首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of high density lipoprotein (HDL) to its receptor on cultured fibroblasts and aortic endothelial cells was previously shown to facilitate sterol efflux by initiation of translocation of intracellular sterol to the plasma membrane. After cholesterol-loaded human monocyte-derived macrophages were incubated with either [3H]mevalonolactone or lipoprotein-associated [3H]cholesteryl ester to radiolabel intracellular pools of sterol, incubation with HDL3 led to stimulation of 3H-labeled sterol translocation from intracellular sites to the cell surface which preceeded maximum 3H-labeled sterol efflux. A similar pattern was demonstrated for macrophages that were preloaded with cholesterol derived from either low density lipoprotein (LDL), acetyl-LDL, or phospholipase C-modified LDL. However, in macrophages that were not loaded with cholesterol, HDL3 stimulated net movement of 3H-labeled sterol from the plasma membrane into intracellular compartments, the opposite direction from that seen for cholesterol-loaded cells. A similar influx pattern was found in nonloaded macrophages and fibroblasts that were labeled with trace amounts of exogenous [3H]cholesterol. Cholesterol translocation from intracellular pools to the cell surface of cholesterol-loaded macrophages appeared to be stimulated by receptor binding of HDL, since chemical modification of HDL with tetranitromethane (TNM), which abolishes its receptor binding, reduced its ability to stimulate 3H-labeled sterol translocation and efflux. In nonloaded cells, however, the ability of HDL3 to stimulate sterol efflux and movement of sterol from the plasma membrane into intracellular pools was unaffected by TNM modification. Thus, binding of HDL to its receptor on cholesterol-loaded macrophages appears to promote translocation of intracellular cholesterol to the plasma membrane followed by cholesterol efflux into the medium. However, in nonloaded macrophages, HDL stimulates sterol movement from the plasma membrane into intracellular pools by a receptor-independent process.  相似文献   

2.
Cultured cells have on their cell surface a specific high-affinity binding site (receptor) for high density lipoproteins (HDL) which appears to promote cholesterol efflux. In this study we characterized the cellular mechanisms involved in HDL receptor-mediated transport of cholesterol from cultured human fibroblasts and bovine aortic endothelial cells. HDL3, chemically modified by tetranitromethane (TNM-HDL3), is not recognized by this receptor and was used as a control for efflux not mediated by HDL receptor binding. HDL3 and TNM-HDL3 were found to be equally effective in causing efflux of plasma membrane cholesterol radiolabeled with [3H]cholesterol. However, HDL3 was much more effective than TNM-HDL3 in causing efflux of [3H]cholesterol associated with intracellular membranes. By measuring movement of endogenously synthesized [3H]cholesterol to the plasma membrane, and into the medium, we found that HDL3 induced a rapid movement of [3H]cholesterol from a preplasma membrane compartment to the plasma membrane that preceded [3H]cholesterol efflux. This effect was not observed with TNM-HDL3. Thus, receptor binding of HDL3 appears to facilitate removal of cellular cholesterol from specific intracellular pools by initiation of translocation of intracellular cholesterol to the plasma membrane.  相似文献   

3.
Involvement of Cdc42 signaling in apoA-I-induced cholesterol efflux   总被引:2,自引:0,他引:2  
Cholesterol efflux, an important mechanism by which high density lipoproteins (HDL) protect against atherosclerosis, is initiated by docking of apolipoprotein A-I (apoA-I), a major HDL protein, to specific binding sites followed by activation of ATP-binding cassette transporter A1 (ABCA1) and translocation of cholesterol from intracellular compartments to the exofacial monolayer of the plasma membrane where it is accessible to HDL. In this report, we investigated potential signal transduction pathways that may link apoA-I binding to cholesterol translocation to the plasma membrane and cholesterol efflux. By using pull-down assays we found that apoA-I substantially increased the amount of activated Cdc42, Rac1, and Rho in human fibroblasts. Moreover, apoA-I induced actin polymerization, which is known to be controlled by Rho family G proteins. Inhibition of Cdc42 and Rac1 with Clostridium difficile toxin B inhibited apoA-I-induced cholesterol efflux, whereas inhibition of Rho with Clostridium botulinum C3-exoenzyme exerted opposite effects. Adenoviral expression of a Cdc42(T17N) dominant negative mutant substantially reduced apoA-I-induced cholesterol efflux, whereas dominant negative Rac1(T17N) had no effect. We further found that two downstream effectors of Cdc42/Rac1 signaling, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), are activated by apoA-I. Pharmacological inhibition of JNK but not p38 MAPK decreased apoA-I-induced cholesterol efflux, whereas anisomycin and hydrogen peroxide, two direct JNK activators, could partially substitute for apoA-I in its ability to induce cholesterol efflux. These results for the first time demonstrate activation of Rho family G proteins and stress kinases by apoA-I and implicate the involvement of Cdc42 and JNK in the apoA-I-induced cholesterol efflux.  相似文献   

