首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used electron microscopy and proteolytic susceptibility to study the structural basis of myosin-linked regulation in synthetic filaments of scallop striated muscle myosin. Using papain as a probe of the structure of the head-rod junction, we find that this region of myosin is approximately five times more susceptible to proteolytic attack under activating (ATP/high Ca2+) or rigor (no ATP) conditions than under relaxing conditions (ATP/low Ca2+). A similar result was obtained with native myosin filaments in a crude homogenate of scallop muscle. Proteolytic susceptibility under conditions in which ADP or adenosine 5'-(beta, gamma-imidotriphosphate) (AMPPNP) replaced ATP was similar to that in the absence of nucleotide. Synthetic myosin filaments negatively stained under relaxing conditions showed a compact structure, in which the myosin cross-bridges were close to the filament backbone and well ordered, with a clear 14.5-nm axial repeat. Under activating or rigor conditions, the cross-bridges became clumped and disordered and frequently projected further from the filament backbone, as has been found with native filaments; when ADP or AMPPNP replaced ATP, the cross-bridges were also disordered. We conclude (a) that Ca2+ and ATP affect the affinity of the myosin cross-bridges for the filament backbone or for each other; (b) that the changes observed in the myosin filaments reflect a property of the myosin molecules alone, and are unlikely to be an artifact of negative staining; and (c) that the ordered structure occurs only in the relaxed state, requiring both the presence of hydrolyzed ATP on the myosin heads and the absence of Ca2+.  相似文献   

2.
Adenosine triphosphate-dependent changes in myosin filament structure have been directly observed in whole muscle by electron microscopy of thin sections of rapidly frozen, demembranated frog sartorius specimens. In the presence of ATP the thick filaments show an ordered, helical array of cross-bridges except in the bare zone. In the absence of ATP they show two distinct appearances: in the region of overlap with actin, there is an ordered, rigorlike array of cross-bridges between the thick and thin filaments, whereas in the nonoverlap region (H-zone) the myosin heads move away from the thick filament backbone and lose their helical order. This result suggests that the presence of ATP is necessary for maintenance of the helical array of cross-bridges characteristic of the relaxed state. The primary effect of ATP removal on the myosin heads appears to be weaken their binding to the thick filament backbone; released heads that are close to an actin filament subsequently form a new actin-based, ordered array.  相似文献   

3.
To identify the structural basis for the observed physiological effects of myosin regulatory light chain phosphorylation in skinned rabbit skeletal muscle fibers (potentiation of force development at low calcium), thick filaments separated from the muscle in the relaxed state, with unphoshorylated light chains, were incubated with specific, intact, myosin light chain kinase at moderate (pCa 5.0) and low (pCa 5.8) calcium and with calcium-independent enzyme in the absence of calcium, then examined as negatively stained preparations, by electron microscopy and optical diffraction. All such experimental filaments became disordered (lost the near-helical array of surface myosin heads typical of the relaxed state). Filaments incubated in control media, including intact enzyme in the absence of calcium, moderate calcium (pCa 5.0) without enzyme, and bovine serum albumin substituting for calcium-independent myosin light chain kinase, all retained their relaxed structure. Finally, filaments disordered by phosphorylation regained their relaxed structure after incubation with a protein phosphatase catalytic subunit. We suggest that the observed disorder is due to phosphorylation-induced increased mobility and/or changed conformation of myosin heads, which places an increased population of them close to thin filaments, thereby potentiating actin-myosin interaction at low calcium levels.  相似文献   

4.
Previously we have shown that cross-bridge attachment to actin and the radial position of the myosin heads surrounding the thick filament backbone affect the equatorial x-ray diffraction intensities in different ways (Yu, 1989). In the present study, other factors frequently encountered experimentally are analyzed by a simple model of the filament lattice. It is shown that the ordering/disordering of filaments, lattice spacing changes, the azimuthal redistributions of cross-bridges, and variations in the ordered/disordered population of cross-bridges surrounding the thick filaments can distinctly affect the equatorial intensities. Consideration of Fourier transforms of individual components of the unit cell can provide qualitative explanations for the equatorial intensity changes. Criteria are suggested that can be used to distinguish the influence of some factors from others.  相似文献   

