首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The small, soluble, (2Fe-2S)-containing protein ferredoxin (Fd) mediates electron transfer from the chloroplast photosystem I to ferredoxin: NADP+ oxidoreductase (FNR), a flavoenzyme located on the stromal side of the thylakoid membrane. Ferredoxin and FNR form a 1:1 complex, which is stabilized by electrostatic interactions between acidic residues of Fd and basic residues of FNR. We have used differential chemical modification of Fd to locate aspartic and glutamic acid residues at the intermolecular interface of the Fd:FNR complex (both proteins from spinach). Carboxyl groups of free and FNR-bound Fd were amidated with carbodiimide/2-aminoethane sulfonic acid (taurine). The differential reactivity of carboxyl groups was assessed by double isotope labeling. Residues protected in the Fd:FNR complex were D-26, E-29, E-30, D-34, D-65, and D-66. The protected residues belong to two domains of negative electrostatic surface potential on either side of the iron-sulfur cluster. The negative end of the molecular dipole moment vector of Fd (377 Debye) is close to the iron-sulfur cluster, in the center of the area demarcated by the protected carboxyl groups. The molecular dipole moment and the asymmetric surface potential may help to orient Fd in the reaction with FNR. In support, we find complementary domains of positive electrostatic potential on either side of the FAD redox center of FNR. The results allow a binding model for the Fd:FNR complex to be constructed.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
The oxygen sensor regulator FNR (fumarate nitrate reductase regulator) of Escherichia coli is known to be inactivated by O2 as the result of conversion of a [4Fe-4S] cluster of the protein into a [2Fe-2S] cluster. Further incubation with O2 causes loss of the [2Fe-2S] cluster and production of apoFNR. The reactions involved in cluster assembly and reductive activation of apoFNR isolated under anaerobic or aerobic conditions were studied in vivo and in vitro. In a gshA mutant of E. coli that was completely devoid of glutathione, the O2 tension for the regulatory switch for FNR-dependent gene regulation was decreased by a factor of 4-5 compared with the wild-type, suggesting a role for glutathione in FNR function. In isolated apoFNR, glutathione could be used as the reducing agent for HS- formation required for [4Fe-4S] assembly by cysteine desulfurase (NifS), and for the reduction of cysteine ligands of the FeS cluster in FNR. Air-inactivated FNR (apoFNR without FeS) could be reconstituted to [4Fe-4S].FNR by the same reaction as used for apoFNR isolated under anaerobic conditions. The in vivo effects of glutathione on FNR function and the role of glutathione in the formation of active [4Fe-4S].FNR in vitro suggest an important role for glutathione in the de novo assembly of FNR and in the reductive activation of air-oxidized FNR under anaerobic conditions.  相似文献   

11.
12.
13.
The structure of phthalate dioxygenase reductase (PDR), a monomeric iron-sulfur flavoprotein that delivers electrons from NADH to phthalate dioxygenase, is compared to ferredoxin-NADP+ reductase (FNR) and ferredoxin, the proteins that reduce NADP+ in the final reaction of photosystem I. The folding patterns of the domains that bind flavin, NAD(P), and [2Fe-2S] are very similar in the two systems. Alignment of the X-ray structures of PDR and FNR substantiates the assignment of features that characterize a family of flavoprotein reductases whose members include cytochrome P-450 reductase, sulfite and nitrate reductases, and nitric oxide synthase. Hallmarks of this subfamily of flavoproteins, here termed the FNR family, are an antiparallel β-barrel that binds the flavin prosthetic group, and a characteristic variant of the classic pyridine nucleotide-binding fold. Despite the similarities between FNR and PDR, attempts to model the structure of a dissociable FNR:ferredoxin complex by analogy with PDR reveal features that are at odds with chemical crosslinking studies (Zanetti, G., Morelli, D., Ronchi, S., Negri, A., Aliverti, A., & Curti, B., 1988, Biochemistry 27, 3753–3759). Differences in the binding sites for flavin and pyridine nucleotides determine the nucleotide specificities of FNR and PDR. The specificity of FNR for NADP+ arises primarily from substitutions in FNR that favor interactions with the 2′ phosphate of NADP+. Variations in the conformation and sequences of the loop adjoining the flavin phosphate affect the selectivity for FAD versus FMN. The midpoint potentials for reduction of the flavin and [2Fe–2S] groups in PDR are higher than their counterparts in FNR and spinach ferredoxin, by about 120 mV and 260 mV, respectively. Comparisons of the structure of PDR with spinach FNR and with ferredoxin from Anabaena 7120, along with calculations of electrostatic potentials, suggest that local interactions, including hydrogen bonds, are the dominant contributors to these differences in potential.  相似文献   