4.
Phosphatidylcholine transfer protein (PC-TP) is a cytosolic protein of unknown function that catalyzes intermembrane transfer of phosphatidylcholines in vitro. Using stably transfected CHO cells, we explored the influence of PC-TP on apolipoprotein A-I- and high density lipoprotein 3 (HDL(3))-mediated lipid efflux. In proportion to its cellular level of expression, PC-TP accelerated apolipoprotein A-I-mediated phospholipid and cholesterol efflux as pre-beta-HDL particles. PC-TP increased rates of efflux of both lipids by >2-fold but did not affect mRNA levels or the activity of ATP-binding cassette A1, a plasma membrane protein that regulates apolipoprotein A-I-mediated lipid efflux. Overexpression of PC-TP was associated with only slight increases in HDL(3)-mediated phospholipid efflux and no changes in cholesterol efflux. In scavenger receptor BI-overexpressing cells, PC-TP expression minimally influenced apolipoprotein A-I- or HDL(3)-mediated lipid efflux. PC-TP did not affect cellular phospholipid compositions, phosphatidylcholine contents, or phosphatidylcholine synthetic rates. These findings suggest that a physiological function of PC-TP is to replenish the plasma membrane with phosphatidylcholines that are removed during pre-beta-HDL particle formation due to the activity of ATP-binding cassette A1.  相似文献   

5.
6.
Treatment of isolated rat adipocytes with tumor-promoting phorbol esters, caused a fivefold stimulation of glucose oxidation, determined as 14CO2 production from [1-14C]glucose and a fivefold increase in the rate of lipid synthesis from [14C]glucose. Treatment of the cells with 12-O-tetradecanoylphorbol 13-acetate increased the rate of 86Rb+ uptake into the cells. Also phospholipase C was able to stimulate the rate of glucose oxidation; phospholipase C and 12-O-tetradecanoylphorbol 13-acetate stimulated glucose oxidation in a non-synergistic fashion, indicating a common mechanism for their action. Active phorbol esters and, in part, also phospholipase C, caused a translocation of protein kinase C activity from the soluble to the particulate fraction of the adipocytes. This process was rapid, being complete 30 s after the addition of phorbol ester, and resulted in the appearance of the kinase mainly in the mitochondrial and plasma membrane fractions. A comparison between the binding characteristics of adipocyte protein kinase C and the metabolic effects of the phorbol esters on the adipocytes revealed that the dose-response relationship did not correlate with binding of the phorbol esters, but, rather, a correlation was observed between the dose of phorbol esters required for translocation of protein kinase C and the intracellular effects. The results indicate that the intracellular translocation of protein kinase C might be a trigger for the effects of phorbol esters on the adipocyte and that binding of the esters to protein kinase C is not a sufficient event to cause this effect. Furthermore, it is suggested that activation of protein kinase C might be partly the action of hormones, such as insulin, on the fat cells.  相似文献   

7.
We recently reported that IGF-II binding to the IGF-II/mannose-6-phosphate (M6P) receptor activates the ERK1/2 cascade by triggering sphingosine kinase 1 (SK1)-dependent transactivation of G protein-coupled sphingosine 1-phosphate (S1P) receptors. Here, we investigated the mechanism of IGF-II/M6P receptor-dependent sphingosine kinase 1 (SK1) activation in human embryonic kidney 293 cells. Pretreating cells with protein kinase C (PKC) inhibitor, bisindolylmaleimide-I, abolished IGF-II-stimulated translocation of green fluorescent protein (GFP)-tagged SK1 to the plasma membrane and activation of endogenous SK1, implicating PKC as an upstream regulator of SK1. Using confocal microscopy to examine membrane translocation of GFP-tagged PKCα, β1, β2, δ, and ζ, we found that IGF-II induced rapid, transient, and isoform-specific translocation of GFP-PKCβ2 to the plasma membrane. Immunoblotting of endogenous PKC phosphorylation confirmed PKCβ2 activation in response to IGF-II. Similarly, IGF-II stimulation caused persistent membrane translocation of the kinase-deficient GFP-PKCβ2 (K371R) mutant, which does not dissociate from the membrane after translocation. IGF-II stimulation increased diacylglycerol (DAG) levels, the established activator of classical PKC. Interestingly, the polyunsaturated fraction of DAG was increased, indicating involvement of phosphatidyl inositol/phospholipase C (PLC). Pretreating cells with the PLC inhibitor, U73122, attenuated IGF-II-dependent DAG production and PKCβ2 phosphorylation, blocked membrane translocation of the kinase-deficient GFP-PKCβ2 (K371R) mutant, and reduced sphingosine 1-phosphate production, suggesting that PLC/PKCβ2 are upstream regulators of SK1 in the pathway. Taken together, these data provide evidence that activation of PLC and PKCβ2 by the IGF-II/M6P receptor are required for the activation of SK1.  相似文献   