5.
Computer simulation of mass distribution within the model and Fourier transforms of images depicting mass distribution are explored for verification of two alternative modes of the myosin molecule arrangement within the vertebrate skeletal muscle thick filaments. The model well depicting the complete bipolar structure of the thick filament and revealing a true threefold-rotational symmetry is a tube covered by two helices with a pitch of 2 x 43 nm due to arrangement of the myosin tails along a helical path and grouping of all myosin heads in the crowns rotated by 240 degrees and each containing three cross-bridges separated by 0 degrees, 120 degrees, and 180 degrees. The cross-bridge crown parameters are verified by EM images as well as by optical and low-angle X-ray diffraction patterns found in the literature. The myosin tail arrangement, at which the C-terminus of about 43-nm length is near-parallel to the filament axis and the rest of the tail is quite strongly twisted around, is verified by the high-angle X-ray diffraction patterns. A consequence of the new packing is a new way of movement of the myosin cross-bridges, namely, not by bending in the hinge domains, but by unwrapping from the thick filament surface towards the thin filaments along a helical path.  相似文献   

6.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

7.
By means of electron microscopy the longitudinal sections of chemically skinned fibres of rigorised rabbit psoas muscle have been examined at pH of rigorising solutions equal to 6, 7, 8 (I = 0.125) and ionic strengths equal to 0.04, 0.125, 0.34 (pH 7.0). It has been revealed that at pH 6.0 the bands of minor proteins localization in A-disks were seen very distinctly, while at pH 7.0 and I = 0.125 these bands can be revealed only by means of antibody labelling technique. At the ionic strength of 0.34 (pH 7.0) the periodicity of 14.3 nm in thick filaments was clearly observed, which was determined by packing of the myosin rods into the filament shaft and of the myosin heads (cross-bridges) on the filament surface. The number of cross-bridge rows in the filament equals 102. A new scheme of myosin cross-bridge distribution in thick filaments of rabbit psoas muscle has been suggested according to which two rows of cross-bridges at each end of a thick filament are absent. The filament length equals 1.64 +/- 0.01 micron. It has been shown that the length of thick filament as well as the structural organization of their end regions in rabbit psoas muscle and frog sartorius one are different.  相似文献   

8.
Electron micrographic tomograms of isometrically active insect flight muscle, freeze substituted after rapid freezing, show binding of single myosin heads at varying angles that is largely restricted to actin target zones every 38.7 nm. To quantify the parameters that govern this pattern, we measured the number and position of attached myosin heads by tracing cross-bridges through the three-dimensional tomogram from their origins on 14.5-nm-spaced shelves along the thick filament to their thin filament attachments in the target zones. The relationship between the probability of cross-bridge formation and axial offset between the shelf and target zone center was well fitted by a Gaussian distribution. One head of each myosin whose origin is close to an actin target zone forms a cross-bridge most of the time. The probability of cross-bridge formation remains high for myosin heads originating within 8 nm axially of the target zone center and is low outside 12 nm. We infer that most target zone cross-bridges are nearly perpendicular to the filaments (60% within 11 degrees ). The results suggest that in isometric contraction, most cross-bridges maintain tension near the beginning of their working stroke at angles near perpendicular to the filament axis. Moreover, in the absence of filament sliding, cross-bridges cannot change tilt angle while attached nor reach other target zones while detached, so may cycle repeatedly on and off the same actin target monomer.  相似文献   

9.
We have used electron microscopy and solubility measurements to investigate the assembly and structure of purified human platelet myosin and myosin rod into filaments. In buffers with ionic strengths of less than 0.3 M, platelet myosin forms filaments which are remarkable for their small size, being only 320 nm long and 10-11 nm wide in the center of the bare zone. The dimensions of these filaments are not affected greatly by variation of the pH between 7 and 8, variation of the ionic strength between 0.05 and 0.2 M, the presence or absence of 1 mM Mg++ or ATP, or variation of the myosin concentration between 0.05 and 0.7 mg/ml. In 1 mM Ca++ and at pH 6.5 the filaments grow slightly larger. More than 90% of purified platelet myosin molecules assemble into filaments in 0.1 M KC1 at pH 7. Purified preparations of the tail fragment of platelet myosin also form filaments. These filaments are slightly larger than myosin filaments formed under the same conditions, indicating that the size of the myosin filaments may be influenced by some interaction between the head and tail portions of myosin molecules. Calculations based on the size and shape of the myosin filaments, the dimensions of the myosin molecule and analysis of the bare zone reveal that the synthetic platelet myosin filaments consists of 28 myosin molecules arranged in a bipolar array with the heads of two myosin molecules projecting from the backbone of the filament at 14-15 nm intervals. The heads appear to be loosely attached to the backbone by a flexible portion of the myosin tail. Given the concentration of myosin in platelets and the number of myosin molecules per filament, very few of these thin myosin filaments should be present in a thin section of a platelet, even if all of the myosin molecules are aggregated into filaments.  相似文献   

