首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic transglycosylation of lactose into oligosaccharides was studied using wild-type beta-glucosidase (CelB) and active site mutants thereof (M424K, F426Y, M424K/F426Y) and wild-type beta-mannosidase (BmnA) of the hyperthermophilic Pyrococcus furiosus. The effects of the mutations on kinetics, enzyme activity, and substrate specificity were determined. The oligosaccharide synthesis was carried out in aqueous solution at 95 degrees C at different lactose concentrations and pH values. The results showed enhanced synthetic properties of the CelB mutant enzymes. An exchange of one phenylalanine to tyrosine (F426Y) increased the oligosaccharide yield (45%) compared with the wild-type CelB (40%). Incorporation of a positively charged group in the active site (M424K) increased the pH optimum of transglycosylation reaction of CelB. The double mutant, M424K/F426Y, showed much better transglycosylation properties at low (10-20%) lactose concentrations compared to the wild-type. At a lactose concentration of 10%, the oligosaccharide yield for the mutant was 40% compared to 18% for the wild-type. At optimal reaction conditions, a higher ratio of tetrasaccharides to trisaccharides was obtained with the double mutant (0.42, 10% lactose) compared to the wild-type (0.19, 70% lactose). At a lactose concentration as low as 10%, only trisaccharides were synthesized by CelB wild-type. The beta-mannosidase BmnA from P. furiosus showed both beta-glucosidase and beta-galactosidase activity and in the transglycosylation of lactose the maximal oligosaccharide yield of BmnA was 44%. The oligosaccharide yields obtained in this study are high compared to those reported with other transglycosylating beta-glycosidases in oligosaccharide synthesis from lactose.  相似文献   

2.
The transglucosylation reaction catalyzed by wild-type beta-glucosidase CelB from hyperthermophilic Pyrococcus furiosus and active site mutants (M424K, F426Y, M424K/F426Y) was studied. The conversion of pentyl-beta-glucoside to hexyl-beta-glucoside in hexanol was used as a model transglucosylation reaction. Hydrolysis to glucose was a side reaction. The selectivity towards transglucosylation was quantified by the S value defined as follows: S = r(S) x a(W)/r(H) x a(hex) where r(S) and r(H) are the initial rates of transglucosylation and hydrolysis and a(w) and a(hex) are the thermodynamic activities of water and hexanol. The activity (rates of hydrolysis and transglucosylation) and the selectivity (S value) were measured as a function of pentyl-beta-glucoside concentration (5-240 mM), water content (1-100% v/v), and temperature (50-95 degrees C). All mutants had lower activity than the wild-type enzyme, but they had higher selectivity, which means that they provided a higher ratio of transglucosylation product to hydrolysis product. The largest increase in S-value (2.6 fold) was obtained by the F426Y mutant, which resulted in increased hexyl-beta-glucoside yield from 56% to 69%. In addition, the F426Y enzyme had higher selectivity over the wide range of temperatures tested. The activity of CelB wild-type and CelB F426Y increased as a function of water activity (a(w)), and complete activation by the water was obtained in a two-phase system with 20% water phase. In contrast to CelB wild-type, the F426Y mutant had transferase activity as low as a(w) = 0.29. Surprisingly, the S value increased with increasing water activity up to a(w) = 0.92. At still higher water content the S value decreased.  相似文献   

