首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A study was made of the concentrations and fatty acid compositions of the major phosphoglycerides in the yolk of the alligator egg on the 8th and 75th days of incubation. The major phosphoglycerides were phosphatidyl choline and phosphatidyl ethanolamine which at the start of incubation accounted for 72 and 18%, respectively, of total phosphoglyceride. Phosphoglycerides were characterised by low levels of linoleic acid but extremely high levels of C20 and C22 polyunsaturates. The extensive absorption of phosphoglyceride over the incubation period was accompanied by a reduction in percentage of phosphoglyceride within the residual yolk lipid, a reduction in the proportion of phosphatidyl choline within the total phosphoglyceride, and increases in the proportions of phosphatidyl ethanolamine and lyso-phosphatidyl choline. There were small but wide-spread changes in the fatty acid composition of the phosphatidyl choline during incubation. Within the phosphatidyl ethanolamine and phosphatidyl serine fractions there were very large reductions in the C20 and C22 polyunsaturated fatty acid levels. The phosphoglyceride changes are discussed with respect to the unique role of yolk lipid absorption in the nutrition of the developing embryo.  相似文献   

2.
Abstract— Rat cerebrum was analysed at 20 different ages from birth to 45 days of age, for its concentration of protein, cholesterol, cerebrosides, phospholipids and gangliosides, and for the concentration of fatty acids of the linoleic and linolenic acid series. The fatty acid patterns of choline phosphoglycerides and ethanolamine phosphoglycerides were determined at the same ages. Phases of rapid accretion were found for protein, phospholipids, gangliosides and cholesterol. The accretion of the fatty acids of the linoleic acid series ceased at 20 days of age, while that of the fatty acids of the linolenic acid series continued. The fatty acid composition of the phosphoglycerides changed during the maturation of rat cerebrum and these changes consisted of chain elongation, increased unsaturation and variation in the pattern of the polyenoic acids. These changes varied irregularly with age and each developmental stage had characteristic fatty acid patterns of choline and ethanolamine phosphoglycerides.  相似文献   

3.
The lipid composition of the nervous system of the leech Hirudo medicinalis was investigated following acclimatization of animals at 25 degrees C and 5 degrees C. Choline, ethanolamine, and serine plus inositol phosphoglycerides are the major phospholipid classes of the leech ganglionic chain; minor amounts of lysophosphatidylcholine, phosphatidic acid, and sphingomyelin are also present. Neither the phospholipid pattern nor the cholesterol to total phospholipid molar ratio was dependent on the acclimatization temperature, whereas the fatty acid patterns of choline and serine plus inositol phosphoglycerides were significantly affected. Both for choline and serine plus inositol phosphoglycerides, a significant increase of the unsaturation index and a decrease of saturated to unsaturated fatty acid ratio was observed in animals acclimatized at 5 degrees C in comparison with those acclimatized at 25 degrees C. These observations, which point to increased lipid fluidity of the nervous system of cold-adapted leeches, are strengthened by results obtained by the fluorescence polarization method using 1,6-diphenyl-1,3,5-hexatriene as a probe: a decrease of the fluorescence polarization value was observed throughout the temperature range selected (5-40 degrees C).  相似文献   

4.
The phospholipid composition and acyl, alkyl, and alkenyl group compositions of diacyl, alkylacyl, and alkenylacyl phosphoglycerides of M. javanica were investigated. Phospholipid was comprised of 61.7% choline phosphoglyceride, 22.0% ethanolamine phosphoglyceride, and smaller quantities of six other lipids. Phospholipid fatty acid was more unsaturated than neutral lipid fatty acid and contained 61.3% octadecenoic (18:1) acid. Fatty acid at the 1-position of diacyl phospholipids was shorter and more saturated than that at the 2-position. Compared to choline phosphoglyceride, ethanolantine phosphoglyceride contained less 18:1 and 20:5 and more 18:0 and 20:0 acid. Alkenylacyl and alkylacyl compounds comprised 34.6% and 9.3%, respectively, of the ethanolamine phosphoglyceride but only 0.5% and 0.6% of the choline phosphoglyceride. Alkenylacyl and alkylacyl ethanolamine phosphoglycerides contained a smaller percentage of 20-carbon polyunsaturated acid at their 2-positions than did their diacyl analogue. At least 95% of the alkenyl and alkyl groups were 18:0 compounds. Tomato roots did not contain alkenylacyl or alkylacyl phosphoglycerides; their occurrence in M. javanica is a significant biochemical difference between the nematode and its host.  相似文献   

