首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kann MG  Goldstein RA 《Proteins》2002,48(2):367-376
A detailed analysis of the performance of hybrid, a new sequence alignment algorithm developed by Yu and coworkers that combines Smith Waterman local dynamic programming with a local version of the maximum-likelihood approach, was made to access the applicability of this algorithm to the detection of distant homologs by sequence comparison. We analyzed the statistics of hybrid with a set of nonhomologous protein sequences from the SCOP database and found that the statistics of the scores from hybrid algorithm follows an Extreme Value Distribution with lambda approximately 1, as previously shown by Yu et al. for the case of artificially generated sequences. Local dynamic programming was compared to the hybrid algorithm by using two different test data sets of distant homologs from the PFAM and COGs protein sequence databases. The studies were made with several score functions in current use including OPTIMA, a new score function originally developed to detect remote homologs with the Smith Waterman algorithm. We found OPTIMA to be the best score function for both both dynamic programming and the hybrid algorithms. The ability of dynamic programming to discriminate between homologs and nonhomologs in the two sets of distantly related sequences is slightly better than that of hybrid algorithm. The advantage of producing accurate score statistics with only a few simulations may overcome the small differences in performance and make this new algorithm suitable for detection of homologs in conjunction with a wide range of score functions and gap penalties.  相似文献   

2.
Qian B  Goldstein RA 《Proteins》2002,48(4):605-610
The accuracy of the alignments of protein sequences depends on the score matrix and gap penalties used in performing the alignment. Most score functions are designed to find homologs in the various databases rather than to generate accurate alignments between known homologs. We describe the optimization of a score function for the purpose of generating accurate alignments, as evaluated by using a coordinate root-mean-square deviation (RMSD)-based merit function. We show that the resulting score matrix, which we call STROMA, generates more accurate alignments than other commonly used score matrices, and this difference is not due to differences in the gap penalties. In fact, in contrast to most of the other matrices, the alignment accuracies with STROMA are relatively insensitive to the choice of gap penalty parameters.  相似文献   

3.
This work presents a novel pairwise statistical alignment method based on an explicit evolutionary model of insertions and deletions (indels). Indel events of any length are possible according to a geometric distribution. The geometric distribution parameter, the indel rate, and the evolutionary time are all maximum likelihood estimated from the sequences being aligned. Probability calculations are done using a pair hidden Markov model (HMM) with transition probabilities calculated from the indel parameters. Equations for the transition probabilities make the pair HMM closely approximate the specified indel model. The method provides an optimal alignment, its likelihood, the likelihood of all possible alignments, and the reliability of individual alignment regions. Human alpha and beta-hemoglobin sequences are aligned, as an illustration of the potential utility of this pair HMM approach.  相似文献   

4.
Analysis of the structure of indels in algorithmic versus evolutionary alignments based on a set of inequalities confirms the conclusions from numerical modeling. For the more divergent sequences (PAM > 60), the tested aligning algorithm (SW) tends to increase the mean length of indels and decrease their number.  相似文献   

5.
R B Russell  G J Barton 《Proteins》1992,14(2):309-323
An algorithm is presented for the accurate and rapid generation of multiple protein sequence alignments from tertiary structure comparisons. A preliminary multiple sequence alignment is performed using sequence information, which then determines an initial superposition of the structures. A structure comparison algorithm is applied to all pairs of proteins in the superimposed set and a similarity tree calculated. Multiple sequence alignments are then generated by following the tree from the branches to the root. At each branchpoint of the tree, a structure-based sequence alignment and coordinate transformations are output, with the multiple alignment of all structures output at the root. The algorithm encoded in STAMP (STructural Alignment of Multiple Proteins) is shown to give alignments in good agreement with published structural accounts within the dehydrogenase fold domains, globins, and serine proteinases. In order to reduce the need for visual verification, two similarity indices are introduced to determine the quality of each generated structural alignment. Sc quantifies the global structural similarity between pairs or groups of proteins, whereas Pij' provides a normalized measure of the confidence in the alignment of each residue. STAMP alignments have the quality of each alignment characterized by Sc and Pij' values and thus provide a reproducible resource for studies of residue conservation within structural motifs.  相似文献   

6.
A DNA/protein sequence comparison is a popular computational tool for molecular biologists. Finding a good alignment implies an evolutionary and/or functional relationship between proteins or genomic loci. Sequential similarity between two proteins indicates their structural resemblance, providing a practical approach for structural modeling, when structure of one of these proteins is known. The first step in the homology modeling is a construction of an accurate sequence alignment. The commonly used alignment algorithms do not provide an adequate treatment of the structurally mismatched residues in locally dissimilar regions. We propose a simple modification of the existing alignment algorithm which treats these regions properly and demonstrate how this modification improves sequence alignments in real proteins.  相似文献   