8.
The human scavenger receptor SR-BI/Cla-1 promotes efflux of free cholesterol from cells to both high-density and low-density lipoproteins (HDL, LDL). SR-BI/Cla-1-mediated cholesterol efflux to HDL is dependent on particle size, lipid content and apolipoprotein conformation; in contrast, the capacity of LDL subspecies to accept cellular cholesterol via this receptor is indeterminate. Cholesterol efflux assays were performed with CHO cells stably transfected with Cla-1 cDNA. Expression of Cla-1 in CHO cells induced elevation in total cholesterol efflux to plasma, LDL and HDL. Such Cla-1-specific efflux was abrogated by addition of anti-Cla-1 antibody. LDL were fractionated into five subspecies either on the basis of hydrated density or size. Among LDL subfractions, small dense LDL (sdLDL) were 1.5-to 3-fold less active acceptors for Cla-1-mediated cellular cholesterol efflux. Equally, sdLDL markedly reduced Cla-1-specific cholesterol efflux to large buoyant LDL in a dose-dependent manner. Conversely, sdLDL did not influence efflux to HDL(2). These findings provide evidence that LDL particles are heterogeneous in their capacity to promote Cla-1-mediated cholesterol efflux. Relative to HDL(2), large buoyant LDL may constitute physiologically-relevant acceptors for cholesterol efflux via Cla-1.  相似文献   

9.
10.
Luteinizing hormone (LH) interacts with its plasma membrane receptor to activate the formation of cyclic AMP via the regulatory GTP binding protein (Gs). This is followed by a desensitization of that same hormonal response which is caused by an uncoupling of the LH receptor from Gs. The coupling between Gs and the adenylate cyclase catalytic unit remains intact. Treatment of Leydig and other cell types with phorbol esters mimics hormone-induced desensitization. However, differences between hormone- and phorbol ester-induced desensitization have been found. In testis Leydig cells phorbol esters, as well as uncoupling the LH receptor from Gs, also inactivates the subunit of the inhibitory GTP binding protein (Gi). These studies suggested that activation of protein kinase may be involved in the hormone-induced desensitization of adenylate cyclase. Paradoxically, it has also been found that two inhibitors of protein kinase C, sphingosine and psychosine also inhibited LH-induced cyclic AMP production. These effects were mainly found during the initial stimulatory period with LH. It is suggested that activation of adenylate cyclase may require a protein kinase C-mediated phosphorylation step which is followed by further phosphorylation resulting in uncoupling of the receptor from Gs. No direct stimulation of inositol 1,4,5-trisphosphate (Ins[1,4,5]P3), diacylglycerol and/or activation of protein kinase C by LH in Leydig cells has been demonstrated. An alternative mechanism of protein kinase C activation has been proposed for brain cells, i.e. that involving arachidonic acid activation of protein kinase C instead of diacylglycerol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The spatio-temporal changes of signaling molecules in response to G protein-coupled receptors (GPCR) stimulation is a poorly understood process in intestinal epithelial cells. Here we investigate the dynamic mechanisms associated with GPCR signaling in living rat intestinal epithelial cells by characterizing the intracellular translocation of protein kinase D (PKD), a serine/threonine protein kinase involved in mitogenic signaling in intestinal epithelial cells. Analysis of the intracellular steady-state distribution of green fluorescent protein (GFP)-tagged PKD indicated that in non-stimulated IEC-18 cells, GFP-PKD is predominantly cytoplasmic. However, cell stimulation with the GPCR agonist vasopressin induces a rapid translocation of GFP-PKD from the cytosol to the plasma membrane that is accompanied by its activation via protein kinase C (PKC)-mediated process and posterior plasma membrane dissociation. Subsequently, active PKD is imported into the nuclei where it transiently accumulates before being exported into the cytosol by a mechanism that requires a competent Crm1 nuclear export pathway. These findings provide evidence for a mechanism by which PKC coordinates in intestinal epithelial cells the translocation and activation of PKD in response to vasopressin-induced GPCR activation.  相似文献   