3.
PLC(Bc) is a 28.5 kDa monomeric enzyme that catalyzes the hydrolysis of the phosphodiester bond of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine to provide a diacylglycerol and the corresponding phosphorylated headgroup. Because single replacements of Glu4, Tyr56, and Phe66 in the headgroup binding pocket led to changes in substrate specificity [Martin et al. (2000) Biochemistry 39, 3410-3415], a combinatorial library of approximately 6000 maltose binding protein-PLC(Bc) fusion protein mutants containing random permutations of these three residues was generated to identify PLC(Bc) mutants with altered specificity profiles and high catalytic activities. Members of this library were screened for hydrolytic activity toward the water soluble substrates C6PC, C6PE, and C6PS using a novel protocol that was conducted in a 96-well format and featured the in situ cleavage of the fusion protein to release the mutant PLC(Bc)s. Ten mutant enzymes that exhibited significant preferences toward C6PE or C6PS were selected and analyzed by steady-state kinetics to determine their specificity constants, k(cat)/K(M). The C6PS selective clones E4G, E4Q/Y56T/F66Y, and E4K/Y56V exhibited higher specificity constants toward C6PS than wt, whereas Y56T, F66Y, and Y56T/F66Y were C6PE selective and had comparable or higher specificity constants than wt for C6PE. The corresponding wt residues were singly reinserted back into the E4Q/Y56T/F66Y and E4K/Y56V mutants via site-directed mutagenesis, and the E4Q/F66Y mutant thus obtained exhibited a 10-fold higher specificity constant toward C6PS than wt, a value significantly higher than other PLC(Bc) mutants. On the basis of available data, an aromatic residue at position 66 appears important for significant catalytic activity toward all three substrates, especially C6PC and C6PE. The charge of residue 4 also appears to be a determinant of enzyme specificity as a negatively charged residue at this position endows the enzyme with C6PC and C6PE preference, whereas a polar neutral or positively charged residue results in C6PS selectivity. Replacing Tyr56 with Val, Ala, Thr, or Ser greatly reduces activity toward C6PC. Thus, the substrate specificity of PLC(Bc) can be modulated by varying three of the amino acid residues that constitute the headgroup binding pocket, and it is now apparent that this enzyme is not evolutionarily optimized to hydrolyze phospholipids with ethanolamine or serine headgroups.  相似文献   

4.
The beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus (CelB) is the most thermostable and thermoactive family 1 glycosylhydrolase described to date. To obtain more insight in the molecular determinants of adaptations to high temperatures and study the possibility of optimizing low-temperature activity of a hyperthermostable enzyme, we generated a library of random CelB mutants in Escherichia coli. This library was screened for increased activity on p-nitrophenyl-beta-D-glucopyranoside at room temperature. Multiple CelB variants were identified with up to 3-fold increased rates of hydrolysis of this aryl glucoside, and 10 of them were characterized in detail. Amino acid substitutions were identified in the active-site region, at subunit interfaces, at the enzyme surface, and buried in the interior of the monomers. Characterization of the mutants revealed that the increase in low-temperature activity was achieved in different ways, including altered substrate specificity and increased flexibility by an apparent overall destabilization of the enzyme. Kinetic characterization of the active-site mutants showed that in all cases the catalytic efficiency at 20 degrees C on p-nitrophenyl-beta-D-glucose, as well as on the disaccharide cellobiose, was increased up to 2-fold. In most cases, this was achieved at the expense of beta-galactosidase activity at 20 degrees C and total catalytic efficiency at 90 degrees C. Substrate specificity was found to be affected by many of the observed amino acid substitutions, of which only some are located in the vicinity of the active site. The largest effect on substrate specificity was observed with the CelB variant N415S that showed a 7.5-fold increase in the ratio of p-nitrophenyl-beta-D-glucopyranoside/p-nitrophenyl-beta-D-galactopyra noside hydrolysis. This asparagine at position 415 is predicted to interact with active-site residues that stabilize the hydroxyl group at the C4 position of the substrate, the conformation of which is equatorial in glucose-containing substrates and axial in galactose-containing substrates.  相似文献   

5.
Several amino acids in the active center of the 6-phospho-beta-galactosidase from Lactococcus lactis were replaced by the corresponding residues in homologous enzymes of glycosidase family 1 with different specificities. Three mutants, W429A, K435V/Y437F and S428D/ K435V/Y437F, were constructed. W429A was found to have an improved specificity for glucosides compared with the wild-type, consistent with the theory that the amino acid at this position is relevant for the distinction between galactosides and glucosides. The k(cat)/K(m) for o-nitrophenyl-beta-D-glucose-6-phosphate is 8-fold higher than for o-nitrophenyl-beta-D-galactose-6-phosphate which is the preferred substrate of the wild-type enzyme. This suggests that new hydrogen bonds are formed in the mutant between the active site residues, presumably Gln19 or Trp421 and the C-4 hydroxyl group. The two other mutants with the exchanges in the phosphate-binding loop were tested for their ability to bind phosphorylated substrates. The triple mutant is inactive. The double mutant has a dramatically decreased ability to bind o-nitrophenyl-beta-D-galactose-6-phosphate whereas the interaction with o-nitrophenyl-beta-D-galactose is barely altered. This result shows that the 6-phospho-beta-galactosidase and the related cyanogenic beta-glucosidase from Trifolium repens have different recognition mechanisms for substrates although the structures of the active sites are highly conserved.  相似文献   

