首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new monoclonal antibody, 2E11, was produced by immunizing mice with the microsomal fraction of rat accessory olfactory bulb cells. This IgM recognizes a previously described complex α‐galactosyl containing glycolipid, as well as N‐linked glycoproteins at 170 and 210 kD. These proteins correspond to a new nerve cell adhesion molecule (NCAM) glycoform, Gal‐NCAM, which contains a blood group B‐like oligosaccharide. During embryonic development, the 2E11 epitope is expressed by a subset of mature olfactory sensory neurons randomly dispersed throughout the olfactory epithelium, whereas in the olfactory bulb, immunostaining is restricted to medial areas of the nerve layer. When compared to PSA‐NCAM, another NCAM glycoform, Gal‐NCAM has a mutually exclusive distribution pattern both in the olfactory epithelium and in the olfactory bulb. We propose a model for the hierarchy of neuronal maturation in the olfactory epithelium, including a switch from PSA‐NCAM expression by immature neurons to the expression of Gal‐NCAM by mature neurons. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 173–185, 2000  相似文献   

2.
The majority of olfaction studies focus on orthonasal stimulation where odors enter via the front nasal cavity, while retronasal olfaction, where odors enter the rear of the nasal cavity during feeding, is understudied. The coding of retronasal odors via coordinated spiking of neurons in the olfactory bulb (OB) is largely unknown despite evidence that higher level processing is different than orthonasal. To this end, we use multi-electrode array in vivo recordings of rat OB mitral cells (MC) in response to a food odor with both modes of stimulation, and find significant differences in evoked firing rates and spike count covariances (i.e., noise correlations). Differences in spiking activity often have implications for sensory coding, thus we develop a single-compartment biophysical OB model that is able to reproduce key properties of important OB cell types. Prior experiments in olfactory receptor neurons (ORN) showed retro stimulation yields slower and spatially smaller ORN inputs than with ortho, yet whether this is consequential for OB activity remains unknown. Indeed with these specifications for ORN inputs, our OB model captures the salient trends in our OB data. We also analyze how first and second order ORN input statistics dynamically transfer to MC spiking statistics with a phenomenological linear-nonlinear filter model, and find that retro inputs result in larger linear filters than ortho inputs. Finally, our models show that the temporal profile of ORN is crucial for capturing our data and is thus a distinguishing feature between ortho and retro stimulation, even at the OB. Using data-driven modeling, we detail how ORN inputs result in differences in OB dynamics and MC spiking statistics. These differences may ultimately shape how ortho and retro odors are coded.  相似文献   

3.
Three monoclonal antibodies specific for different carbohydrate antigens were used to analyze the development of the olfactory system in rats. CC2 antibodies react with a subset of main olfactory neurons, their axons, and terminals in the olfactory bulb. CC2 antigens are expressed on dorsomedial neurons in the olfactory epithelium (OE) from embryonic (E) day 15 to adults. In the olfactory bulb (OB), only dorsomedially located glomeruli express CC2 glycoconjugates from postnatal day (P) 2 to adults. Thus CC2 defines a dorsomedially organized projection that is established early in embryonic development and continues in adults. P-Path antibodies react with antigens that are expressed on the olfactory nerve in embryos, and are also detected on cell bodies in the neuroepithelium and in glomeruli of the OB at P2. At P14, P-Path staining is weaker, but remains present on many cells in the epithelium and in many glomeruli in the bulb. Postnatally, P-Path immunostaining continues to decrease in most regions of the OE and OB. At P35 and afterwards, only a few P-Path-positive neuronal cells can be detected in the OE. Furthermore, after P35 only two groups of glomeruli in the OB are P-Path immunoreactive. One is situated adjacent to the accessory olfactory bulb (AOB) at the dorsocaudal surface of the OB. The other is adjacent to the AOB at the ventrocaudal surface of the OB. Thus, in adults, P-Path glycoconjugates are expressed in neurons and axons that project only to a specific subset of caudal glomeruli of the OB. Monoclonal antibody 1B2, reacts with β-galactose-terminating glycolipids and glycoproteins. At P2, 1B2 immunoreactivity is seen on a subset of cell bodies that are distributed throughout the OE and is expressed in most glomeruli in the OB at this age. By P35 and in adults, 1B2 continues to be expressed on a subset of neurons in the OE that project to only a small subset of glomeruli in the OB. Unlike CC2 and P-Path antigens that define specific groups of glomeruli, 1B2-immunoreactive glomeruli do not have a detectable spatial pattern. It is more likely that 1B2 antigens define a specific stage in the maturation of connections between the OE and OB.  相似文献   

