首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In flowering plants, male gametes are delivered to female gametophytes by pollen tubes. Although it is important for sexual plant reproduction, little is known about the genetic mechanism that controls pollen germination and pollen tube growth. Here we report the identification and characterization of two novel mutants, gnom-like 2-1 ( gnl2-1 ) and gnl2-2 in Arabidopsis thaliana , in which the pollen grains failed to germinate in vitro and in vivo . GNL2 encodes a protein homologous to the adenosine diphosphate-ribosylation factor-guanine nucleotide exchange factors, GNOM and GNL1 that are involved in endosomal recycling and endoplasmic reticulum-Golgi vesicular trafficking. It was prolifically expressed in pollen grains and pollen tubes. The results of the present study suggest that GNL2 plays an important role in pollen germination.  相似文献   

2.
3.
4.
The protein kinase cdc2 is conserved throughout eukaryotes and acts as a key regulator of the cell cycle. In plants, A-type cyclin-dependent kinase (CDKA), a homologue of cdc2, has a role throughout the cell cycle. Here we show that a loss-of-function mutation in CDKA;1, encoding the only Arabidopsis CDKA, results in lethality of the male gametophyte. Heterozygous plants produced mature siliques containing about 50% aborted seeds, and segregation distortion was observed in paternal inheritance. Microspores normally undergo an asymmetric cell division, pollen mitosis I (PMI), to produce bicellular pollen grains. The larger vegetative cell does not divide, but the smaller generative cell undergoes mitosis, PMII, to form the two sperm cells, thereby generating tricellular pollen grains. The cdka-1 mutant, however, produces mature bicellular pollen grains, consisting of a single sperm-like cell and a vegetative cell, due to failure of PMII. The mutant sperm-like cell is fertile, and preferentially fuses with the egg cell to initiate embryogenesis. As the central cell nucleus remains unfertilized, however, double fertilization does not occur. In heterozygous plants, the embryo is arrested at the globular stage, most likely because of loss of endosperm development, whereas it is arrested at the one- or two-cell stage in presumptive homozygous plants. Thus, CDKA;1 is essential for cell division of the generative cell in male gametogenesis.  相似文献   

5.
Sialyltransferases (SiaTs) exist widely in vertebrates and play important roles in a variety of biological processes. In plants, several genes have also been identified to encode the proteins that share homology with the vertebrate SiaTs. However, very little is known about their functions in plants. Here we report the identification and characterization of a novel Arabidopsis gene, MALE GAMETOPHYTE DEFECTIVE 2 [MGP2) that encodes a sialyltransferase-like protein. MGP2 was expressed in all tissues including pollen grains and pollen tubes. The MGP2 protein was targeted to Golgi apparatus. Knockout of MGP2 significantly inhibited the pollen germination and retarded pollen tube growth in vitro and in vivo, but did not affect female gametophytic functions. These results suggest that the sialyltransferase-like protein MGP2 is important for normal pollen germination and pollen tube growth, giving a novel insight into the biological roles of the sialyltransferase-like proteins in plants.  相似文献   

6.
In most flowering plant species, pollination and fertilization occur during the hot summer, so plants must have evolved a mechanism that ensures normal growth of their pollen tubes at high temperatures. Despite its importance to plant reproduction, little is known about the molecular basis of thermotolerance in pollen tubes. Here we report the identification and characterization of a novel Arabidopsis gene, THERMOSENSITIVE MALE STERILE 1 ( TMS1 ), which plays an important role in thermotolerance of pollen tubes. TMS1 encodes a Hsp40-homologous protein with a DnaJ domain and an a_ERdj5_C domain found in protein disulfide isomerases (PDI). Purified TMS1 expressed in Escherichia coli (BL21 DE3) had the reductive activity of PDI. TMS1 was expressed in pollen grains, pollen tubes and other vegetative tissues, including leaves, stems and roots. Heat shock treatment at 37°C increased its expression levels in growing pollen tubes as well as in vegetative tissues. A knockout mutation in TMS1 grown at 30°C had greatly retarded pollen tube growth in the transmitting tract, resulting in a significant reduction in male fertility. Our study suggests that TMS1 is required for thermotolerance of pollen tubes in Arabidopsis, possibly by functioning as a co-molecular chaperone.  相似文献   

