首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

3.
4.
Abstract The untranslatable, RNA polymerase II-dependent gene ( dutA ) of Dictyostelium discoideum is induced early in development. However, unlike other early genes, dutA induction was not affected by cAMP pulses and occurred normally in various cAMP-related mutant cells, the results indicating that this induction depended solely on factors other than cAMP. In the knockout strain of the catalytic subunit of protein kinase A, dutA expression was severely blocked and not recovered by cAMP pulses. This demonstrates that even the cAMP-independent gene, dutA , requires protein kinase A for its expression.  相似文献   

5.
6.
Summary The mechanism of the inhibition and of the recovery of DNA synthesis in E. coli following UV-irradiation was analysed in several mutants defective in repair or in the regulation of the RecA-LexA dependent SOS response. Several lines of evidence indicated that inhibition is not an inducible function and is probably due to the direct effect of lesions in the template blocking replisome movement.Recovery of DNA synthesis after UV was largely unaffected by mutations in the uvrA, recB or umuC genes. Resumption of DNA synthesis does however require protein synthesis and the regulatory action of recA. Experiments with a recA constitutive mutant and recA 200 (temperature sensitive RecA) demonstrated that RecA protein itself is directly required but is not sufficient for recovery of DNA synthesis. We therefore propose that recovery of DNA synthesis depends upon the concerted activity of RecA and the synthesis of an inducible Irr (induced replisome reactivation) factor under RecA control. We suggest that the mechanism of recovery involves the action of Irr and RecA to promote movement of replisomes past non-instructive lesions, uncoupled from polymerisation and/or that Irr and RecA are required to promote re-initiation of a stalled replication complex downstream of a UV-lesion subsequent to such an uncoupling step.  相似文献   

7.
In Chlamydomonas, the usual rapid degradation of tubulin mRNAs induced by flagellar amputation is prevented by inhibition of protein synthesis with cycloheximide. Evidence is presented that the ability of cycloheximide to stabilize alpha-tubulin mRNA depends on the time of addition. Addition of cycloheximide to cells before induction strongly stabilizes the induced mRNAs, while addition after their synthesis stabilizes them only transiently. Moreover, cycloheximide inhibition does not stabilize the same alpha-tubulin mRNA species in uninduced cells. These results suggest that cycloheximide is not acting to stabilize the induced alpha-tubulin mRNAs simply by preventing ribosome translocation. The stabilized state of tubulin mRNA was found to correlate with its occurrence on smaller polysomes but larger EDTA-released mRNP particles than the unstable state. A second effect of cycloheximide on the metabolism of induced tubulin mRNAs is to accelerate complete poly(A) removal. This effect of cycloheximide inhibition, unlike stabilization, occurs whenever cycloheximide is added to cells, and appears unrelated to stabilization. The effect is shown to be mRNA-specific; poly(A)-shortening on the rbcS2 mRNA is not altered in the presence of cycloheximide, nor do completely deadenylated molecules accumulate. Experiments in which cells were released from cycloheximide inhibition suggest that deadenylated alpha-tubulin mRNAs may be less stable than their polyadenylated counterparts during active translation.  相似文献   

8.
5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAr), a commonly used indirect activator of AMP-activated protein kinase (AMPK), inhibits phosphatidylcholine (PC) biosynthesis in freshly isolated hepatocytes. In all nucleated mammalian cells, PC is synthesized from choline via the Kennedy (CDP-choline) pathway. The purpose of our study was to provide direct evidence that AMPK regulates phospholipid biosynthesis and to elucidate the mechanism(s) by which AMPK inhibits hepatic PC synthesis. Incubations of hepatocytes with AICAr resulted in a dose-dependent activation of AMPK and inhibition of PC biosynthesis. Surprisingly, adenoviral delivery of constitutively active AMPK did not alter PC biosynthesis. In addition, expression of dominant negative mutants of AMPK was unable to block the AICAr-dependent inhibition of PC biosynthesis, indicating that AICAr was acting independently of AMPK activation. Determination of aqueous intermediates of the CDP-choline pathway indicated that choline kinase, the first enzyme in the pathway, was inhibited by AICAr administration. Flux through the CDP-choline pathway was directly correlated to the level of intracellular ATP concentrations. Therefore, it is possible that inhibition of PC biosynthesis is another process by which the cell can reduce ATP consumption in times of energetic stress. However, unlike cholesterol and triacylglycerol biosynthesis, PC production is not regulated by AMPK.  相似文献   