5.
Abstract— Fractions enriched in neuronal cell bodies and in glial cells were isolated from rabbit cerebral cortex by discontinuous gradient centrifugation. The ratio of total lipid to protein was approx. 50 per cent higher in the glial fraction than in the neuronal fraction. The fatty acid composition for the major phosphoglycerides was with few exceptions, similar for neurons and glia. The ganglioside concentration was very low for both cell types, but was approx. twice as high in the glial cells as in the neurons. The pattern of individual gangliosides was, however, very similar for the glial and neuronal fractions and did not differ from that of unfractionated cerebral cortex, synaptosomes and mitochondria. The latter results are discussed in relation to the estimated amounts of plasma membrane in the neuronal and glial fractions.  相似文献   

6.
1. The fatty acid composition of whole goldfish, whole-intestinal mucosa, intestinal mucosal membranes and individual phospholipids extracted from mucosal membranes were measured, fish adapted to different temperatures being used. 2. Alterations of the adaptation temperature did not noticeably affect the fatty acid composition of the whole-fish lipids, but there were marked changes in the fatty acids of lipids extracted from homogenates of goldfish intestinal mucosa. These changes were more pronounced in a membrane fraction prepared from these homogenates. Raising the adaptation temperature by 20 degrees C halved the percentage of C(20:1), C(20:4) and C(22:6) fatty acids and nearly doubled the percentage of C(18:0) and C(20:3) fatty acids recovered. 3. Choline phosphoglycerides constituted about one-half and ethanolamine phosphoglycerides about one-quarter of the total membrane phospholipids. 4. The fatty acids of choline and ethanolamine phosphoglycerides were more susceptible to temperature-dependent changes than were the phosphoglycerides of inositol or serine. 5. The increase in C(18:0) fatty acid that occurred in membranes of warm-adapted fish was greatest for ethanolamine phosphoglycerides, but increases also occurred in other phospholipid fractions and in membrane neutral lipids.  相似文献   

7.
COMPOSITION OF MOUSE BRAIN MYELIN DURING DEVELOPMENT   总被引:9,自引:3,他引:6  
Myelin was isolated from the brains of mice at ages of 14, 24, 41, 44, 47, and 182 days and the contents of lipid phosphorus, cholesterol, lipid galactose, alkenyl groups, ethanolamine phosphoglycerides, choline phosphoglycerides, sphingomyelin, and serine and inositol phosphoglycerides were determined. Significant differences in the composition relative to total lipid phosphorus were found in the myelin. At 14 days of age, the myelin had lower relative amounts of cholesterol, galactolipids, alkenyl groups, and ethanolamine phosphoglycerides and a higher relative amount of choline phosphoglycerides.  相似文献   

8.
Abstract— The variation with age of the fatty acid composition of the major lipids in human brain myelin was compared with that of cerebral white matter from the same region. The myelin was isolated from the semiovale centre of the cerebrum of 27 subjects neonatal to old aged. The phospholipid, cholesterol and galactolipid concentrations were determined in all the samples, as were the proportions of the major phospholipid classes. The proportions of cholesterol and especially of the galactolipids increased in myelin during the first 6 months, and in cerebral white matter up to 2 years. During this period the individual phospholipids also varied substantially. Serine phosphoglycerides and especially sphingomyelins increased, and choline phosphoglycerides decreased. The fatty acid patterns of ethanolamine phosphoglycerides (EPG) and sphingomyelins underwent the largest changes. The proportions of saturated fatty acids in EPG diminished rapidly, and there was an increase of monoenoic acids. Fatty acids of the linoleic acid series showed a peak between 4 and 12 months, after which time their proportion slowly diminished to old age. The major fatty acid of this series was docosatetraenoic acid, 22:4 (n-6), which constituted more than 25% of total fatty acids at the maximum level. The fatty acid changes were larger in cerebral white matter, but from 2 years of age the EPG fatty acid pattern in myelin was similar to that in white matter. The fatty acid changes in serine and choline phosphoglycerides of myelin with maturation were much less striking than in EPG but of a similar type. In myelin sphingomyelin the proportion of saturated long-chain fatty acids, C16-C22, diminished, while that of monoenoic acids increased and continued to do so up to old age. From 2 years of age the fatty acid patterns in myelin and cerebral white matter were quite similar. Also the fatty acid patterns of cerebrosides and sulphatides in cerebral white matter and myelin were the same except for the first 2 months of life. The same fatty acid changes occurred in cerebrosides and sulphatides as in the sphingomyelins, i.e. increased proportions of unsaturated (monoenoic) acids. The proportions of 24:1 and 24h:1 and of the odd-numbered fatty acids 25:1 and 23h:1 continued to increase to old age. The variations of the individual lipid fatty acid patterns were small except in the youngest age classes, in which the variations were presumably ascribable to the difficulty in determining the gestational age.  相似文献   