7.
突变在基因组进化中的意义   总被引:11,自引:3,他引:8  
陈玲玲  彭贵子  张伟丽  田大成 《遗传》2006,28(5):631-638


在漫长的进化历史中,各物种间和物种内基因组的差异是如何形成、积累乃至保留下来的,不仅是进化生物学中需要解决的核心问题,也是整个生命科学面临的基本问题之一。对该问题的探求必然要通过对突变的深入了解,因为突变不仅是基因组进化的重要驱动力,还是基因 组进化研究的基础。文章围绕突变的性质及其在基因组进化中的深远意义,系统介绍了国际上相关研究的发展历程,所获得的成果和最新动向。  相似文献   

8.
MUSTANG: a multiple structural alignment algorithm   总被引:1,自引:0,他引:1  
Multiple structural alignment is a fundamental problem in structural genomics. In this article, we define a reliable and robust algorithm, MUSTANG (MUltiple STructural AligNment AlGorithm), for the alignment of multiple protein structures. Given a set of protein structures, the program constructs a multiple alignment using the spatial information of the C(alpha) atoms in the set. Broadly based on the progressive pairwise heuristic, this algorithm gains accuracy through novel and effective refinement phases. MUSTANG reports the multiple sequence alignment and the corresponding superposition of structures. Alignments generated by MUSTANG are compared with several handcurated alignments in the literature as well as with the benchmark alignments of 1033 alignment families from the HOMSTRAD database. The performance of MUSTANG was compared with DALI at a pairwise level, and with other multiple structural alignment tools such as POSA, CE-MC, MALECON, and MultiProt. MUSTANG performs comparably to popular pairwise and multiple structural alignment tools for closely related proteins, and performs more reliably than other multiple structural alignment methods on hard data sets containing distantly related proteins or proteins that show conformational changes.  相似文献   

9.
IIntMuctiona习nenC6allpoent13asenondynamiCpmpCgIsthemostWidely11。dllethed11。-quencecompgnsonatpresent.Wbenmpingon18I’ge一切degenomempence肛dyslswiththiskindofmethed,wefacetwomperdifficulties,the18ig6stompandtheIOllgmptationaltdrie.My。。dMill。[“spplyHi。比那’stecheniqJ‘、mpen。alipentpwhl。,wb。dgofl山mconsumeSpaceMypZ’Oportlonaltothesumd山eapuencelmphs.AnewpIOgTgnSIM”,utilizingthealgorithm,hasbeenueding。eequ。ceallpoent.How。,themptationaltimebySIMisstilltoolO…  相似文献   

10.
A "Long Indel" model for evolutionary sequence alignment   总被引:7,自引:0,他引:7  
We present a new probabilistic model of sequence evolution, allowing indels of arbitrary length, and give sequence alignment algorithms for our model. Previously implemented evolutionary models have allowed (at most) single-residue indels or have introduced artifacts such as the existence of indivisible "fragments." We compare our algorithm to these previous methods by applying it to the structural homology dataset HOMSTRAD, evaluating the accuracy of (1) alignments and (2) evolutionary time estimates. With our method, it is possible (for the first time) to integrate probabilistic sequence alignment, with reliability indicators and arbitrary gap penalties, in the same framework as phylogenetic reconstruction. Our alignment algorithm requires that we evaluate the likelihood of any specific path of mutation events in a continuous-time Markov model, with the event times integrated out. To this effect, we introduce a "trajectory likelihood" algorithm (Appendix A). We anticipate that this algorithm will be useful in more general contexts, such as Markov Chain Monte Carlo simulations.  相似文献   

11.
张林  柴惠  沃立科  袁小凤  黄燕芬 《生物信息学》2011,9(2):146-150,154
生物序列比对是生物信息学的基础,是当今功能基因组学研究中最常用、最重要的研究方法之一。本文对各类序列比对算法优缺点进行分析,对图形硬件的优势进行挖掘。在此基础上,将各类序列比对算法中准确性最高的动态规划算法予以实现,并将其映射到图形硬件上,以实现算法加速。通过实例进行性能评测,结果表明该加速算法在保证比对准确性的同时,能较大地提高比对速度。  相似文献   