6.
Sellers VM  Wu CK  Dailey TA  Dailey HA 《Biochemistry》2001,40(33):9821-9827
The terminal step in heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to form protoheme, is catalyzed by the enzyme ferrochelatase (EC 4.99.1.1). A number of highly conserved residues identified from the crystal structure of human ferrochelatase as being in the active site were examined by site-directed mutagenesis. The mutants Y123F, Y165F, Y191H, and R164L each had an increased K(m) for iron without an altered K(m) for porphyrin. The double mutant R164L/Y165F had a 6-fold increased K(m) for iron and a 10-fold decreased V(max). The double mutant Y123F/Y191F had low activity with an elevated K(m) for iron, and Y123F/Y165F had no measurable activity. The mutants H263A/C/N, D340N, E343Q, E343H, and E343K had no measurable enzyme activity, while E343D, E347Q, and H341C had decreased V(max)s without significant alteration of the K(m)s for either substrate. D340E had near-normal kinetic parameters, while D383A and H231A had increased K(m)s for iron. On the basis of these data and the crystal structure of human ferrochelatase, it is proposed that residues E343, H341, and D340 form a conduit from H263 in the active site to the protein exterior and function in proton extraction from the porphyrin macrocycle. The role of H263 as the porphyrin proton-accepting residue is central to catalysis since metalation only occurs in conjunction with proton abstraction. It is suggested that iron is transported from the exterior of the enzyme at D383/H231 via residues W227 and Y191 to the site of metalation at residues R164 and Y165 which are on the opposite side of the active site pocket from H263. This model should be general for mitochondrial membrane-associated eucaryotic ferrochelatases but may differ for bacterial ferrochelatases since the spatial orientation of the enzyme within prokaryotic cells may differ.  相似文献   

7.
A beta-mannosidase gene (PH0501) was identified in the Pyrococcus horikoshii genome and cloned and expressed in E. coli. The purified enzyme (BglB) was most specific for the hydrolysis of p-nitrophenyl-beta-D-mannopyranoside (pNP-Man) (Km: 0.44 mM) with a low turnover rate (kcat: 4.3 s(-1)). The beta-mannosidase has been classified as a member of family 1 of glycoside hydrolases. Sequence alignments and homology modeling showed an apparent conservation of its active site region with, remarkably, two unique active site residues, Gln77 and Asp206. These residues are an arginine and asparagine residue in all other known family 1 enzymes, which interact with the catalytic nucleophile and equatorial C2-hydroxyl group of substrates, respectively. The unique residues of P. horikoshii BglB were introduced in the highly active beta-glucosidase CelB of Pyrococcus furiosus and vice versa, yielding two single and one double mutant for each enzyme. In CelB, both substitutions R77Q and N206D increased the specificity for mannosides and reduced hydrolysis rates 10-fold. In contrast, BglB D206N showed 10-fold increased hydrolysis rates and 35-fold increased affinity for the hydrolysis of glucosides. In combination with inhibitor studies, it was concluded that the substituted residues participate in the ground-state binding of substrates with an equatorial C2-hydroxyl group, but contribute most to transition-state stabilization. The unique activity profile of BglB seems to be caused by an altered interaction between the enzyme and C2-hydroxyl of the substrate and a specifically increased affinity for mannose that results from Asp206.  相似文献   

