasticity, and regeneration.  相似文献   

6.
Phosphorylation of Proteins in Normal and Regenerating Goldfish Optic Nerve   总被引:2,自引:2,他引:0  
Within 6 h after radiolabeled phosphate was injected into the eye of goldfish, labeled acid-soluble and acid-precipitable material began to appear in the optic nerve and subsequently also in the lobe of the optic tectum, to which the optic axons project. From the rate of appearance of the acid-precipitable material, a maximal velocity of axonal transport of 13-21 mm/day could be calculated, consistent with fast axonal transport group II. Examination of individual proteins by two-dimensional gel electrophoresis revealed that approximately 20 proteins were phosphorylated in normal and regenerating nerves. These ranged in molecular weight from approximately 18,000 to 180,000 and in pI from 4.4 to 6.9. Among them were several fast transported proteins, including protein 4, which is the equivalent of the growth-associated protein GAP-43. In addition, there was phosphorylation of some recognizable constituents of slow axonal transport, including alpha-tubulin, a neurofilament constituent (NF), and another intermediate filament protein characteristic of goldfish optic axons (ON2). At least some axonal proteins, therefore, may become phosphorylated as a result of the axonal transport of a phosphate carrier. Some of the proteins labeled by intraocular injection of 32P showed changes in phosphorylation during regeneration of the optic axons. By 3-4 weeks after an optic tract lesion, five proteins, including protein 4, showed a significant increase in labeling in the intact segment of nerve between the eye and the lesion, whereas at least four others (including ON2) showed a significant decrease. When local incorporation of radiolabeled phosphate into the nerve was examined by incubating nerve segments in 32P-containing medium, there was little or no labeling of the proteins that showed changes in phosphorylation during regeneration. Segments of either normal or regenerating nerves showed strong labeling of several other proteins, particularly a group ranging in molecular weight from 46,000 to 58,000 and in pI from 4.9 to 6.4. These proteins were presumably primarily of nonneuronal origin. Nevertheless, if degeneration of the axons had been caused by removal of the eye 1 week earlier, most of the labeling of these proteins was abolished. This suggests that phosphorylation of these proteins depends on the integrity of the optic axons.  相似文献   

7.
A fundamental issue in central nervous system development regards the effect of target tissue on the differentiation of innervating neurons. We address this issue by characterizing the role the retinal ganglion cell target, i.e., the optic tectum, plays in regulating expression of tubulin and nicotinic acetylcholine receptor genes in regenerating retinal ganglion cells. Tubulins are involved in axonal growth, whereas nicotinic acetylcholine receptors mediate communication across synapses. Retinal ganglion cell axons were induced to regenerate by crushing the optic nerve. Following crush, there was a rapid increase in alpha-tubulin RNAs (3 days), which preceded the increase in nicotinic acetylcholine receptor RNAs (10-15 days). Both classes of RNAs approached control levels by the time retinotectal synapses and functional recovery were restored (4-6 weeks). If the optic nerve was repeatedly crushed or its target ablated, tubulin RNAs remained elevated, and the increase in receptor RNAs that would otherwise be seen 2 weeks after a single nerve crush did not occur. The interaction of retinal ganglion cell axons with their targets in the optic tectum appears, then, to exert a suppressive effect on the RNA encoding a cytoskeletal protein, tubulin, and an inductive effect on RNAs encoding nicotinic acetylcholine receptors involved in synaptic communication.  相似文献   

8.
Abstract: After the goldfish optic nerve was crushed, the total amount of protein in the nerve decreased by about 45% within 1 week as the axons degenerated, began to recover between 2 and 5 weeks as axonal regeneration occurred, and had returned to nearly normal by 12 weeks. Corresponding changes in the relative amounts of some individual proteins were investigated by separating the proteins by two-dimensional gel electrophoresis and performing a quantitative analysis of the Coomassie Brilliant Blue staining patterns of the gels. In addition, labelling patterns showing incorporation of [3H]proline into individual proteins were examined to differentiate between locally synthesized proteins (presumably produced mainly by the glial cells) and axonal proteins carried by fast or slow axonal transport. Some prominent nerve proteins, ON1 and ON2 (50–55 kD, pI ~6), decreased to almost undetectable levels and then reappeared with a time course corresponding to the changes in total protein content of the nerve. Similar changes were seen in a protein we have designated NF (~130 kD, pI ~5.2). These three proteins, which were labelled in association with slow axonal transport, may be neurofilament constituents. Large decreases following optic nerve crush were also seen in the relative amounts of α- and β-tubulin, which suggests that they are localized mainly in the optic axons rather than the glial cells. Another group of proteins, W2, W3, and W4 (35–45 kD, pI 6.5–7.0), which showed a somewhat slower time course of disappearance and were intensely labelled in the local synthesis pattern, may be associated with myelin. A small number of proteins increased in relative amount following nerve crush. These included some, P1 and P2 (35–40 kD, pIs 6.1–6.2) and NT (~50 kD, pI ~5.5), that appeared to be synthesized by the glial cells. Increases were also seen in one axonal protein, B (~45 kD, pI ~4.5), that is carried by fast axonal transport, as well as in two axonal proteins, HA1 and HA2 (~60 and 65 kD respectively, pIs 4.5–5.0), that are carried mainly by slow axonal transport. Other proteins, including actin, that showed no net changes in relative amount (but presumably changed in absolute amount in direct proportion to the changes in total protein content of the nerve), are apparently distributed in both the neuronal and nonneuronal compartments of the nerve.  相似文献   