9.
We have studied the changes in the fatty acid profiles of red blood cell membrane phospholipids in 47 infants who were exclusively fed human milk from birth to 1 month of life. Twenty blood samples were obtained from cord, 15 at 7 days and 12 at 30 days after birth. Membrane phospholipids were obtained from erythrocyte ghosts by thin-layer chromatography and fatty acid composition was determined by gas liquid chromatography. Phosphatidylcholine showed the most important changes during early life; stearic, w6 eicosatrienoic and arachidonic acids decreased whereas oleic and linoleic acids increased. In phosphatidylethanolamine, palmitic and stearic acid declined and oleic, linoleic and docosahexenoic acids increased with advancing age. Small changes were noted for individual fatty acids in phosphatidylserine. In sphingomyelin stearic acid increased from birth to 1 month and linoleic, arachidonic and nervonic acids decreased. Total polyunsaturated fatty acids of the w6 series greater than 18 carbon atoms increased with advancing age in phosphatidylethanolamine and decreased in choline and serine phosphoglycerides and in sphingomyelin. Long chain fatty acids derived from linoleic acid decreased in phosphatidylcholine but increased in ethanolamine and serine phosphoglycerides. The different behavior in the changes observed in fatty acid patterns for each erythrocyte membrane phospholipid may be a consequence of its different location in the cell membrane bilayer and specific exchange with plasma lipid fractions.  相似文献   

10.
Neuroblastoma cell cultures took up linoleic and linolenic acids at approximately equal rates, and incorporated them into a variety of lipid fractions, principally cellular phospholipids. Linoleic acid was preferentially incorporated into choline phosphoglycerides, while most of the radioactivity derived from linolenic acid entered ethanolamine phosphoglycerides. There was no evidence for direct transfer of fatty acids between these two phosphoglyceride fractions. When, after the addition of cytosine arabinoside, cell division was arrested, the entry of labelled fatty acids into ethanolamine and serine phosphoglycerides was reduced, suggesting that these lipids are involved in the formation of new cell membranes. In the ethanolamine phosphoglyceride fraction, phosphatidal ethanolamine (plasmalogen) was the principal acceptor for the higher polyunsaturated fatty acids of the φ 3 series. The ratio of labelled fatty acids entering ethanolamine plasmalogens to that entering ethanolamine phosphoglycerides increased following the addition of cytosine arabinoside, suggesting plasmalogens to be involved in formation of cell processes. The first step in the metabolism of both linoleic and linolenic acid was the addition of a two-carbon unit. Conversion of linoleic acid to higher polyunsaturated fatty acids was slower than the conversion of linolenic acid to its higher analogues. This contrasted with the behaviour of dissociated cultures of normal brain cells which were able to form higher analogues of linoleic and linolenic acids at nearly equal rates.  相似文献   