12.
Anderson G  Chen J  Wang QJ 《Cellular signalling》2005,17(11):1397-1411
Protein kinase D3 is a novel member of the serine/threonine kinase family PKD. The regulatory region of PKD contains a tandem repeat of C1 domains designated C1a and C1b that bind diacylglycerol and phorbol esters, and are important membrane targeting modules. Here, we investigate the activities of individual C1 domains of PKD3 and their roles in phorbol ester-induced plasma membrane translocation of PKD3. Truncated C1a of PKD3 binds [(3)H]phorbol 12, 13-dibutyrate with high affinity, but no binding activity is detected for C1b. Meanwhile, mutations in C1a of truncated C1ab of PKD3 lead to the loss of binding affinity, while these mutations in C1b have little impact, indicating that C1a is responsible for most of the phorbol ester-binding activities of PKD3. C1a and C1b of the GFP-tagged full length PKD3 are then mutated to assess their roles in phorbol ester-induced plasma membrane translocation in intact cells. At low concentration of phorbol 12-myristate 13-acetate (PMA), the plasma membrane translocations of the C1a and C1ab mutants are significantly impaired, reflecting an important role of C1a in this process. However, at higher PMA concentrations, all C1 mutants exhibit increased rates of translocation as compared to that of wild-type PKD3, which parallel their enhanced activation by PMA, implying that PKD3 kinase activity affects membrane targeting. In line with this, a constitutive active PKD3-GFP translocates similarly as wild-type PKD3, while a kinase-inactive PKD3 shows little translocation up to 2 muM PMA. In addition, RO 31-8220, a potent PKC inhibitor that blocks PMA-induced PKD3 activation in vivo, significantly attenuates the plasma membrane translocation of wild-type PKD3 at different doses of PMA. Taken together, our results indicate that both C1a and the kinase activity of PKD3 are necessary for the phorbol ester-induced plasma membrane translocation of PKD3. PKC, by directly activating PKD3, regulates its plasma membrane localization in intact cells.  相似文献   

13.
The mitogenic activation of resting T lymphocytes involves two distinct cellular events, the synthesis of the ultimate mitogen interleukin 2 and the synthesis and expression of receptors for it. In order to get more detailed information on the mechanisms associated with these activating steps (the effects of different stimuli, leading to activation of protein kinase C were investigated in human lymphocytes). The anti-T-cell receptor (TCR) and anti-CD3 monoclonal antibodies (BMA 031 and BMA 030, respectively), as well as the combination of the phorbol ester, TPA, with a calcium ionophore-induced interleukin 2 synthesis and subsequent proliferation in human peripheral blood lymphocytes. Incubation of cells with synthetic diacylglycerols and calcium ionophores proved to be effective in expression of high affinity interleukin receptors, no detectable amounts of interleukin 2 were, however, synthetized. When diacylglycerols were, however, added repetitively, interleukin 2 was also produced. Both anti-TCR/CD3 antibodies and TPA or DiC8 caused activation and translocation of protein kinase C from the cytosol to the plasma membrane. Significant differences, however, were observed between the time kinetics of the translocation of the enzyme. In plasma membranes of TPA-stimulated cells activation of protein kinase C was detectable up to 4 hr. In contrast, the highest specific activity of protein kinase C was measured in the plasma membranes after 15 min of DiC8 addition to cells. Anti-CD3 monoclonal antibodies activated protein kinase C in a biphasic manner. Shortly after binding of BMA 030 to the T cell antigen receptor/CD3 complex the activity of protein kinase C was increased in the plasma membrane, then it declined to control levels followed by a second long-lasting activation of the enzyme up to 4 hr. These results suggest different signal requirements for different activation steps. While for synthesis and expression of interleukin 2 receptors a short term activation of protein kinase C is sufficient, long-term activation of the enzyme is necessary for interleukin 2 synthesis in human lymphocytes.  相似文献   