9.
Fast and slow axonal transports were studied in the optic nerve of the garfish and compared with previous studies on the olfactory nerve. The composition of fast-transport proteins was very similar in the two nerves. Although the velocity of fast transport was slightly lower in the optic nerve, there was a linear increase in velocity with temperature in both nerves. As in the olfactory nerve, only a single wave of slow-transport protein radioactivity moves along the nerve. The velocity of slow transport also increased linearly with temperature, but the coefficient was less than in the olfactory system. The composition of slow transport in the optic nerve was significantly different from that in the olfactory nerve, a finding reflecting the different cytoskeletal constituents of the two types of axons. The slow wave could be differentiated into several subcomponents, with the order of velocities being a 105-kilodalton protein and actin greater than tubulins and clathrin greater than fodrin much greater than neurofilaments. It can be concluded that the temperature dependence of fast and slow axonal transport in different nerves reflects the influence of temperature on the individual polypeptides constituting the various transport phases. The garfish optic nerve preparation may be advantageous for studies of axonal transport in retinal ganglion cell axons, because its great length avoids the complications of having to study transport in the optic tract or in material accumulating at the tectum.  相似文献   

10.
In postnatal developing optic nerves, astrocytes organize their processes in a cribriform network to group axons into bundles. In neonatal rat optic nerves in vivo, the active form of EGFR tyrosine kinase is abundantly present when the organization of astrocytes and axons is most actively occurring. Blocking activity of EGFR tyrosine kinase during the development of rat optic nerves in vivo inhibits astrocytes from extending fine processes to surround axons. In vitro, postnatal optic nerve astrocytes, stimulated by EGF, organize into cribriform structures which look remarkably like the in vivo structure of astrocytes in the optic nerve. In addition, when astrocytes are co-cultured with neonatal rat retinal explants in the presence of EGF, astrocytes that are adjacent to the retinal explants, re-organize to an astrocyte-free zone into which neurites grow out from the retinal tissue. We hypothesize that in the developing optic nerve, EGFR activity directs the formation of a histo-architectural structure of astrocytes which surrounds axons and provides a permissive environment for axon development.  相似文献   

11.
目的考察神经生长因子对视神经损害的疗效。方法腹腔注射二硫化碳致视神经损害的大鼠模型,给药组球后注射或肌内注射神经生长因子,每天一次,每周6d,共计3周,空白对照组球后注射等量生理盐水,于治疗前后测定大鼠模式翻转(FREP)和闪光视觉诱发电位。结果球后注射高剂量组大鼠在治疗10d和20d时各波潜伏时比对照组有显著缩短,而球后注射低剂量组和肌内注射高剂量组大鼠于治疗10d时FVEP各波潜伏时也显著缩短,肌内注射低剂量组大鼠于治疗20d时FEP的P1和P2波潜伏时也显著或非常显著缩短。结论神经生长因子对大鼠视神经损害有明显的治疗作用。  相似文献   

12.
目的:研究灵长类动物胫神经和腓总神经再生能力差异。方法:健康成年恒河猴16只,分为A、B两组,每组8只,使用刀片切割完全损伤胫神经和腓总神经,后立即予神经外膜缝合,在术后3周、8周分别取A、B组胫神经和腓总神经吻合口远、近端神经组织行Luxol Fast Blue染色,观察胫神经和腓总神经远端、近端轴突数目,计算轴突密度,远端轴突密度/近端轴突密度为神经再生通过率。结果:术后3周和8周时,胫神经和腓总神经相比,胫神经在远端轴突密度、神经通过率等指标上,胫神经愈后优于腓总神经(P0.05)。结论:坐骨神经神经损伤修复后,胫神经轴突通过吻合口的通过率较腓总神经高,吻合口远端有更多的神经轴突,其靶器官有更多的神经纤维支配,这是导致坐骨神经损伤修复后胫神经功能恢复较腓总神经功能恢复好的重要原因之一。  相似文献   