11.
The mechanism by which polyenoic acids control the amount and positioning of monounsaturated fatty acids in choline phosphoglycerides from baby hamster kidney cells was studied. Under normal growth conditions monoenoic acids were derived from the desaturation of saturated fatty acids and comprised over 50% of the fatty acids at position 1 of the glycerol moiety. The monoene content of positions 1 and 2 decreased in response to the addition of di- and polyenoic acids to the culture medium. All the di- and polyenoic acid supplements tested inhibited the desaturation of palmitic and stearic acid and replaced monoenes at position 2. However only linoleic, linolenic, and eicosadienoic acids replaced monoenes at position 1. The results suggest that under appropriate conditions up to 25% of the choline phosphoglyceride fraction consisted of a stable molecular species containing di- or trienoic fatty acids at both the 1 and 2 positions of glycerol moiety. With eicosatrienoic or arachidonic acid supplements, on the other hand, the monoenes at position 1 were replaced with saturated fatty acids. The magnitude of these effects, particularly at position 1, was proportional to the concentration of the fatty acid supplement. The results suggest that polyenes with at least 20 carbon atoms can play a key role in determining the ultimate composition and positioning of fatty acids in baby hamster kidney choline phosphoglycerides and that this control is mediated by their ability to inhibit delta 9 desaturase and by a retailoring system specific for these polyenes.  相似文献   

12.
Lipid metabolism in brain tissue explants   总被引:2,自引:0,他引:2  
Abstract— Tissue explants from frontal lobes of rat brain were used for the study of cerebral fatty acid metabolism. After tissues had been maintained in serum-supplemented medium, a lipid-free medium was substituted and metabolic studies were carried out. Under these conditions explants continued to take up lipid precursors for at least 48 h, as judged by incorporation of dl -[2-14C]mevalonic acid into cellular lipids. [l-14C]Stearic acid and [l-14C]palmitic acid were bound to cells as the free fatty acids, or incorporated into neutral lipids (particularly triglycerides), glycolipids and phospholipids. In the galactolipid fraction, cerebrosides were the principal radioactive lipids. Choline phosphoglycerides, ethanolamine phosphoglycerides, inositol phosphoglycerides and serine phosphoglycerides were the principal radioactive phospholipids. Fatty acids were incorporated into cellular lipids either unchanged or after desaturation, chain elongation, or both. Maximum incorporation of stearate occurred in tissues derived from 3-day-old animals. With increasing age the uptake of fatty acid dropped sharply. When the labelling of lipids as a function of time was followed in 3-day-old animals, triglycerides and choline phosphoglycerides were the first fractions to take up labelled stearate. Labelling of cerebrosides occurred slowly, only becoming evident after 24 h. These studies exemplify the usefulness of tissue explants for prolonged metabolic studies in normal and pathological specimens of brain.  相似文献   

13.
Lipid compositional analysis was conducted on the white, yellow, and brown cyst stages of Globodera rostochiensis (golden cyst nematode). Triacylglycerols were the largest lipid fraction in all stages examined, ranging from 55-75% of total lipid. Ethanolamine phosphoglycerides and choline phosphoglycerides were present in high amounts in all cyst fractions, with a total phospholipid content of 20%, 14.7%, and 12.8% in the white, yellow, and brown cyst stages, respectively. Sterols, steryl esters, sphingomyelin, and cardiolipin were found in minor amounts in all three cyst stages and showed greater changes than other classes of lipids relative to cyst stage. The fatty acid compositions of the three cyst stages were similar. Eicosenoic acid (20:1) and arachidonic acid (20:4) were found in higher concentrations than other fatty acids in all cyst preparations; vaccenic acid (18:1) occurred at the third highest concentration. More than 78% of total fatty acids were unsaturated at all cyst stages, and more than 60% were of C20 or longer chain length. The lipid profile of all three cyst stages is consistent with invertebrate adaptation to low-temperature environments.  相似文献   