10.
A monoclonal antibody, MF20, which has been shown previously to bind the myosin heavy chain of vertebrate striated muscle, has been proven to bind the light meromyosin (LMM) fragment by solid phase radioimmune assay with alpha-chymotryptic digests of purified myosin. Epitope mapping by electron microscopy of rotary-shadowed, myosin-antibody complexes has localized the antibody binding site to LMM at a point approximately 92 nm from the C-terminus of the myosin heavy chain. Since this epitope in native thick filaments is accessible to monoclonal antibodies, we used this antibody as a high affinity ligand to analyze the packing of LMM along the backbone of the thick filament. By immunofluorescence microscopy, MF20 was shown to bind along the entire A-band of chicken pectoralis myofibrils, although the epitope accessibility was greater near the ends than at the center of the A-bands. Thin-section, transmission electron microscopy of myofibrils decorated with MF20 revealed 50 regularly spaced, cross-striations in each half A-band, with a repeat distance of approximately 13 nm. These were numbered consecutively, 1-50, from the A-band to the last stripe, approximately 68 nm from the filament tips. These same striations could be visualized by negative staining of native thick filaments labeled with MF20. All 50 striations were of a consecutive, uninterrupted repeat which approximated the 14-15-nm axial translation of cross-bridges. Each half M-region contained five MF20 striations (approximately 13 nm apart) with a distance between stripes 1 and 1', on each half of the bare zone, of approximately 18 nm. This is compatible with a packing model with full, antiparallel overlap of the myosin rods in the bare zone region. Differences in the spacings measured with negatively stained myofilaments and thin-sectioned myofibrils have been shown to arise from specimen shrinkage in the fixed and embedded preparations. These observations provide strong support for Huxley's original proposal for myosin packing in thick filaments of vertebrate muscle (Huxley, H. E., 1963, J. Mol. Biol., 7:281-308) and, for the first time, directly demonstrate that the 14-15-nm axial translation of LMM in the thick filament backbone corresponds to the cross-bridge repeat detected with x-ray diffraction of living muscle.  相似文献   

11.
The tarantula skeletal muscle X-ray diffraction pattern suggested that the myosin heads were helically arranged on the thick filaments. Electron microscopy (EM) of negatively stained relaxed tarantula thick filaments revealed four helices of heads allowing a helical 3D reconstruction. Due to its low resolution (5.0 nm), the unambiguous interpretation of densities of both heads was not possible. A resolution increase up to 2.5 nm, achieved by cryo-EM of frozen-hydrated relaxed thick filaments and an iterative helical real space reconstruction, allowed the resolving of both heads. The two heads, “free” and “blocked”, formed an asymmetric structure named the “interacting-heads motif” (IHM) which explained relaxation by self-inhibition of both heads ATPases. This finding made tarantula an exemplar system for thick filament structure and function studies. Heads were shown to be released and disordered by Ca2+-activation through myosin regulatory light chain phosphorylation, leading to EM, small angle X-ray diffraction and scattering, and spectroscopic and biochemical studies of the IHM structure and function. The results from these studies have consequent implications for understanding and explaining myosin super-relaxed state and thick filament activation and regulation. A cooperative phosphorylation mechanism for activation in tarantula skeletal muscle, involving swaying constitutively Ser35 mono-phosphorylated free heads, explains super-relaxation, force potentiation and post-tetanic potentiation through Ser45 mono-phosphorylated blocked heads. Based on this mechanism, we propose a swaying-swinging, tilting crossbridge-sliding filament for tarantula muscle contraction.  相似文献   