14.
ApoE plays an important role in lipoprotein metabolism. This study investigated the effects of adenovirus-mediated human apoE overexpression (AdhApoE3) on sterol metabolism and in vivo reverse cholesterol transport (RCT). In wild-type mice, AdhApoE3 resulted in decreased HDL cholesterol levels and a shift toward larger HDL in plasma, whereas hepatic cholesterol content increased (P < 0.05). These effects were dependent on scavenger receptor class B type I (SR-BI) as confirmed using SR-BI-deficient mice. Kinetic studies demonstrated increased plasma HDL cholesteryl ester catabolic rates (P < 0.05) and higher hepatic selective uptake of HDL cholesteryl esters in AdhApoE3-injected wild-type mice (P < 0.01). However, biliary and fecal sterol output as well as in vivo macrophage-to-feces RCT studied with (3)H-cholesterol-loaded mouse macrophage foam cells remained unchanged upon human apoE overexpression. Similar results were obtained using hApoE3 overexpression in human CETP transgenic mice. However, blocking ABCA1-mediated cholesterol efflux from hepatocytes in AdhApoE3-injected mice using probucol increased biliary cholesterol secretion (P < 0.05), fecal neutral sterol excretion (P < 0.05), and in vivo RCT (P < 0.01), specifically within neutral sterols. These combined data demonstrate that systemic apoE overexpression increases i) SR-BI-mediated selective uptake into the liver and ii) ABCA1-mediated efflux of RCT-relevant cholesterol from hepatocytes back to the plasma compartment, thereby resulting in unchanged fecal mass sterol excretion and overall in vivo RCT.  相似文献   

15.
We visualized the translocation of myristoylated alanine-rich protein kinase C substrate (MARCKS) in living Chinese hamster ovary-K1 cells using MARCKS tagged to green fluorescent protein (MARCKS-GFP). MARCKS-GFP was rapidly translocated from the plasma membrane to the cytoplasm after the treatment with phorbol ester, which translocates protein kinase C (PKC) to the plasma membrane. In contrast, PKC activation by hydrogen peroxide, which was not accompanied by PKC translocation, did not alter the intracellular localization of MARCKS-GFP. Non-myristoylated mutant of MARCKS-GFP was distributed throughout the cytoplasm, including the nucleoplasm, and was not translocated by phorbol ester or by hydrogen peroxide. Phosphorylation of wild-type MARCKS-GFP was observed in cells treated with phorbol ester but not with hydrogen peroxide, whereas non-myristoylated mutant of MARCKS-GFP was phosphorylated in cells treated with hydrogen peroxide but not with phorbol ester. Phosphorylation of both MARCKS-GFPs reduced the amount of F-actin. These findings revealed that PKC targeting to the plasma membrane is required for the phosphorylation of membrane-associated MARCKS and that a mutant MARCKS existing in the cytoplasm can be phosphorylated by PKC activated in the cytoplasm without translocation but not by PKC targeted to the membrane.  相似文献   

16.
The role of protein kinase C in activation of the plasma membrane Na+/H+ exchanger was studied in cultured vascular smooth muscle cells. The basic lipid, sphingosine, was used to block enzymatic activity of protein kinase C. Na+/H+ exchange was activated by phorbol 12-myristate 13-acetate (PMA), diacylglycerols, platelet-derived growth factor (PDGF), thrombin, or by osmotically-induced cell shrinkage. Intracellular pH and Na+/H+ exchange activity were measured using the intracellular pH indicator, 2',7'-bis(carboxyethyl)-5(6) carboxyfluorescein. Acting alone, both crude sphingosine and pure, synthetic C18 D-(+)-erythro-sphingosine raised pHi in a dose-dependent manner (from 6.95 +/- 0.02 to 7.19 +/- 0.09 over 10 min for 10 microM sphingosine). This alkalinization was not due to Na+/H+ exchange as it was not altered by t-butylamiloride (50 microM) nor by replacement of the assay medium with a Na(+)-free solution. Sphingosine-induced alkalinization did not require protein kinase C activity, since it was fully intact in protein kinase C-depleted cells. It was also not due to a detergent action of sphingosine on the cell membrane, since both ionic and non-ionic detergents caused cell acidification. Rather, alkalinization induced by sphingosine appeared to be due to cellular uptake of NH3 groups since N-acetylsphingosine showed no alkalinization. After the initial cell alkalinization, cellular uptake of [3H]sphingosine continued slowly for up to 24 h. The ability of PMA or dioctanoylglycerol to activate Na+/H+ exchange fell to 20% of control after 24 h of sphingosine exposure. At all times, C11 and N-acetylsphingosine failed to block PMA-induced activation of the exchanger. Activation of the Na+/H+ exchanger by sucrose, which does not depend on protein kinase C activity, was unaffected by sphingosine. Activation of Na+/H+ exchange by thrombin and PDGF was partially inhibited by 30 and 20%, respectively. These data indicate that both thrombin and PDGF activate Na+/H+ exchange by pathway(s) that are primarily independent of protein kinase C.  相似文献   