14.
COMPARISON OF THE FATTY ACIDS OF LIPIDS OF SUBCELLULAR BRAIN FRACTIONS   总被引:6,自引:3,他引:3  
Abstract— Rat brain grey and white matter were fractionated to yield myelin, nerve terminal, synaptic vesicle, nerve terminal 'ghost', and microsomal fractions of white and grey matter. Ester-type glycolipids were found in all fractions except myelin, while cerebrosides occurred in significant concentrations only in myelin and white microsomes. Comparison of the fatty acid profile of the ethanolamine- and serine-containing phospholipids showed marked differences between myelin and the particles from grey matter, while the microsomes of white matter were of intermediate composition. Docosahexaenoic acid, a minor acid in myelin, was a major fatty acid in microsomes of grey and white matter. The fatty acid composition of sphingomyelin was distinctly different in the fractions derived from grey and white matter, clustering about stearate and nervonate in the latter, but only about stearate in the grey. Marked differences in the positional distribution of fatty acids were seen within phosphatidyl choline from myelin and nerve terminals. Ribonucleic acid was found in nerve terminal and synaptic vesicle fractions. The sphingosine found in the ganglioside from microsomes of both grey and white matter was similar with respect to distribution of the C18 and C20 homologues.
The possibility is discussed that microsomes furnish characteristic lipids for the synthesis or renewal of specific membranes, and that these lipids are accumulated somewhat before being released.  相似文献   

15.
Summary We found that fetal bovine serum supplementation of culture medium provided limited quantities of linoleic acid, an essential fatty acid, to cells grown in culture (2.8 ± 0.3% of total fatty acids in 12 lots). Supplementation of the medium with additional linoleic acid resulted in altered phospholipid acyl composition in cells of two established lines, A549, a putative model of the pulmonary Type II epithelial cell, and SIRC, a line derived from rabbit corneal epithelium. In particular, linoleic acid supplementation induced a relative increase in disaturated choline phosphoglycerides of 33 and 36%, respectively, in cells of the two lines. This observation may be relevant to design of media for primary culture of Type II cells, in which disaturated phospholipid synthesis is used as an index of differentiated function (surfactant production). Linoleate supplementation did not alter growth or size (protein content) of cells of either line and caused a slight increase in accumulation of neutral lipid, in the form of cytoplasmic droplets, in A549 cells. Supplementation of cell cultures with equivalent concentrations of the nonessential fatty acids palmitic and oleic acid did not significantly alter the growth, morphologic appearance, or lipid composition of the cells. However, it was demonstrated in cells of one line that palmitic acid supplementation temporarily stimulated synthesis of disaturated choline phosphoglyceride from radiolabeled choline. This work was supported by Grants HL-24817 and HL-21251 from the National Institutes of Health, USPHS, and by a grant from the Alexandrine and Alexander L. Sinsheimer Fund.  相似文献   

16.
The whole brain of a porpoise (Delphinus delphis) comprised 23.1 wt% of phospholipids on a dry weight basis. Ethanolamine phosphoglycerides (36.6 wt%), choline phosphoglycerides (27.3 wt%), and serine phosphoglycerides (16.9 wt%) were the major components of the phospholipids. A unique feature of the data was the occurrence of large amounts of isovaleric acid in choline phosphoglucerides (28.1 mol%) and ethanolamine phosphoglycerides (6.4 mol%), together with 11.6 and 15.2 mol% of long-chain (C11--C16) iso-acids, respectively. Interestingly, serine phosphoglycerides did not contain detectable amounts of isovaleric acid although trace amounts of long-chain iso-acids were present. No previous evidence exists to show that appreciable amounts of a short-chain acid can be accommodated in animal phospholipids. The occurrence of isovaleric acid in the principal phosphoglycerides of the porpoise brain elicits an interest in how such an anomalous structure is accommodated in the lipid bilayers of the neural membranes.  相似文献   

17.
Abstract— Phosphoglyceride and fatty acid composition was determined in the cellular membranes of isolated cerebral microvessels and brain parenchymal cells (neurons and glia) taken from 10-, 20-, and 27–30-month-old C57BL6/NNIA mice. Lipids were extracted from each fraction and the fatty acid profiles of ethanolamine, cho-line, serine, and inositol phosphoglycerides analyzed by gas chromatography. The results suggest that membrane phosphoglycerides from cerebral microvessels are significantly more affected by the aging process than are those of the brain parenchyma. Relative percentage for fatty acids in cerebral microvessels indicate an overall decline in membrane unsaturation with a concomitant elevation in the level of saturation. The decline in unsaturation is reflected primarily in the loss of precursor fatty acids for arachidonic (18:2n-6 and 20:3n-6) and docosahexaenoic (20:5n-3 and 22:5n-3) acids. Levels of arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acids in each phos-phoglyceride remained unchanged with age; however, mol% for ethanolamine plasmalogen, a major source of these fatty acids, was significantly reduced in 27–30-month-old mice. Conversely, mol% for choline phospho-glyceride increased with age. The age-related changes in fatty acid profile for microvessel membrane phosphoglycerides are reflected by increased saturation/unsaturation ratios and decreased unsaturation indices. These parameters were not affected by aging in parenchymal membranes.  相似文献   