4.
The detection of odorant signals from the environment and the generation of appropriate behavioral outputs in response to these signals rely on the olfactory system. Olfactory sensory neurons (OSNs) of the olfactory epithelium are located in the nasal cavity and project axons that synapse onto dendrites of second-order neurons in the olfactory bulb (OB) that in turn relay the information gathered to higher order regions of the brain. The connections formed are remarkably accurate such that axons of OSNs expressing the same olfactory receptor innervate specific glomeruli within the complex three-dimensional structure that represents the OB. The molecular determinants that control this complex process are beginning to be identified. In this review, we discuss the role of various families of axon guidance cues and of recently characterized families of adhesion molecules in the formation of stereotypic connections in the olfactory system of mice. Cho and Prince contributed equally.  相似文献   

5.
The mutualism between chemical cues emitted into the air and variations in how primates respond to them using olfaction has demonstrated aspects of species‐specific adaptations. Building on this mutualism we can look at particle deposition as another means to understanding how various environments may have elicited biological changes that enable efficient communication. Research on particle movement and deposition within the nasal cavity is largely based on questions about health as it relates to drug delivery systems and overall olfactory function in modern humans. With increased access to 3D models and the use of computational fluid dynamic analysis, researchers have been able to simulate site‐specific deposition, to determine what particles are making it through the nasal cavity to the main olfactory epithelium, which ultimately leads to processing in the olfactory bulb. Here we discuss particle deposition research, sensory drive and their potential applications to evolutionary anthropology.  相似文献   

6.
综述了磁共振脑功能成像(functional MRI,fMRI)在嗅觉研究中的应用,着重介绍fMRI在小动物嗅觉研究中的优势,以及近10年来fMRI在嗅球(olfactory bulb,OB)信息编码、处理和传输机制研究中所取得的进展.作为人类最古老的感觉方式之一,整个嗅觉系统(除鼻腔中的嗅细胞)都属于边缘系统,这赋予嗅觉系统一般的感觉功能和许多不为人所熟知的对情感、记忆以及生理和心理状态调控的功能.同时,由于缺乏有效手段,其内在性也使得嗅觉系统在大脑中的信息编码、处理、传输和感知等机制的研究极为困难.fMRI由于具有相对高的时间和空间分辨率,并可以无创地、重复地观测大脑任何部位的神经活动而被广泛应用于神经科学的研究.fMRI在嗅觉系统的应用使我们对人的嗅觉高级中枢感知机制方面的研究取得了一定的进展,而嗅球为嗅觉信息编码和处理中心,由于其尺寸和人体MRI空间分辨率的限制,对人OB中编码机制的研究一直无法进行.  相似文献   

7.
Olfactory sensory neurons (OSNs) in the nose form precise connections with neurons in the brain. However, mechanisms that account for the formation of such precise neuronal connections are incompletely understood. Recent studies implicate the function of Wnt growth factors in the formation of neuronal connections. To assess the role of Wnt signaling in the olfactory system, we examined the expression of beta-galactosidase (beta-gal) in the TOPGAL mouse, a transgenic strain in which beta-gal expression reports the activation of the canonical Wnt signaling pathway. In the olfactory epithelium, no beta-gal expression was observed at any developmental stages. In the olfactory bulb (OB), beta-gal expression was observed in a population of cells located at the interface of the olfactory nerve layer and the glomerular layer. The beta-gal expression was developmentally regulated with the peak expression occurring at late embryonic and early postnatal stages and a greatly reduced expression in adulthood. Further, forced OSN regeneration and subsequent reinnervation of the OB led to a reactivation of beta-gal expression in mature animals. The temporal coincidence between the peak of beta-gal expression and formation of OSN connections, together with the spatial localization of these cells, suggests a potential role of these cells and canonical Wnt signaling in the formation of OSN connections in the OB during development and regeneration.  相似文献   

8.
In adult Xenopus, the nasal cavity is divided into separate middle (MC) and principal (PC) cavities; the former is used to smell water-borne odorants, the latter air-borne odorants. Recent work has shown that olfactory neurons of each cavity express a distinct subclass of odorant receptors. Moreover, MC and PC axons project to distinct regions of the olfactory bulb. To examine the developmental basis for this specificity in the olfactory projection, we extirpated the developing MC from early metamorphic (stage 54–57) tadpoles and raised the animals through metamorphosis. In most lesioned animals, the MC partly regenerated. Compared with the unlesioned side, reduction of the region of the glomerular layer of the olfactory bulb receiving MC afferents ranged from 70% to 95%. PC afferents did not occupy regions of the olfactory bulb deprived of MC afferents. These results support a model in which intrinsic cues in the olfactory bulb control the projection pattern attained by ingrowing olfactory axons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 213–222, 1997.  相似文献   