17.
Using inhibitors and activators of protein kinase C, it was demonstrated that in isolated plasma membranes of target cells estradiol-17 beta selectively stimulates protein phosphorylation by endogenous protein kinase C. In estradiol-dependent tissues, estradiol effectuates the translocation of protein kinase C from the cytosol to the membrane fraction within 10-12 minutes. Estradiol activates protein kinase C in cellular membranes of target tissues via a mechanism which is different from that of phorbol ester (TPA): 3H-estradiol, in contrast with 3H-TPA, it is not bound by protein kinase C and, in contrast with TPA, estradiol-17 beta does not activate purified protein kinase C in vitro. In this case, the specific stimulation of protein kinase C translocation to membranes and the estradiol-induced increase in the phosphorylation of plasma membrane proteins seem to be due to the estradiol-induced activation of the transmembrane system of polyphosphoinositide degradation, eventually resulting in the formation of diacylglycerol, a protein kinase C activator.  相似文献   

18.
Protein kinase D (PKD) is a serine/threonine protein kinase activated by G protein-coupled receptor (GPCR) agonists through an incompletely characterized mechanism that includes its reversible plasma membrane translocation and activation loop phosphorylation via a protein kinase C (PKC)-dependent pathway. To gain a better understanding of the mechanism regulating the activation of PKD in response to GPCR stimulation, we investigated the role of its rapid plasma membrane translocation on its activation loop phosphorylation and identified the endogenous PKC isozyme that mediates that event in vivo. We had found that the activation loop of a PKD mutant, with reduced affinity for diacylglycerol and phorbol esters, was only phosphorylated upon its plasma membrane association. We also found that the activation loop phosphorylation and rapid plasma membrane dissociation of PKD were inhibited either by preventing the plasma membrane translocation of PKCepsilon, through abolition of its interaction with receptor for activated C kinase, or by suppressing the expression of PKCepsilon via specific small interfering RNAs. Thus, this study demonstrates that the plasma membrane translocation of PKD, in response to GPCR stimulation, is necessary for the PKCepsilon-mediated phosphorylation of the activation loop of PKD and that this event requires the translocation of both kinases to the plasma membrane. Based on these and previous results, we propose a model of GPCR-mediated PKD regulation that integrates its changes in distribution, catalytic activity, and multisite phosphorylation.  相似文献   

19.
Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.  相似文献   

20.
The origins of cholesterol utilized by intestinal ABCA1 were investigated in the human intestinal cell line Caco-2. Influx of apical membrane cholesterol increases ABCA1 mRNA and mass, resulting in enhanced efflux of HDL-cholesterol. Luminal (micellar) cholesterol and newly synthesized cholesterol are not transported directly to ABCA1 but reach the ABCA1 pool after incorporation into the apical membrane. Depleting the apical or the basolateral membrane of cholesterol by cyclodextrin attenuates the amount of cholesterol transported by ABCA1 without altering ABCA1 expression. Filipin added to the apical side but not the basal side attenuates ABCA1-mediated cholesterol efflux, suggesting that apical membrane "microdomains," or rafts, supply cholesterol for HDL. Preventing cholesterol esterification increases the amount of cholesterol available for HDL. Ezetimibe, a Niemann-Pick C1-like 1 protein inhibitor, does not alter ABCA1-mediated cholesterol efflux. U18666A and imipramine, agents that mimic cholesterol trafficking defects of Neimann-Pick type C disease, attenuate cholesterol efflux without altering ABCA1 expression; thus, intestinal NPC1 may facilitate cholesterol movement to ABCA1. ABCA1-mediated cholesterol efflux is independent of cholesterol synthesis. The results suggest that following incorporation into plasma membrane and rafts of the apical membrane, dietary/biliary and newly synthesized cholesterol contribute to the ABCA1 pool and HDL-cholesterol. NPC1 may have a role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号