13.
Abstract: Apolipoproteins have been implicated in the salvage and reutilization of myelin cholesterol during Wallerian degeneration and the subsequent nerve regeneration. Current evidence suggests that myelin cholesterol complexes with apolipoproteins E and A-I to form lipoproteins that are taken up via low-density lipoprotein receptors on myelinating Schwann cells. We recently reported, however, that apolipoprotein E is not required for nerve regeneration or reutilization of myelin cholesterol. We have now investigated nerve regeneration and the reutilization of cholesterol in mutant mice deficient in both apolipoproteins E and A-I. Morphologic examination of nerves 4 and 12 weeks after crush injury revealed that regeneration proceeded at a normal rate in the absence of these apolipoproteins. Autoradiography of regenerating nerves indicated that prelabeled myelin lipid was reutilized in the regenerating myelin. 3-Hydroxy-3-methylglutaryl-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, was down-regulated in the regenerating nerves, indicative of cholesterol uptake via lipoproteins. Prelabeled myelin cholesterol was present in lipoprotein fractions isolated from crushed nerves of mutant mice. These data suggest that there is considerable redundancy in the process of cholesterol reutilization within nerve, and that apolipoproteins other than apolipoproteins E and A-I may be involved in the recycling of myelin cholesterol.  相似文献   

14.
The distribution of intermediate filament proteins in optic nerve and spinal cord from rat, hamster, goldfish, frog, and newt were analyzed by two-dimensional gel electrophoresis. General as well as specific monoclonal and polyclonal antibodies were reacted against putative intermediate filament proteins. In vitro incubations of excised optic nerve in the presence of [35S]methionine distinguished between neuronal and nonneuronal intermediate filament proteins. The proteins of the intermediate filament complex in the two tissues for rat and hamster were similar. The typical neurofilament triplet and glial fibrillary acidic protein (GFAP) were observed. Vimentin was more concentrated in the optic nerve than in the spinal cord. The goldfish, newt, and frog contained neurofilament proteins in the 145-150K range and in the 70-85K range. In addition, predominant neurofilament proteins in the 58-62K molecular-weight range were found in all three species. In contrast to mammalian species, the goldfish, newt, and frog displayed extensive heterogeneity between optic nerve and spinal cord in the expression of both neuronal and nonneuronal intermediate filament proteins. The distinctive presence of low-molecular-weight intermediate filament proteins and their high concentration in the optic nerve and spinal cord of these nonmammalian vertebrates is discussed in terms of neuronal development and regeneration.  相似文献   

15.
The predominant intermediate filament proteins of the goldfish optic nerve have molecular weights of 58K. They can be separated into a series of four major isoelectric variants of neuronal (ON1 and ON2) and nonneuronal (ON3 and ON4) origin. The extent of homology between the goldfish 58K intermediate filament proteins themselves and to rat optic nerve vimentin and glial fibrillary acidic protein (GFAP) was investigated. Unlabeled and [32P]orthophosphate-labeled proteins were subjected to partial hydrolysis by V8 protease, chymotrypsin, and CNBr. The results show that the goldfish intermediate filament proteins share with vimentin and GFAP a 40K chymotrypsin-resistant core fragment. Phosphorylated moieties appear to be located outside the core region since they are preferentially cleaved off by chymotrypsin and not found associated with the 40K core. In addition, the goldfish ON proteins contain the antigenic site within the core that is common to most intermediate filaments. V8 or CNBr digestion indicates that many fragments that are common to ON1 and ON2 are clearly distinct from fragments that are common to ON3 and ON4. In addition, structural variability is observed between the goldfish intermediate filament proteins and vimentin and GFAP. The results are discussed in terms of intermediate filament structure and their possible role in nerve growth.  相似文献   

16.
摘要 目的:探讨血府逐瘀汤对糖尿病视网膜病变患者视神经形态结构的影响。方法:2017年11月~2019年12月选择在本院就诊的糖尿病视网膜病变患者76例,根据随机信封抽签原则把患者分为观察组与对照组各38例。对照组给予康柏西普治疗,观察组在对照组治疗的基础上给予血府逐瘀汤治疗,两组都治疗观察2个月,记录视神经形态结构变化情况。结果:治疗后观察组的总有效率为97.37 %,显著高于对照组的78.95 %(P<0.05)。两组治疗后行空腹血糖(fasting blood glucose,FBG)与餐后2 h血糖(2 h postprandial blood glucose,2hPG),值都低于治疗前,观察组低于对照组(P<0.05)。两组治疗前的视盘周围视网膜神经纤维层(Retinal nerve fiber layer,RNFL)厚度在上象限、下象限、颞象限、鼻象限上对比无差异(P>0.05),两组治疗后各个象限的RNFL厚度均显著下降(P<0.05),且观察组各个象限的RNFL厚度均低于对照组(P<0.05)。观察组治疗后的红细胞聚集指数与纤维蛋白原低于治疗前,也低于对照组(P<0.05),对照组治疗前后对比无差异(P>0.05)。结论:血府逐瘀汤在糖尿病视网膜病变患者中的应用能改善视神经形态结构,促进降低血糖,改善患者的血液流变学状况,从而提高治疗效果。  相似文献   