9.
A new monoclonal antibody, 2E11, was produced by immunizing mice with the microsomal fraction of rat accessory olfactory bulb cells. This IgM recognizes a previously described complex alpha-galactosyl containing glycolipid, as well as N-linked glycoproteins at 170 and 210 kD. These proteins correspond to a new nerve cell adhesion molecule (NCAM) glycoform, Gal-NCAM, which contains a blood group B-like oligosaccharide. During embryonic development, the 2E11 epitope is expressed by a subset of mature olfactory sensory neurons randomly dispersed throughout the olfactory epithelium, whereas in the olfactory bulb, immunostaining is restricted to medial areas of the nerve layer. When compared to PSA-NCAM, another NCAM glycoform, Gal-NCAM has a mutually exclusive distribution pattern both in the olfactory epithelium and in the olfactory bulb. We propose a model for the hierarchy of neuronal maturation in the olfactory epithelium, including a switch from PSA-NCAM expression by immature neurons to the expression of Gal-NCAM by mature neurons.  相似文献   

10.
Three monoclonal antibodies specific for different carbohydrate antigens were used to analyze the development of the olfactory system in rats. CC2 antibodies react with a subset of main olfactory neurons, their axons, and terminals in the olfactory bulb. CC2 antigens are expressed on dorsomedial neurons in the olfactory epithelium (OE) from embryonic (E) day 15 to adults. In the olfactory bulb (OB), only dorsomedially located glomeruli express CC2 glycoconjugates from postnatal day (P) 2 to adults. Thus CC2 defines a dorsomedially organized projection that is established early in embryonic development and continues in adults. P-Path antibodies react with antigens that are expressed on the olfactory nerve in embryos, and are also detected on cell bodies in the neuroepithelium and in glomeruli of the OB at P2. At P14, P-Path staining is weaker, but remains present on many cells in the epithelium and in many glomeruli in the bulb. Postnatally, P-Path immunostaining continues to decrease in most regions of the OE and OB. At P35 and afterwards, only a few P-Path-positive neuronal cells can be detected in the OE. Furthermore, after P35 only two groups of glomeruli in the OB are P-Path immunoreactive. One is situated adjacent to the accessory olfactory bulb (AOB) at the dorsocaudal surface of the OB. The other is adjacent to the AOB at the ventrocaudal surface of the OB. Thus, in adults, P-Path glycoconjugates are expressed in neurons and axons that project only to a specific subset of caudal glomeruli of the OB. Monoclonal antibody 1B2, reacts with beta-galactose-terminating glycolipids and glycoproteins. At P2, 1B2 immunoreactivity is seen on a subset of cell bodies that are distributed throughout the OE and is expressed in most glomeruli in the OB at this age. By P35 and in adults, 1B2 continues to be expressed on a subset of neurons in the OE that project to only a small subset of glomeruli in the OB. Unlike CC2 and P-Path antigens that define specific groups of glomeruli, 1B2-immunoreactive glomeruli do not have a detectable spatial pattern. It is more likely that 1B2 antigens define a specific stage in the maturation of connections between the OE and OB.  相似文献   

11.
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs'' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.  相似文献   

12.
The olfactory bulbs (OBs) are bilaterally paired structures in the vertebrate forebrain that receive and process odor information from the olfactory receptor neurons (ORNs) in the periphery. Virtually all vertebrate OBs are arranged chemotopically, with different regions of the OB processing different types of odorants. However, there is some evidence that elasmobranch fishes (sharks, rays, and skates) may possess a gross somatotopic organization instead. To test this hypothesis, we used histological staining and retrograde tracing techniques to examine the morphology and organization of ORN projections from the olfactory epithelium (OE) to the OB in three elasmobranch species with varying OB morphologies. In all three species, glomeruli in the OB received projections from ORNs located on only the three to five lamellae situated immediately anterior within the OE. These results support that the gross arrangement of the elasmobranch OB is somatotopic, an organization unique among fishes and most other vertebrates. In addition, certain elasmobranch species possess a unique OB morphology in which each OB is physically subdivided into two or more “hemi‐olfactory bulbs.” Somatotopy could provide a preadaptation which facilitated the evolution of olfactory hemibulbs in these species. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
Olfactory sensory neurons (OSNs) project their axons from the olfactory epithelium toward the olfactory bulb (OB) in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR) sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz) molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl) is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.  相似文献   

15.
Chemosensory neurons in the olfactory epithelium (OE) project axonal processes to the olfactory bulb (OB) of the brain. During embryonic stages, on their trajectory to the OB, the outgrowing axons traverse the so-called cribriform mesenchyme, which is located between the OE and the OB. The molecular cues guiding these axons through the cribriform mesenchyme are largely unknown. To identify molecules influencing the axonal trajectory in the murine cribriform mesenchyme, we performed microarray analyses focusing on extracellular matrix (ECM) proteins present in this tissue. Thereby, the ECM protein Reelin turned out to be an interesting candidate. Reelin was found to be expressed by numerous cells in the cribriform mesenchyme during the embryonic stages when the first axons navigate from the OE to the OB. These cells were closely associated with olfactory axons and apparently lack glial and neuronal markers. In the mesenchyme underlying the OE, localization of the Reelin protein was not confined to the Reelin-expressing cells, but it was also observed to be widely distributed in the ECM—most prominently in regions traversed by olfactory axons. Importantly, these axons were found to be endowed with the Reelin receptor very-low-density lipoprotein receptor (VLDLR). Finally, Reelin expression was also detectable in neuronal cells of the OB, which are contacted by VLDLR-positive olfactory axons. In summary, the results of the present study suggest that a Reelin/VLDLR signaling pathway might contribute to the formation of olfactory projections to the OB and the establishment of initial contacts between the incoming axons and neurons in the OB. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Funding:  This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