12.
Contraction of skeletal muscle is regulated by structural changes in both actin-containing thin filaments and myosin-containing thick filaments, but myosin-based regulation is unlikely to be preserved after thick filament isolation, and its structural basis remains poorly characterized. Here, we describe the periodic features of the thick filament structure in situ by high-resolution small-angle x-ray diffraction and interference. We used both relaxed demembranated fibers and resting intact muscle preparations to assess whether thick filament regulation is preserved in demembranated fibers, which have been widely used for previous studies. We show that the thick filaments in both preparations exhibit two closely spaced axial periodicities, 43.1 nm and 45.5 nm, at near-physiological temperature. The shorter periodicity matches that of the myosin helix, and x-ray interference between the two arrays of myosin in the bipolar filament shows that all zones of the filament follow this periodicity. The 45.5-nm repeat has no helical component and originates from myosin layers closer to the filament midpoint associated with the titin super-repeat in that region. Cooling relaxed or resting muscle, which partially mimics the effects of calcium activation on thick filament structure, disrupts the helical order of the myosin motors, and they move out from the filament backbone. Compression of the filament lattice of demembranated fibers by 5% Dextran, which restores interfilament spacing to that in intact muscle, stabilizes the higher-temperature structure. The axial periodicity of the filament backbone increases on cooling, but in lattice-compressed fibers the periodicity of the myosin heads does not follow the extension of the backbone. Thick filament structure in lattice-compressed demembranated fibers at near-physiological temperature is similar to that in intact resting muscle, suggesting that the native structure of the thick filament is largely preserved after demembranation in these conditions, although not in the conditions used for most previous studies with this preparation.  相似文献   

13.
The averaged structure of rigor cross-bridges in insect flight muscle is further revealed by three-dimensional reconstruction from 25-nm sections containing a single layer of thin filaments. These exhibit two thin filament orientations that differ by 60 degrees from each other and from myac layer filaments. Data from multiple tilt views (to +/- 60 degrees) was supplemented by data from thick sections (equivalent to 90 degrees tilts). In combination with the reconstruction from the myac layer (Taylor et al., 1989), the entire unit cell is reconstructed, giving the most complete view of in situ cross-bridges yet obtained. All our reconstructions show two classes of averaged rigor cross-bridges. Lead bridges have a triangular shape with leading edge angled at approximately 45 degrees and trailing edge angled at approximately 90 degrees to the filament axis. We propose that the lead bridge contains two myosin heads of differing conformation bound along one strand of F-actin. The lead bridge is associated with a region of the thin filament that is apparently untwisted. We suggest that the untwisting may reflect the distribution of strain between myosin and actin resulting from two-headed, single filament binding in the lead bridge. Rear bridges are oriented at approximately 90 degrees to the filament axis, and are smaller and more cylindrical, suggesting that they consist of single myosin heads. The rear bridge is associated with a region of apparently normal thin filament twist. We propose that differing myosin head angles and conformations consistently observed in rigor embody different stages of the power stroke which have been trapped by a temporal sequence of rigor cross-bridge formation under the constraints of the intact filament lattice.  相似文献   

14.
Myosin subfragment 1 (S1) forms dimers in the presence of Mg(2+) or MgADP or MgATP. The entire myosin molecule forms head-head dimers in the presence of MgATP. The angle between the two subunits in the S1 dimer is 95 degrees. Assuming that the length of the globular part of S1 is approximately 12 nm and that the S1/S2 joint (lever arm approximately 7 nm) is clearly bent, the cylinder tangent to this dimer should have a diameter of approximately 18 nm, close to the approximately 16-20 nm suggested by many studies for the diameter of thick filaments in situ. These conclusions led us to re-examine our previous model, according to which two heads from two opposite myosin molecules are inserted into the filament core and interact as dimers. We studied synthetic filaments by electron microscopy, enzyme activity assays, controlled digestion and filament-filament interaction analysis. Synthetic filaments formed by rapid dilution in the presence of 1 mM EDTA at room temperature ( approximately 22 degrees C) had all their myosin heads outside the backbone. These filaments are called superfilaments (SF). Synthetic filaments formed by slow dilution, in the presence of either 2 mM Mg(2+) or 0.5 mM MgATP and at low temperature ( approximately 0 degrees C) had one myosin head outside the backbone and one head inside. These filaments are called filaments (F). Synthetic filaments formed by slow dilution, in the presence of 4 mM MgATP at low temperature ( approximately 0 degrees C) had most of their heads inserted in the filament core. These filaments are called antifilaments (AF). These experimental results provide important new information about myosin synthetic filaments. In particular, we found that myosin heads were involved in filament assembly and that filament-filament interactions can occur via the external heads. Native filaments (NF) from rabbit psoas muscle were also studied by enzyme assays. Their structure depended on the age of the rabbit. NF from 4-month-old rabbits were three-stranded, i.e. six myosin heads per crown, two of which were inside the core and four outside. NF from 18-month-old rabbits were two-stranded (similar to F).  相似文献   