8.
Mammalian lipoxygenases constitute a heterogeneous family of lipid-peroxidizing enzymes, and the various isoforms are categorized with respect to their positional specificity of arachidonic acid oxygenation into 5-, 8-, 12-, and 15-lipoxygenases. Structural modeling suggested that the substrate binding pocket of the human 5-lipoxygenase is 20% bigger than that of the reticulocyte-type 15-lipoxygenase; thus, reduction of the active-site volume was suggested to convert a 5-lipoxygenase to a 15-lipoxygenating enzyme species. To test this "space-based" hypothesis of the positional specificity, the volume of the 5-lipoxygenase substrate binding pocket was reduced by introducing space-filling amino acids at critical positions, which have previously been identified as sequence determinants for the positional specificity of other lipoxygenase isoforms. We found that single point mutants of the recombinant human 5-lipoxygenase exhibited a similar specificity as the wild-type enzyme but double, triple, and quadruple mutations led to a gradual alteration of the positional specificity from 5S- via 8S- toward 15S-lipoxygenation. The quadruple mutant F359W/A424I/N425M/A603I exhibited a major 15S-lipoxygenase activity (85-95%), with (8S,5Z,9E,11Z,14Z)-8-hydroperoxyeicosa-5,9 ,11, 14-tetraenoic acid being a minor side product. These data indicate the principle possibility of interconverting 5- and 15-lipoxygenases by site-directed mutagenesis and appear to support the space-based hypothesis of positional specificity.  相似文献   

9.
Guanine phosphoribosyltransferase from Giardia lamblia, a key enzyme in the purine salvage pathway, is a potential target for anti-giardiasis chemotherapy. Recent structural determination of GPRTase (Shi, W., Munagala, N. R., Wang, C. C., Li, C. M., Tyler, P. C., Furneaux, R. H., Grubmeyer, C., Schramm, V. L., and Almo, S. C. (2000) Biochemistry 39, 6781-6790) showed distinctive features, which could be responsible for its singular guanine specificity. Through characterizing specifically designed site-specific mutants of GPRTase, we identified essential moieties in the active site for substrate binding. Mutating the unusual Tyr-127 of GPRTase to the highly conserved Ile results in 6-fold lower K(m) for guanine. A L186F mutation in GPRTase increased the affinity toward guanine by 3. 3-fold, whereas the corresponding human HGPRTase mutant L192F showed a 33-fold increase in K(m) for guanine. A double mutant (Y127I/K152R) of GPRTase retained the improved binding of guanine and also enabled the enzyme to utilize hypoxanthine as a substrate with a K(m) of 54 +/- 15.5 microm. A triple mutant (Y127I/K152R/L186F) resulted in further increased binding affinity with both guanine and hypoxanthine with the latter showing a lowered K(m) of 29.8 +/- 4.1 microm. Dissociation constants measured by fluorescence quenching showed 6-fold tighter binding of GMP with the triple mutant compared with wild type. Thus, by increasing the binding affinity of 6-oxopurine, we were able to convert the GPRTase to a HGPRTase.  相似文献   

10.
Farnesyl protein transferase (FPT) is an alpha/beta heterodimeric zinc enzyme that catalyzes posttranslational farnesylation of many key cellular regulatory proteins, including oncogenic Ras. On the basis of the recently reported crystal structure of FPT complexed with a CVIM peptide and alpha-hydroxyfarnesylphosphonic acid, site-directed mutagenesis of the FPT active site was performed so key residues that are responsible for substrate binding and catalysis could be identified. Eight single mutants, including K164N alpha, Y166F alpha, Y166A alpha, Y200F alpha, H201A alpha, H248A beta, Y300F beta, and Y361F beta, and a double mutant, H248A beta/Y300F beta, were prepared. Steady-state kinetic analysis along with structural evidence indicated that residues Y200 alpha, H201 alpha, H248 beta, and Y361 beta are mainly involved in substrate binding. In addition, biochemical results confirm structural observations which show that residue Y166 alpha plays a key role in stabilizing the active site conformation of several FPT residues through cation-pi interactions. Two mutants, K164N alpha and Y300F beta, have moderately decreased catalytic constants (kcat). Pre-steady-state kinetic analysis of these mutants from rapid quench experiments showed that the chemical step rate constant was reduced by 41- and 30-fold, respectively. The product-releasing rate for each dropped approximately 10-fold. In pH-dependent kinetic studies, Y300F beta was observed to have both acidic and basic pKa values shifted 1 log unit from those of the wild-type enzyme, consistent with a possible role for Y300 beta as an acid-base catalyst. K164N alpha had a pKa shift from 6.0 to 5.3, which suggests it may function as a general acid. On the basis of these results along with structural evidence, a possible FPT reaction mechanism is proposed with both Y300 beta and K164 alpha playing key catalytic roles in enhancing the reactivity of the farnesyl diphosphate leaving group.  相似文献   