17.
Abstract: Cytosolic dexamethasone (DEX) binding sites were studied in the Wallerian-degenerating rat optic nerve (ON), a tissue that is rich in neuroglial cells but devoid of neuronal perikarya and processes. For comparison, hippocampal (HI) and anterior pituitary (AP) cytosols were studied in parallel. Binding sites in these three tissues were found to be quite similar in almost all respects. The sites have a high affinity for DEX ( K D= 2.5–3.5 n M ), are present at a high concentration ( B max= 360–365 fmol/mg cytosol protein), and possess a binding specificity typical of glucocorticoid receptors in other organs. Most experiments supported the assumption of a single DEX-binding species in each tissue. Saturation analyses consistently yielded linear Scatchard plots over the range of DEX concentrations tested. Density gradient centrifugation in each case revealed a single peak with a sedimentation coefficient of 7–8S at low ionic strength and 4–4.5S in the presence of 0.3 M KCl. Isoelectric focusing similarly localized most of the binding in each cytosol to a single large peak with an isoelectric point of approximately 6.0. Dissociation rate determinations, on the other hand, suggested the possibility of two different binding sites in each tissue. These studies show that glucocorticoid binders present in cells of the ON possess the same characteristics as the cytoplasmic receptors found in HI, AP, and other recognized glucocorticoid target tissues.  相似文献   

18.
Abstract: Axonal transport of phospholipids in normal and regenerating sciatic nerve of the rat was studied. At various intervals after axotomy of the right sciatic nerve in the midthigh region and subsequent perineurial sutures of the transected fascicles, a mixture of 60 μCi [Me-HC]choline and 15 μCi [2-3H]glycerol in the region of the spinal motor neurons of the L5 and L6 segments was injected bilaterally. The amount of radioactive lipid (and in certain cases its distribution in various lipid classes) along the nerve was determined as a function of time. Three days after fascicular suture and 6 h after spinal cord injection of precursors, there was an accumulation of labeled phospholipids and sphingolipids in the transected sciatic nerve in the region immediately proximal to the site of suture. Nine days after, there was a marked increase in the accumulation of radioactivity in the distal segments of the injured nerve, which increased up to 14 days after cutting and disappeared as regeneration proceeded (21–45 days). In all segments of both normal and regenerating nerve fibers, as well as in L5 and L6 spinal cord segments, only phosphatidylcholine and sphingomyelin were labeled with [14C]choline. These results suggest that the regeneration process in a distal segment of a peripheral neuron, following cutting and fascicular repairing by surgical sutures, is sustained in the first 3 weeks by changes in the amount of phospholipids rapidly transported along the axon towards the site of nerve fiber outgrowth.  相似文献   

19.
目的探讨外源性碱性成纤维细胞生长因子(bFGF)对晚期周围神经再生的作用.方法50只SD大鼠随机分治疗组、对照组各25只,切断右侧坐骨神经,12周后予以修复,修复术后每日分别给予bFGF和生理盐水,行神经电生理和组织学检查.结果治疗组和对照组修复处远段神经均有不同程度再生,4周时已可见到再生轴突,且治疗组多见.计量分析治疗组运动神经传导速度、神经肌肉动作电位幅值、髓鞘厚度、再生轴突直径和截面积明显优于对照组.治疗组与对照组相比,差异有显著性.结论bFGF能促进晚期周围神经再生.  相似文献   

20.
Peripheral nerve injury (PNI) may lead to disability and neuropathic pain, which constitutes a substantial economic burden to patients and society. It was found that the peripheral nervous system (PNS) has the ability to regenerate after injury due to a permissive microenvironment mainly provided by Schwann cells (SCs) and the intrinsic growth capacity of neurons; however, the results of injury repair are not always satisfactory. Effective, long-distance axon regeneration after PNI is achieved by precise regulation of gene expression. Numerous studies have shown that in the process of peripheral nerve damage and repair, differential expression of non-coding RNAs (ncRNAs) significantly affects axon regeneration, especially expression of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). In the present article, we review the cellular and molecular mechanisms of axon regeneration after PNI, and analyze the roles of these ncRNAs in nerve repair. In addition, we discuss the characteristics and functions of these ncRNAs. Finally, we provide a thorough perspective on the functional mechanisms of ncRNAs in nervous injury repair, and explore the potential these ncRNAs offer as targets of nerve injury treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号