15.
Tropomyosin movements on thin filaments are thought to sterically regulate muscle contraction, but have not been visualized during active filament sliding. In addition, although 3-D visualization of myosin crossbridges has been possible in rigor, it has been difficult for thick filaments actively interacting with thin filaments. In the current study, using three-dimensional reconstruction of electron micrographs of interacting filaments, we have been able to resolve not only tropomyosin, but also the docking sites for weak and strongly bound crossbridges on thin filaments. In relaxing conditions, tropomyosin was observed on the outer domain of actin, and thin filament interactions with thick filaments were rare. In contracting conditions, tropomyosin had moved to the inner domain of actin, and extra density, reflecting weakly bound, cycling myosin heads, was also detected, on the extreme periphery of actin. In rigor conditions, tropomyosin had moved further on to the inner domain of actin, and strongly bound myosin heads were now observed over the junction of the inner and outer domains. We conclude (1) that tropomyosin movements consistent with the steric model of muscle contraction occur in interacting thick and thin filaments, (2) that myosin-induced movement of tropomyosin in activated filaments requires strongly bound crossbridges, and (3) that crossbridges are bound to the periphery of actin, at a site distinct from the strong myosin binding site, at an early stage of the crossbridge cycle.  相似文献   

16.
In this work we examined the arrangement of cross-bridges on the surface of myosin filaments in the A-band of Lethocerus flight muscle. Muscle fibers were fixed using the tannic-acid-uranyl-acetate, ("TAURAC") procedure. This new procedure provides remarkably good preservation of native features in relaxed insect flight muscle. We computed 3-D reconstructions from single images of oblique transverse sections. The reconstructions reveal a square profile of the averaged myosin filaments in cross section view, resulting from the symmetrical arrangement of four pairs of myosin heads in each 14.5-nm repeat along the filament. The square profiles form a very regular right-handed helical arrangement along the surface of the myosin filament. Furthermore, TAURAC fixation traps a near complete 38.7 nm labeling of the thin filaments in relaxed muscle marking the left-handed helix of actin targets surrounding the thick filaments. These features observed in an averaged reconstruction encompassing nearly an entire myofibril indicate that the myosin heads, even in relaxed muscle, are in excellent helical register in the A-band.  相似文献   

17.
The results discussed in the preceding paper (Levine, R. J. C., J. L. Woodhead, and H. A. King. 1991. J. Cell Biol. 113:563-572.) indicate that A-band shortening in Limulus muscle is a thick filament response to activation that occurs largely by fragmentation of filament ends. To assess the effect of biochemical changes directly associated with activation on the length and structure of thick filaments from Limulus telson muscle, a dually regulated tissue (Lehman, W., J. Kendrick-Jones, and A. G. Szent Gyorgyi. 1973. Cold Spring Harbor Symp. Quant. Biol. 37:319-330.) we have examined the thick filament response to phosphorylation of myosin regulatory light chains. In agreement with the previous work of J. Sellers (1981. J. Biol. Chem. 256:9274-9278), Limulus myosin, incubated with partially purified chicken gizzard myosin light chain kinase (MLCK) and [gamma 32P]-ATP, binds 2 mol phosphate/mole protein. On autoradiographs of SDS-PAGE, the label is restricted to the two regulatory light chains, LC1 and LC2. Incubation of long (greater than or equal to 4.0 microns) thick filaments, separated from Limulus telson muscle under relaxing conditions, with either intact MLCK in the presence of Ca2+ and calmodulin, or Ca2(+)-independent MLCK obtained by brief chymotryptic digestion (Walsh, M. P., R. Dabrowska, S. Hinkins, and D. J. Hartshorne. 1982. Biochemistry. 21:1919-1925), causes significant changes in their structure. These include: disordering of the helical surface arrangement of myosin heads as they move away from the filament backbone; the presence of distal bends and breaks, with loss of some surface myosin molecules, in each polar filament half; and the production of shorter filaments and end-fragments. The latter structures are similar to those produced by Ca2(+)-activation of skinned fibers (Levine, R. J. C., J. L. Woodhead, and H. A. King. J. Cell Biol. 113:563-572). Rinsing experimental filament preparations with relaxing solution before staining restores some degree of order of the helical surface array, but not filament length. We propose that outward movement of myosin heads and thick filament shortening in Limulus muscle are responses to activation that are dependent on phosphorylation of regulatory myosin light chains. Filament shortening may be due, in large part, to breakage at the filament ends.  相似文献   