16.
The morphological development of the accessory olfactory bulb of the fetal pig was studied by classical and histo-chemical methods, and the vomeronasal organ and nasal septum were studied histochemically. Specimens were obtained from an abattoir and their ages estimated from their crown-to-rump length. The accessory olfactory bulb was structurally mature in fetuses of crown-to-rump length 21-23 cm, by which time the lectin Lycopersicum esculentum agglutinin stained the same structures as in adults (in particular, the entire sensory epithelium of the vomeronasal organ, the vomeronasal nerves, and the nervous and glomerular layers of the accessory olfactory bulb). These results suggest that the vomeronasal system of the pig may, like that of vertebrates such as snakes, be functional at birth.  相似文献   

17.
18.
Little is known regarding how alkali metal ions are transported in the olfactory nerve following their intranasal administration. In this study, we show that an alkali metal ion, thallium is transported in the olfactory nerve fibers to the olfactory bulb in mice. The olfactory nerve fibers of mice were transected on both sides of the body under anesthesia. A double tracer solution (thallium-201, (201)Tl; manganese-54, (54)Mn) was administered into the nasal cavity the following day. Radioactivity in the olfactory bulb and nasal turbinate was analyzed with gamma spectrometry. Auto radiographic images were obtained from coronal slices of frozen heads of mice administered with (201)Tl or (54)Mn. The transection of the olfactory nerve fibers was confirmed with a neuronal tracer. The transport of intranasal administered (201)Tl/(54)Mn to the olfactory bulb was significantly reduced by the transection of olfactory nerve fibers. The olfactory nerve transection also significantly inhibited the accumulation of fluoro-ruby in the olfactory bulb. Findings indicate that thallium is transported by the olfactory nerve fibers to the olfactory bulb in mice. The assessment of thallium transport following head injury may provide a new diagnostic method for the evaluation of olfactory nerve injury.  相似文献   

19.
Olfactory sensory neurons (OSNs) expressing a given odorant receptor project their axons to specific glomeruli, creating a topographic odor map in the olfactory bulb (OB). The mechanisms underlying axonal pathfinding of OSNs to their precise targets are not fully understood. Here, we demonstrate that Robo2/Slit signaling functions to guide nascent olfactory axons to the OB primordium in zebrafish. robo2 is transiently expressed in the olfactory placode during the initial phase of olfactory axon pathfinding. In the robo2 mutant, astray (ast), early growing olfactory axons misroute ventromedially or posteriorly, and often penetrate into the diencephalon without reaching the OB primordium. Four zebrafish Slit homologs are expressed in regions adjacent to the olfactory axon trajectory, consistent with their role as repulsive ligands for Robo2. Masking of endogenous Slit gradients by ubiquitous misexpression of Slit2 in transgenic fish causes posterior pathfinding errors that resemble the ast phenotype. We also found that the spatial arrangement of glomeruli in OB is perturbed in ast adults, suggesting an essential role for the initial olfactory axon scaffold in determining a topographic glomerular map. These data provide functional evidence for Robo2/Slit signaling in the establishment of olfactory neural circuitry in zebrafish.  相似文献   

20.
The olfactory bulb as an independent developmental domain   总被引:2,自引:0,他引:2  
The olfactory system is a good model to study the mechanisms underlying guidance of growing axons to their appropriate targets. The formation of the olfactory bulb involves differentiation of several populations of cells and the initiation of the central projections, all under the temporal and spatial patterns of gene expression. Moreover, the nature of interactions between the olfactory epithelium, olfactory bulb and olfactory cortex at early developmental stages is currently of great interest. To explore these questions more fully, the present review aims to correlate recent data from different developmental studies, to gain insight into the mechanisms involved in the specification and development of the olfactory system. From our studies in the pax6 mutant mice (Sey(Neu)/Sey(Neu)), it was concluded that the initial establishment of the olfactory bulb central projections is able to proceed independently of the olfactory sensory axons from the olfactory epithelium. The challenge that now remains is to consider the validity of the olfactory bulb as an independent development domain. In the course of evaluating these ideas, we will review the orchestra of molecular cues involved in the formation of the projection from the OB to the olfactory cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号