11.
Recently, cupin type phosphoglucose isomerases have been described as a novel protein family representing a separate lineage in the evolution of phosphoglucose isomerases. The importance of eight active site residues completely conserved within the cPGI family has been assessed by site-directed mutagenesis using the cPGI from Archaeoglobus fulgidus (AfcPGI) as a model. The mutants T63A, G79A, G79L, H80A, H80D, H82A, E93A, E93D, Y95F, Y95K, H136A, and Y160F were constructed, purified, and the impact of the respective mutation on catalysis and/or metal ion binding as well as thermostability was analyzed. The variants G79A, G79L, and Y95F exhibited a lower thermostability. The catalytic efficiency of the enzyme was reduced by more than 100-fold in the G79A, G79L, H80A, H80D, E93D, Y95F variants and more than 15-fold in the T63A, H82A, Y95K, Y160F variants, but remained about the same in the H136A variant at Ni2+ saturating conditions. Further, the Ni2+ content of the mutants H80A, H80D, H82A, E93A, E93D and their apparent Ni2+ binding ability was reduced, resulting in an almost complete loss of activity and thus underlining the crucial role of the metal ion for catalysis. Evidence is presented that H80, H82 and E93 play an additional role in catalysis besides metal ion binding. E93 appears to be the key catalytic residue of AfcPGI, as the E93A mutant did not show any catalytic activity at all.  相似文献   

12.
Emergence of new severe acute respiratory syndrome coronavirus 2 variants has raised concerns related to the effectiveness of vaccines and antibody therapeutics developed against the unmutated wildtype virus. Here, we examined the effect of the 12 most commonly occurring mutations in the receptor-binding domain of the spike protein on its expression, stability, activity, and antibody escape potential. Stability was measured using thermal denaturation, and the activity and antibody escape potential were measured using isothermal titration calorimetry in terms of binding to the human angiotensin-converting enzyme 2 and to neutralizing human antibody CC12.1, respectively. Our results show that mutants differ in their expression levels. Of the eight best-expressed mutants, two (N501Y and K417T/E484K/N501Y) showed stronger affinity to angiotensin-converting enzyme 2 compared with the wildtype, whereas four (Y453F, S477N, T478I, and S494P) had similar affinity and two (K417N and E484K) had weaker affinity than the wildtype. Compared with the wildtype, four mutants (K417N, Y453F, N501Y, and K417T/E484K/N501Y) had weaker affinity for the CC12.1 antibody, whereas two (S477N and S494P) had similar affinity, and two (T478I and E484K) had stronger affinity than the wildtype. Mutants also differ in their thermal stability, with the two least stable mutants showing reduced expression. Taken together, these results indicate that multiple factors contribute toward the natural selection of variants, and all these factors need to be considered to understand the evolution of the virus. In addition, since not all variants can escape a given neutralizing antibody, antibodies to treat new variants can be chosen based on the specific mutations in that variant.  相似文献   

13.
Two distinct genes encode the 93% homologous type 1 (placenta, peripheral tissues) and type 2 (adrenals, gonads) 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD/isomerase) in humans. Mutagenesis studies using the type 1 enzyme have produced the Y154F and K158Q mutant enzymes in the Y(154)-P-H(156)-S-K(158) motif as well as the Y269S and K273Q mutants from a second motif, Y(269)-T-L-S-K(273), both of which are present in the primary structure of the human type 1 3beta-HSD/isomerase. In addition, the H156Y mutant of the type 1 enzyme has created a chimera of the type 2 enzyme motif (Y(154)-P-Y(156)-S-K(158)) in the type 1 enzyme. The mutant and wild-type enzymes have been expressed and purified. The K(m) value of dehydroepiandrosterone is 13-fold greater, and the maximal turnover rate (K(cat)) is 2-fold greater for wild-type 2 3beta-HSD compared with the wild-type 1 3beta-HSD activity. The H156Y mutant of the type 1 enzyme has substrate kinetic constants for 3beta-HSD activity that are very similar to those of the wild-type 2 enzyme. Dixon analysis shows that epostane inhibits the 3beta-HSD activity of the wild-type 1 enzyme with 14-17-fold greater affinity compared with the wild-type 2 and H156Y enzymes. The Y154F and K158Q mutants exhibit no 3beta-HSD activity, have substantial isomerase activity, and utilize substrate with K(m) values similar to those of wild-type 1 isomerase. The Y269S and K273Q mutants have low, pH-dependent 3beta-HSD activity, exhibit only 5% of the maximal isomerase activity, and utilize the isomerase substrate very poorly. From these studies, a structural basis for the profound differences in the substrate and inhibition kinetics of the wild-type 1 and 2 3beta-HSD, plus a catalytic role for the Tyr(154) and Lys(158) residues in the 3beta-HSD reaction have been identified. These advances in our understanding of the structure/function of human type 1 and 2 3beta-HSD/isomerase may lead to the design of selective inhibitors of the type 1 enzyme not only in placenta to control the onset of labor but also in hormone-sensitive breast, prostate, and choriocarcinoma tumors to slow their growth.  相似文献   