18.
Structure and paramyosin content of tarantula thick filaments   总被引:11,自引:10,他引:1       下载免费PDF全文
Muscle fibers of the tarantula femur exhibit structural and biochemical characteristics similar to those of other long-sarcomere invertebrate muscles, having long A-bands and long thick filaments. 9-12 thin filaments surround each thick filament. Tarantula muscle has a paramyosin:myosin heavy chain molecular ratio of 0.31 +/- 0.079 SD. We studied the myosin cross-bridge arrangement on the surface of tarantula thick filaments on isolated, negatively stained, and unidirectionally metal-shadowed specimens by electron microscopy and optical diffraction and filtering and found it to be similar to that previously described for the thick filaments of muscle of the closely related chelicerate arthropod, Limulus. Cross-bridges are disposed in a four-stranded right-handed helical arrangement, with 14.5-nm axial spacing between successive levels of four bridges, and a helical repeat period every 43.5 nm. The orientation of cross-bridges on the surface of tarantula filaments is also likely to be very similar to that on Limulus filaments as suggested by the similarity between filtered images of the two types of filaments and the radial distance of the centers of mass of the cross-bridges from the surfaces of both types of filaments. Tarantula filaments, however, have smaller diameters than Limulus filaments, contain less paramyosin, and display structure that probably reflects the organization of the filament backbone which is not as apparent in images of Limulus filaments. We suggest that the similarities between Limulus and tarantula thick filaments may be governed, in part, by the close evolutionary relationship of the two species.  相似文献   

19.
Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLCs). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens revealed that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal in this study was to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction revealed intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC and fitted an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 (subfragment 2) crystal structure to the reconstruction. The fitting suggests one intramolecular interaction, between the cardiomyopathy loop of the free head and its own S2, and two intermolecular interactions, between the cardiac loop of the free head and the essential light chain of the blocked head and between the Leu305-Gln327 interaction loop of the free head and the N-terminal fragment of the RLC of the blocked head. These interactions, added to those previously described, would help switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament.  相似文献   

20.
We have used electron microscopy to study the structural changes induced when myosin filaments are activated by Ca2+. Negative staining reveals that when Ca2+ binds to the heads of relaxed Ca2+ -regulated myosin filaments, the helically ordered myosin heads become disordered and project further from the filament surface. Cryo-electron microscopy of unstained, frozen-hydrated specimens supports this finding, and shows that disordering is reversible on removal of Ca2+. The structural change is thus a result of Ca2+ binding alone and not an artifact of staining. Comparison of the two techniques suggests that negative staining preserves the structure induced by Ca2+ -binding. We therefore used a time-resolved negative staining technique to determine the time scale of the structural change. Full disordering was observed within 30 ms of Ca2+ addition, and had started to occur within 10 ms, showing that the change occurs on the physiological time scale. Comparison with studies of single heavy meromyosin molecules suggests that an increased mobility of myosin heads induced by Ca2+ binding underlies the changes in filament structure that we observe. We conclude that the loosening of the array of myosin heads that occurs on activation is real and physiological; it may function to make activated myosin heads freer to contact actin filaments during muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号