18.
Hyperplastic nodules and hepatomas were induced in livers of rats fed a diet containing 0.05% N-2-fluorenylacetamide (2-FAA). The lipid contents, and phospholipid and fatty acid compositions were analyzed in plasma membranes (PM's) isolated from these tissues and normal rat liver, and the following trends were observed. The molar ratio of cholesterol to phospholipid-phosphorus (phospholipid-P) increased in the order: hepatoma less than normal liver less than hyperplastic nodules. The molar percentage of plasmalogen to phospholipid-P decreased in the order: hepatoma = hyperplastic nodules greater than normal liver. The percentages of choline phosphoglycerides (sum of phosphatidylcholine and lysophosphatidylcholine) and ethanolamine phosphoglycerides (sum of phosphatidylethanolamine and lysophosphatidylethanolamine) both decreased in the order: hepatoma greater than hyperplastic nodules greater than normal liver. On the other hand, the percentages of sphingomyelin and phosphatidylserine both increased in the order: hepatoma less than hyperplastic nodules less than normal liver. As regards fatty acid composition, the percentages of both 18:1 and 18:2 decreased in the order: hepatoma greater than hyperplastic nodules greater than normal liver. Those of 18:0 and 20:4 increased in the order: hepatoma less than hyperplastic nodules less than normal liver. These results suggested that the lipid bilayer in PM of hyperplastic nodules has characteristics roughly intermediate between those of hepatoma and liver PM's, although the molar ratio of cholesterol to phospholipid-P in hyperplastic nodules PM was not intermediate.  相似文献   

19.
The thrombin-dependent enrichment of alkenylacyl ethanolamine phosphoglyceride in [14C]eicosapentaenoic acid [( 14C]EPA) was demonstrated and compared with [3H]arachidonic acid [( 3H]AA) following the simultaneous prelabelling of individual human platelet phospholipids with these two fatty acids. The alkenylacyl, diacyl, and alkylacyl classes of ethanolamine phosphoglycerides (PE) were separated by thin-layer chromatography as their acetylated derivatives after hydrolysis of the parent phospholipid with phospholipase C. The ratios of [3H]/[14C] for the increased radioactivity appearing in alkenylacyl PE following 60 and 120 s of thrombin stimulation were the same as the corresponding ratio (2.0) found in the choline phosphoglycerides (PC) from control (unstimulated) platelets. These results suggest no significant selectivity between EPA and AA in the thrombin-stimulated transfer of these fatty acids from diacyl PC to alkenylacyl PE. The present findings may possibly bear some relevance to the altered platelet reactivity and (or) decreased thromboxane A2 formation observed in human subjects following the ingestion of marine lipid containing EPA.  相似文献   

20.
A thin-layer chromatographic procedure for the isolation of tissue phospholipids and their subsequent analysis is described. The method has been applied to the determination of the fatty acids of phosphoglycerides in human brain from the early fetal stage to old age. The study shows changes in the distribution and fatty acid composition of each phosphoglyceride in normal brain, although they are quite small after early childhood. A lipid-specific fatty acid pattern for each of the four major phosphoglycerides was found. Besides this, the pronounced differences between fatty acids of the lipids from the cerebral cortex and from the adjacent white matter justify speaking of a tissue-specific fatty acid pattern for brain phosphoglycerides. The phospholipids of cerebral white matter contained more monoenoic acid but much less polyunsaturated fatty acid than those of cerebral cortex. The brain phosphoglycerides also showed an age-dependent fatty acid pattern. With increasing age the concentration of the fatty acids of the linoleate family diminished while that of the linolenate family increased. Brain inositol phosphoglycerides, the fatty acid composition of which has not been studied systematically before, were characterized by a large concentration of arachidonate which was nearly as high for white as for gray matter and showed only small changes with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号