14.
Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, excises uracil from DNA. Crystal structures of several UDGs have identified residues important for their exquisite specificity in detection and removal of uracil. Of these, Y66 and N123 in Escherichia coli UDG have been proposed to restrict the entry of non-uracil residues into the active site pocket. In this study, we show that the uracil excision activity of the Y66F mutant was similar to that of the wild-type protein, whereas the activities of the other mutants (Y66C, Y66S, N123D, N123E and N123Q) were compromised approximately 1000-fold. The latter class of mutants showed an increased dependence on the substrate chain length and suggested the existence of long-range interactions of the substrate with UDG. Investigation of the phosphate interactions by the ethylation interference assay reaffirmed the key importance of the -1, +1 and +2 phosphates (with respect to the scissile uracil) to the enzyme activity. Interestingly, this assay also revealed an additional interference at the -5 position phosphate, whose presence in the substrate had a positive effect on substrate utilisation by the mutants that do not possess a full complement of interactions in the active site pocket. Such long-range interactions may be crucial even for the wild-type enzyme under in vivo conditions. Further, our results suggest that the role of Y66 and N123 in UDG is not restricted merely to preventing the entry of non-uracil residues. We discuss their additional roles in conferring stability to the transition state enzyme-substrate complex and/or enhancing the leaving group quality of the uracilate anion during catalysis.  相似文献   

15.
Hyaluronan (HA) synthase (HAS) is a membrane-bound enzyme that utilizes UDP-glucuronic acid (GlcUA) and UDP-GlcNAc to synthesize HA. The HAS from Streptococcus pyogenes (spHAS, 419 amino acids) contains six Cys residues, whereas the enzyme from Streptococcus equisimilis (seHAS, 417 amino acids) contains four Cys residues. These Cys residues of seHAS are highly conserved in all Class I HAS family members. Here we investigated the structural and functional roles of these conserved cysteines in seHAS by using site-directed mutagenesis and sensitivity to sulfhydryl modifying reagents. Both seHAS and spHAS were inhibited by sulfhydryl reagents such as N-ethylmaleimide (NEM) and iodoacetamide in a dose-dependent and time-dependent manner. These inhibition curves were biphasic, indicating the presence of sensitive and insensitive components. After treatment of seHAS with NEM, the V(max) value was decreased approximately 50%, and the K(m) values changed only slightly. All the Cys-to-Ala mutants of seHAS were partially active. The least active single (C226A), double (C226A,C262A), or triple (C226A,C262A,C367A) Cys mutants retained 24, 3.2, and 1.4% activity, respectively, compared with wild-type enzyme. Surprisingly, the V(max) value of the seHAS(cys-null) mutant was approximately 17% of wild-type, although the K(m) values for both substrates were increased 3-6-fold. Cys residues, therefore, are not involved in a critical interaction necessary for either substrate binding or catalysis. However, the distribution of HA products was shifted to a smaller size in approximately 25% of the seHAS Cys mutants, particularly the triple mutants. Mass spectroscopic analysis of wild-type and Cys-null seHAS as well as the labeling of all double Cys-to-Ala mutants with [(14)C]NEM demonstrated that seHAS contains no disulfide bonds. We conclude that the four Cys residues in seHAS are not directly involved in catalysis, but that one or more of these Cys residues are located in or near substrate binding or glycosyltransferase active sites, so that their modification hinders the functions of HAS.  相似文献   