14.
15.
BackgroundFerredoxins are small iron-sulfur proteins that participate as electron donors in various metabolic pathways. They are recognized substrates of ferredoxin-NADP+ reductases (FNR) in redox metabolisms in mitochondria, plastids, and bacteria. We previously found a plastidic-type FNR in Leptospira interrogans (LepFNR), a parasitic bacterium of animals and humans. Nevertheless, we did not identify plant-type ferredoxins or flavodoxins, the common partners of this kind of FNR.MethodsSequence alignment, phylogenetical analyses and structural modeling were performed for the identification of a 2[4Fe4S] ferredoxin (LepFd2) as a putative redox partner of LepFNR in L. interrogans. The gene encoding LepFd2 was cloned and the protein overexpressed and purified. The functional properties of LepFd2 and LepFNR-LepFd2 complex were analyzed by kinetic and mutagenesis studies.ResultsWe succeeded in expressing and purifying LepFd2 with its FeS cluster properly bound. We found that LepFd2 exchanges electrons with LepFNR. Moreover, a unique structural subdomain of LepFNR (loop P75-Y91), was shown to be involved in the recognition and binding of LepFd2. This structural subdomain is not found in other FNR homologs.ConclusionsWe report for the first time a redox pair in L. interrogans in which a plastidic FNR exchanges electron with a bacterial 2[4Fe4S] ferredoxin. We characterized this reaction and proposed a model for the productive LepFNR-LepFd2 complex.General significanceOur findings suggest that the interaction of LepFNR with the iron-sulfur protein would be different from the one previously described for the homolog enzymes. This knowledge would be useful for the design of specific LepFNR inhibitors.  相似文献   

16.
17.
18.
19.
Plant-type ferredoxin (Fd), a [2Fe-2S] iron-sulfur protein, functions as an one-electron donor to Fd-NADP(+) reductase (FNR) or sulfite reductase (SiR), interacting electrostatically with them. In order to understand the protein-protein interaction between Fd and these two different enzymes, 10 acidic surface residues in maize Fd (isoform III), Asp-27, Glu-30, Asp-58, Asp-61, Asp-66/Asp-67, Glu-71/Glu-72, Asp-85, and Glu-93, were substituted with the corresponding amide residues by site-directed mutagenesis. The redox potentials of the mutated Fds were not markedly changed, except for E93Q, the redox potential of which was more positive by 67 mV than that of the wild type. Kinetic experiments showed that the mutations at Asp-66/Asp-67 and Glu-93 significantly affected electron transfer to the two enzymes. Interestingly, D66N/D67N was less efficient in the reaction with FNR than E93Q, whereas this relationship was reversed in the reaction with SiR. The static interaction of the mutant Fds with each the two enzymes was analyzed by gel filtration of a mixture of Fd and each enzyme, and by affinity chromatography on Fd-immobilized resins. The contributions of Asp-66/Asp-67 and Glu-93 were found to be most important for the binding to FNR and SiR, respectively, in accordance with the kinetic data. These results allowed us to map the acidic regions of Fd required for electron transfer and for binding to FNR and SiR and demonstrate that the interaction sites for the two enzymes are at least partly distinct.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号