9.
We have recently described the clinical and pathological features of experimental autoimmune neuritis (EAN) in Lewis rats inoculated with varying doses of a synthetic peptide corresponding to the amino acid residues 53-78 of bovine P2 protein (SP-26). Immunization with this synthetic peptide was able to induce severe clinical and pathological characteristics of EAN. We are now reporting that, SP-26 T cell lines derived from spleen and lymph node cell populations of such immunized rats, upon being triggered by SP-26, can adoptively transfer severe clinical and histological signs of EAN to naive syngeneic recipients. The disease appears 7-8 days postinoculation of the cells and persist 5-10 days. The pathological features were indistinguishable from SP-26-induced active EAN which appears 12-15 days after sensitization. Examination of the surface phenotype of the cells that were used for the passive transfer of EAN by FACS analysis, showed majority of the cells to be CD4+, Ia+ cells.  相似文献   

10.
Novel properties of the primer independent synthesis of poly(A), catalyzed by the yeast poly(A) polymerase are presented. The commercial enzyme from yeast, in contrast to the enzyme from Escherichia coli, is unable to adenylate the 3'-OH end of nucleosides, nucleotides or dinucleoside polyphosphates (NpnN). In the presence of 0.05 mm ATP, dinucleotides (at 0.01 mm) activated the enzyme velocity in the following decreasing order: Gp4G, 100; Gp3G, 82; Ap6A, 61; Gp2G, 52; Ap4A, 51; Ap2A, 41; Gp5G, 36; Ap5A, 27; Ap3A, 20, where 100 represents a 10-fold activation in relation to a control without effector. The velocity of the enzyme towards its substrate ATP displayed sigmoidal kinetics with a Hill coefficient (nH) of 1.6 and a Km(S0.5) value of 0.308 +/- 0.120 mm. Dinucleoside polyphosphates did not affect the maximum velocity (Vmax) of the reaction, but did alter its nH and Km(S0.5) values. In the presence of 0.01 mm Gp4G or Ap4A the nH and Km(S0.5) values were (1.0 and 0.063 +/- 0.012 mm) and (0.8 and 0.170 +/- 0.025 mm), respectively. With these kinetic properties, a dinucleoside polyphosphate concentration as low as 1 micro m may have a noticeable activating effect on the synthesis of poly(A) by the enzyme. These findings together with previous publications from this laboratory point to a potential relationship between dinucleoside polyphosphates and enzymes catalyzing the synthesis and/or modification of DNA or RNA.  相似文献   

11.
12.
13.
A single injection of β-naphthoflavone dispersed in corn oil causes significant changes in rabbit liver polysome and polysomal poly(A+)mRNA driven in vitro protein synthesis. The changes occur between 6–18 hr and 30–36 hr after the injection. Our data indicate that the first effect is due to the β-naphthoflavone and the second effect is due to the oil vehicle. In vitro translation of rabbit liver polysomes obtained from treated rabbits followed by specific immunoprecipition and gel electrophoresis, showed that maximal levels of translatable cytochrome P-450 LM4 occurred 18–24 hr after β-naphthoflavone treatment.  相似文献   

14.
15.
Many plants express enzymes which specifically remove an adenine residue from the skeleton of the 28 S RNA in the major subunit of the eukaryotic ribosome (ribosome inactivating proteins, RIPs). The site of action of RIPs (A4324 in the rRNA from rat liver) is in a loop structure whose nucleotide sequence all around the target adenine is also conserved in those species which are completely or partially insensitive to RIPs. In this paper we identify a covalent complex between saporin (the RIP extracted from Saponaria officinalis) and ribosomal proteins from yeast (Saccharomyces cerevisiae), by means of chemical crosslinking and immunological or avidin-biotin detection. The main complex (mol. wt. congruent to 60 kDa) is formed only with a protein from the 60 S subunit of yeast ribosomes, and is not detected with ribosomes from E. coli, a resistant species. This observation supports the hypothesis for a molecular recognition mechanism involving one or more ribosomal proteins, which could provide a 'receptor' site for the toxin and favour optimal binding of the target adenine A4324 to the active site of the RIP.  相似文献   