16.
delta 5-3-Ketosteroid isomerase (EC 5.3.3.1) of Pseudomonas testosteroni promotes the highly efficient isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by means of a direct and stereospecific transfer of the 4 beta-proton to the 6 beta-position, via an enolic intermediate. An acidic residue responsible for the protonation of the 3-carbonyl function of the steroid and a basic group concerned with the proton transfer have been implicated in the catalytic mechanism. Recent NMR studies with a nitroxide spin-labeled substrate analogue have allowed positioning of the steroid into the 2.5-A X-ray crystal structure of the enzyme [Kuliopulos, A., Westbrook, E.M., Talalay, P., & Mildvan, A.S. (1987) Biochemistry 26, 3927-3937], thereby corroborating the approximate location of the steroid binding site deduced from a difference Fourier X-ray diffraction map of the 4-(acetoxymercuri)estradiol-isomerase complex [Westbrook, E.M., Piro, O.E., & Sigler, P.B. (1984) J. Biol. Chem. 259, 9096-9103]. The steroid lies in a hydrophobic cavity near Asp-38, Tyr-14, and Tyr-55. In order to assess the role of these amino acid residues in catalysis, the gene for isomerase was cloned, sequenced, and overexpressed in Escherichia coli [Kuliopulos, A., Shortle, D., & Talalay, P. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8893-8897], and the following mutants were prepared: Asp-38 to asparagine (D38N) and Tyr-14 and Tyr-55 to phenylalanine (Y14F and Y55F, respectively). The kcat value of the D38N mutant enzyme is 10(5.6)-fold lower than that of the wild-type enzyme, suggesting that Asp-38 functions as the base which abstracts the 4 beta-proton of the steroid in the rate-limiting step. Threefold lower Km values in all mutants indicate tighter binding of the substrate to the more hydrophobic sites. In comparison with the wild-type enzyme, the Y55F mutant shows only a 4-fold decrease in kcat while the Y14F mutant shows a 10(4.7)-fold decrease in kcat, suggesting that Tyr-14 is the general acid. The red shift of the ultraviolet absorption maximum of the competitive inhibitor 19-nortestosterone from 248 to 258-260 nm, which occurs upon binding to the wild-type enzyme [Wang, S.F., Kawahara, F.S., & Talalay, P. (1963) J. Biol. Chem. 238, 576-585], is mimicked in strong acid. This spectral shift was also observed with the D38N and Y55F mutants, but not on binding of the steroid to the Y14F mutant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
We identified two regions of human LCAT (hLCAT) that when mutated separately to the corresponding rat sequence (E149A and Y292H/W294F) and transiently expressed in COS-1 cells increased phospholipase A2 (PLA2) activity by 5.5- and 2.8-fold, respectively, and increased cholesteryl ester (CE) formation by 2.9- and 1.4-fold, respectively, relative to hLCAT using substrate particles containing 1-16:0,2-20:4-sn-glycero-3-phosphocholine (PAPC). In contrast, both activities with 1-16:0,2-18:1-sn-glycero-3-phosphocholine (POPC) substrate were similar among the three LCAT proteins. The triple mutant (E149A/Y292H/W294F) had increased PLA2 activity with PAPC similar to that observed with the E149A mutation alone; however, unlike E149A, the triple mutant demonstrated a 50% decrease in activity with POPC for both PLA2 activity and CE formation, suggesting an interaction between the two regions of LCAT. Additional mutagenesis studies demonstrated that W294F, but not Y292H, increased PLA2 activity by 3-fold with PAPC without affecting activity with POPC. The E149A/W294F double mutation mimicked the LCAT activity phenotype of the triple mutant (more activity with PAPC, less with POPC). In conclusion, separate mutation of two amino acids in hLCAT to the corresponding rat sequence increases activity with PAPC, whereas the combined mutations increase PAPC and decrease POPC activity, suggesting that these amino acids participate in the LCAT PC binding site and affect fatty acyl specificity.  相似文献   