12.
Baussand J  Deremble C  Carbone A 《Proteins》2007,67(3):695-708
Several studies on large and small families of proteins proved in a general manner that hydrophobic amino acids are globally conserved even if they are subjected to high rate substitution. Statistical analysis of amino acids evolution within blocks of hydrophobic amino acids detected in sequences suggests their usage as a basic structural pattern to align pairs of proteins of less than 25% sequence identity, with no need of knowing their 3D structure. The authors present a new global alignment method and an automatic tool for Proteins with HYdrophobic Blocks ALignment (PHYBAL) based on the combinatorics of overlapping hydrophobic blocks. Two substitution matrices modeling a different selective pressure inside and outside hydrophobic blocks are constructed, the Inside Hydrophobic Blocks Matrix and the Outside Hydrophobic Blocks Matrix, and a 4D space of gap values is explored. PHYBAL performance is evaluated against Needleman and Wunsch algorithm run with Blosum 30, Blosum 45, Blosum 62, Gonnet, HSDM, PAM250, Johnson and Remote Homo matrices. PHYBAL behavior is analyzed on eight randomly selected pairs of proteins of >30% sequence identity that cover a large spectrum of structural properties. It is also validated on two large datasets, the 127 pairs of the Domingues dataset with >30% sequence identity, and 181 pairs issued from BAliBASE 2.0 and ranked by percentage of identity from 7 to 25%. Results confirm the importance of considering substitution matrices modeling hydrophobic contexts and a 4D space of gap values in aligning distantly related proteins. Two new notions of local and global stability are defined to assess the robustness of an alignment algorithm and the accuracy of PHYBAL. A new notion, the SAD-coefficient, to assess the difficulty of structural alignment is also introduced. PHYBAL has been compared with Hydrophobic Cluster Analysis and HMMSUM methods.  相似文献   

13.
It is commonly believed that similarities between the sequences of two proteins infer similarities between their structures. Sequence alignments reliably recognize pairs of protein of similar structures provided that the percentage sequence identity between their two sequences is sufficiently high. This distinction, however, is statistically less reliable when the percentage sequence identity is lower than 30% and little is known then about the detailed relationship between the two measures of similarity. Here, we investigate the inverse correlation between structural similarity and sequence similarity on 12 protein structure families. We define the structure similarity between two proteins as the cRMS distance between their structures. The sequence similarity for a pair of proteins is measured as the mean distance between the sequences in the subsets of sequence space compatible with their structures. We obtain an approximation of the sequence space compatible with a protein by designing a collection of protein sequences both stable and specific to the structure of that protein. Using these measures of sequence and structure similarities, we find that structural changes within a protein family are linearly related to changes in sequence similarity.  相似文献   

14.
一个新的核酸序列比对算法及其在序列全局比对中的应用   总被引:1,自引:0,他引:1  
目前在序列比对中所广泛使用的动态规划算法,虽然能达到最优比对结果,但却由于具有高计算复杂度O(N_2)而极大地降低了计算效率。将多阶段动态规划决策算法用于两两序列比对并用Visual BASIC编程实现,结果发现该新算法在将计算复杂度减小到O(N)的同时,也能够获得较为理想的计算精度,预期将在序列全局比对中起重要作用。  相似文献   

15.
肿瘤坏死因子与γ干扰素具有非常相似的生物学活性,并在一些主要的生物活性方面表现有较强的协同作用。本文采用寡核苷酸指导下的定位缺失-插入体外基因突变技术,删除了干扰素与肿瘤坏死因子串联基因之间的非编码区,去徐了γ干扰素的翻译终止信号,插入了一个人工设计的连接肽,使γ干扰素与肿瘤坏死因子基因在不改变读码框架的条件下融合起来,并在大肠杆菌表达系统中表述了兼有γ干扰素和肿瘤坏死因子功能的融合蛋白。  相似文献   