16.
Phosphatidylserine synthesis was studied in glioma C6 cells with [14C]serine and in the presence or absence of agents which increase the level of [Ca2+]i. It was found that glutamate and acetylcholine inhibited this synthesis by up to 40%, whereas thapsigargin and the ionophore A23187 inhibited by up to 70%. The inhibitory effect of thapsigargin and the A23187 was observed in Ca(2+)-free medium. The data show that the inhibition of this synthesis is caused by the Ca(2+)-depletion from endoplasmic reticulum, suggesting that the synthesis of phosphatidylserine occurs on the luminal side of these structures and can be regulated by transmembrane signaling systems.  相似文献   

17.
Alzheimer's disease (AD) is genetically linked to the processing of amyloid beta protein precursor (AbetaPP). Aside from being the precursor of the amyloid beta (Abeta) found in plaques in the brains of patients with AD, little is known regarding the functional role of AbetaPP. We have recently reported biochemical evidence linking AbetaPP to the JNK signaling cascade by finding that JNK-interacting protein-1 (JIP-1) binds AbetaPP. In order to study the functional implications of this interaction we assayed the carboxyl-terminal of AbetaPP for phosphorylation. We found that the threonine 668 within the AbetaPP intracellular domain (AID or elsewhere AICD) is indeed phosphorylated by JNK1. We surprisingly found that although JIP-1 can facilitate this phosphorylation, it is not required for this process. We also found that JIP-1 only facilitated phosphorylation of AbetaPP but not of the two other family members APLP1 (amyloid precursor-like protein 1) and APLP2. Understanding the connection between AbetaPP phosphorylation and the JNK signaling pathway, which mediates cell response to stress may have important implications in understanding the pathogenesis of Alzheimer's disease.  相似文献   

18.
The initial interaction of mRNA with the protein synthesis machinery presumably involves recognition of the 5'-cap (m7GpppN), although it is not clear at the present time whether this recognition is by eIF-4E or eIF-4F. This process has been studied by direct fluorescence titration experiments. The equilibrium constants for the formation of the binary protein: m7GpppG, protein:mRNA, and protein:protein complexes as well as the ternary mRNA:eIF-4E:eIF-4A complexes were measured. These studies show, for the first time, direct evidence for an eIF-4A:eIF-4E interaction. In contrast to earlier studies, we show that the affinity of eIF-4E and eIF-4F for globin mRNA is similar. Furthermore, the relative affinities of mRNA analogs (capped oligonucleotides) for these initiation factors indicate that the cap is the predominant feature recognized for binding, but other features also contribute to the eIF-4E:mRNA interaction.  相似文献   

19.
Cycloheximide (CYH) resistance in the yeast Candida maltosa is based on the inducible expression of genes encoding a variant of ribosomal protein L41-Q, with glutamine at position 56 instead of the proline found in normal L41. The promoter of L41-Q2a, one of the L41-Q gene alleles encoding L41-Q, has an element similar to the Gcn4p-responsive element of Saccharomyces cerevisiae. In a previous study, this element was shown to be essential for the induction of L41-Q by CYH. In the present study, a C. maltosa GCN4 homolog, C-GCN4, was cloned. It had a long 5'-leader region with three upstream open reading frames. Enhanced expression of the C-GCN4 reporter fusion gene upon the addition of 3-aminotriazole or by mutations in start codons of all three upstream open reading frames indicates that C-GCN4 expression is under translation repression as was seen with GCN4. The C-GCN4-depleted mutant was unable to grow in a nutrient medium containing CYH and did not express L41-Q genes. Recombinant C-Gcn4p bound to the consensus DNA element for Gcn4p, 5'-(G/A)TGACTCAT-3', located upstream of L41-Q2a. Thus, C-Gcn4p, which likely functions in the general control of amino acid biosynthesis, is essential for the expression of L41-Q genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号