18.
The beta 1,3-glycosyltransferase enzymes identified to date share several conserved regions and conserved cysteine residues, all being located in the putative catalytic domain. To investigate the importance of these motifs and cysteines for the enzymatic activity, 14 mutants of the murine beta 1,3-galactosyltransferase-I gene were constructed and expressed in Sf9 insect cells. Seven mutations abolished the galactosyltransferase activity. Kinetic analysis of the other seven active mutants revealed that three of them showed a threefold to 21-fold higher apparent K(m) with regard to the donor substrate UDP-galactose relative to the wild-type enzyme, while two mutants had a sixfold to 7.5-fold increase of the apparent K(m) value for the acceptor substrate N-acetylglucosamine-beta-p-nitrophenol. Taken together, our results indicate that the conserved residues W101 and W162 are involved in the binding of the UDP-galactose donor, the residue W315 in the binding of the N-acetylglucosamine-beta-p-nitrophenol acceptor, and the domain including E264 appears to participate in the binding of both substrates.  相似文献   

19.
To study membrane topology and mechanism for substrate specificity, we truncated residues 2-24 in microsomal cytochrome P450 7A1 (P450 7A1) and introduced conservative and nonconservative substitutions at positions 214-227. Heterologous expression in Escherichia coli was followed by investigation of the subcellular distribution of the mutant P450s and determination of the kinetic and substrate binding parameters for cholesterol. The results indicate that a hydrophobic region, comprising residues 214-227, forms a secondary site of attachment to the membrane in P450 7A1 in addition to the NH(2)-terminal signal-anchor sequence. There are two groups of residues at this enzyme-membrane interface. The first are those whose mutation results in more cytosolic P450 (Val-214, His-225, and Met-226). The second group are those whose mutation leads to more membrane-bound P450 (Phe-215, Leu-218, Ile-224, and Phe-227). In addition, the V214A, V214L, V214T, F215A, F215L, F215Y, L218I, L218V, V219T, and M226A mutants showed a 5-12-fold increased K(m) for cholesterol. The k(cat) of the V214A, V214L, V219T, and M226A mutants was increased up to 1.8-fold, and that of the V214T, F215A, F215L, F215Y, L218I, and L218V mutants was decreased 3-10.5-fold. Based on analysis of these mutations we suggest that cholesterol enters P450 7A1 through the membrane, and Val-214, Phe-215, and Leu-218 are the residues located near the point of cholesterol entry. The results provide an understanding of both the P450 7A1-membrane interactions and the mechanism for substrate specificity.  相似文献   

20.
Dispersin B (DspB), a family 20 beta-hexosaminidase from the oral pathogen Aggregatibacter actinomycetemcomitans, cleaves beta(1,6)-linked N-acetylglucosamine polymer. In order to understand the substrate specificity of DspB, we have undertaken to characterize several conserved and nonconserved residues in the vicinity of the active site. The active sites of DspB and other family 20 hexosaminidases possess three highly conserved acidic residues, several aromatic residues and an arginine at subsite -1. These residues were mutated using site-directed mutagenesis and characterized for their enzyme activity. Our results show that a highly conserved acid pair in beta-hexosaminidases D183 and E184, and E332 play a critical role in the hydrolysis of the substrates. pH activity profile analysis showed a shift to a higher pH (6.8) in the optimal activity for the E184Q mutant, suggesting that this residue might act as the acid/base catalyst. The reduction in k(cat) observed for Y187A and Y278A mutants suggests that the Y187 residue (unique to DspB) located on a loop might play a role in substrate specificity and be a part of subsite +1, whereas the hydrogen-bond interaction between Y278A and the N-acetyl group might help to stabilize the transition state. Mutation of W237 and W330 residues abolished hydrolytic activity completely suggesting that alteration at these positions might collapse the binding pocket for the N-acetyl group. Mutation of the conserved R27 residue (to R27A or R27K) also caused significant reduction in k(cat) suggesting that R27 might be involved in stabilization of the transition state. From these results, we conclude that in DspB, and possibly in other structurally similar family 20 hydrolases, some residues at the active site assist in orienting the N-acetyl group to participate in the substrate-assisted mechanism, whereas other residues such as R27 and E332 assist in holding the terminal N-acetylglucosamine during the hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号