16.
The ability to generate and design antibodies recognizing specific targets has revolutionized the pharmaceutical industry and medical imaging. Engineering antibody therapeutics in some cases requires modifying their constant domains to enable new and altered interactions. Engineering novel specificities into antibody constant domains has proved challenging due to the complexity of inter‐domain interactions. Covarying networks of residues that tend to cluster on the protein surface and near binding sites have been identified in some proteins. However, the underlying role these networks play in the protein resulting in their conservation remains unclear in most cases. Resolving their role is crucial, because residues in these networks are not viable design targets if their role is to maintain the fold of the protein. Conversely, these networks of residues are ideal candidates for manipulating specificity if they are primarily involved in binding, such as the myriad interdomain interactions maintained within antibodies. Here, we identify networks of evolutionarily‐related residues in C‐class antibody domains by evaluating covariation, a measure of propensity with which residue pairs vary dependently during evolution. We computationally test whether mutation of residues in these networks affects stability of the folded antibody domain, determining their viability as design candidates. We find that members of covarying networks cluster at domain‐domain interfaces, and that mutations to these residues are diverse and frequent during evolution, precluding their importance to domain stability. These results indicate that networks of covarying residues exist in antibody domains for functional reasons unrelated to thermodynamic stability, making them ideal targets for antibody design. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Detection of homologous proteins by an intermediate sequence search   总被引:2,自引:0,他引:2  
We developed a variant of the intermediate sequence search method (ISS(new)) for detection and alignment of weakly similar pairs of protein sequences. ISS(new) relates two query sequences by an intermediate sequence that is potentially homologous to both queries. The improvement was achieved by a more robust overlap score for a match between the queries through an intermediate. The approach was benchmarked on a data set of 2369 sequences of known structure with insignificant sequence similarity to each other (BLAST E-value larger than 0.001); 2050 of these sequences had a related structure in the set. ISS(new) performed significantly better than both PSI-BLAST and a previously described intermediate sequence search method. PSI-BLAST could not detect correct homologs for 1619 of the 2369 sequences. In contrast, ISS(new) assigned a correct homolog as the top hit for 121 of these 1619 sequences, while incorrectly assigning homologs for only nine targets; it did not assign homologs for the remainder of the sequences. By estimate, ISS(new) may be able to assign the folds of domains in approximately 29,000 of the approximately 500,000 sequences unassigned by PSI-BLAST, with 90% specificity (1 - false positives fraction). In addition, we show that the 15 alignments with the most significant BLAST E-values include the nearly best alignments constructed by ISS(new).  相似文献   

18.
A new method of comparing protein structures is deseribed, based on the differential-geometric representaion of protein conformation with the information of global dissimilarity and residue relatedness.The utility of this method for comparing closely and distantly related homologous proteins is demostrated by multiple alignment of globins, serine proteinases and aspartic proteinases.  相似文献   

19.
The rapidly evolving subsets of a protein are often evident in multiple sequence alignments as poorly defined, gap-containing regions. We investigated the 3D context of these regions observed in 28 protein structures containing a GTP-binding domain assumed to be homologous to the transforming factor p21-RAS. The phylogenetic depth of this data set is such that it is possible to observe lineages sharing a common protein core that diverged early in the eukaryotic cell history. The sequence variability among these homolog proteins is directly linked to the structural variability of surface loops. We demonstrate that these regions are self-contained and thus mostly free of the evolutionary constraints imposed by the conserved core of the domain. These intraloop interactions have the property to create stem-like structures. Interestingly, these stem-like structures can be observed in loops of varying size, up to the size of small protein domains. We propose a model under which the diversity of protein topologies observed in these loops can be the product of a stochastic sampling of sequence and conformational space in a near-neutral fashion, while the proximity of the functional features of the domain core allows novel beneficial traits to be fixed. Our comparative observations, limited here to the proteins containing the RAS-like GTP-binding domain, suggest that a stochastic process of insertion/deletion analogous to "budding" of loops is a likely mechanism of structural innovation. Such a framework could be experimentally exploited to investigate the folding of increasingly complex model inserts.  相似文献   

20.
We apply a simple method for aligning protein sequences on the basis of a 3D structure, on a large scale, to the proteins in the scop classification of fold families. This allows us to assess, understand, and improve our automatic method against an objective, manually derived standard, a type of comprehensive evaluation that has not yet been possible for other structural alignment algorithms. Our basic approach directly matches the backbones of two structures, using repeated cycles of dynamic programming and least-squares fitting to determine an alignment minimizing coordinate difference. Because of simplicity, our method can be readily modified to take into account additional features of protein structure such as the orientation of side chains or the location-dependent cost of opening a gap. Our basic method, augmented by such modifications, can find reasonable alignments for all but 1.5% of the known structural similarities in scop, i.e., all but 32 of the 2,107 superfamily pairs. We discuss the specific protein structural features that make these 32 pairs so difficult to align and show how our procedure effectively partitions the relationships in scop into different categories, depending on what aspects of protein structure are involved (e.g., depending on whether or not consideration of side-chain orientation is necessary for proper alignment). We also show how our pairwise alignment procedure can be extended to generate a multiple alignment for a group of related structures. We have compared these alignments in detail with corresponding manual ones culled from the literature. We find good agreement (to within 95% for the core regions), and detailed comparison highlights how particular protein structural features (such as certain strands) are problematical to align, giving somewhat ambiguous results. With these improvements and systematic tests, our procedure should be useful for the development of scop and the future classification of protein folds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号