7.
8.
TRAPP complexes, which are large multimeric assemblies that function in membrane traffic, are guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1p. Here we measured rate and equilibrium constants that define the interaction of Ypt1p with guanine nucleotide (guanosine 5'-diphosphate and guanosine 5'-triphosphate/guanosine 5′-(β,γ-imido)triphosphate) and the core TRAPP subunits required for GEF activity. These parameters allowed us to identify the kinetic and thermodynamic bases by which TRAPP catalyzes nucleotide exchange from Ypt1p. Nucleotide dissociation from Ypt1p is slow (∼ 10− 4 s− 1) and accelerated > 1000-fold by TRAPP. Acceleration of nucleotide exchange by TRAPP occurs via a predominantly Mg2+-independent pathway. Thermodynamic linkage analysis indicates that TRAPP weakens nucleotide affinity by < 80-fold and vice versa, in contrast to most other characterized GEF systems that weaken nucleotide binding affinities by 4-6 orders of magnitude. The overall net changes in nucleotide binding affinities are small because TRAPP accelerates both nucleotide binding and dissociation from Ypt1p. Weak thermodynamic coupling allows TRAPP, Ypt1p, and nucleotide to exist as a stable ternary complex, analogous to strain-sensing cytoskeleton motors. These results illustrate a novel strategy of guanine nucleotide exchange by TRAPP that is particularly suited for a multifunctional GEF involved in membrane traffic.  相似文献   

9.
Rab GTPases are master regulators of membrane trafficking events and template the directionality of protein transport through the secretory and endocytic pathways. Certain Rabs recruit the guanine nucleotide exchange factor (GEF) that activates a subsequent acting Rab protein in a given pathway; this process has been termed a Rab cascade. We show here that the medial Golgi-localized Rab33B GTPase has the potential to link functionally to the late Golgi, Rab6 GTPase, by its capacity for association with Ric1 and Rgp1 proteins. In yeast, Ric1p and Rgp1p form a complex that catalyzes guanine nucleotide exchange by Ypt6p, the Rab6 homolog. Human Ric1 and Rgp1 both bind Rab6A with preference for the GDP-bound conformation, characteristic of a GEF. Nevertheless, both Ric1 and Rgp1 proteins are needed to catalyze nucleotide exchange on Rab6A protein. Ric1 and Rgp1 form a complex, but unlike their yeast counterparts, most of the subunits are not associated, and most of the proteins are cytosolic. Loss of Ric1 or Rgp1 leads to destabilization of Rab6, concomitant with a block in Rab6-dependent retrograde transport of mannose 6-phosphate receptors to the Golgi. The C terminus of Ric1 protein contains a distinct binding site for Rab33B-GTP, supporting the existence of a Rab cascade between the medial and trans Golgi. This study thus identifies a GEF for Rab6A in human cells.  相似文献   

10.
RNA biogenesis is essential and vital for accurate expression of genes. It is obvious that cells cannot continue normal metabolism when RNA splicing is interfered with. sgt13018 is such a mutant, with partial loss of function of GAMETOPHYTIC FACTOR 1 (GFA1); a gene likely involved in RNA biogenesis in Arabidopsis. The mutant is featured in the phenotype of diminished female gametophyte development at stage FG5 and is associated with the arrest of early embryo development in Arabidopsis. Bioinformatics data showed that homoiogs of gene GFA1 in yeast and human encode putative U5 snRNPspecific proteins required for pre-mRNA splicing. Furthermore, the result of yeast two-hybrid assay indicated that GFA1 physically interacted with AtBrr2 and AtPrp8, the putative U5 snRNP components, of Arabidopsis. This investigation suggests that GFA1 is involved in mRNA biogenesis through interaction with AtBrr2 and AtPrp8 and functions in megagametogeneeis and embryogenesis in plant.  相似文献   

11.
The small GTPase Ran coordinates retrograde axonal transport in neurons, spindle assembly during mitosis, and the nucleo-cytoplasmic transport of mRNA. Its localization is tightly regulated by the GTPase-activating protein RanGAP1 and the nuclear guanosine exchange factor (GEF) RCC1. We show that loss of the neuronal E3 ubiquitin ligase MYCBP2 caused the up-regulation of Ran and RanGAP1 in dorsal root ganglia (DRG) under basal conditions and during inflammatory hyperalgesia. SUMOylated RanGAP1 physically interacted with MYCBP2 and inhibited its E3 ubiquitin ligase activity. Stimulation of neurons induced a RanGAP1-dependent translocation of MYCBP2 to the nucleus. In the nucleus of DRG neurons MYCBP2 co-localized with Ran and facilitated through its RCC1-like domain the GDP/GTP exchange of Ran. In accordance with the necessity of a GEF to promote GTP-binding and nuclear export of Ran, the nuclear localization of Ran was strongly increased in MYCBP2-deficient DRGs. The finding that other GEFs for Ran besides RCC1 exist gives new insights in the complexity of the regulation of the Ran signaling pathway.  相似文献   

12.
13.
14.
15.
Phagocytosis is a complex multistep process requiring diverse signaling and regulatory molecules. ADP-ribosylation factor 6 (ARF6), a small GTPase, is known to regulate membrane trafficking and the actin cytoskeketon at the plasma membrane and functions as a regulatory molecule of phagocytosis. ARF activity is regulated by cycling between GDP-bound and GTP-bound forms. ARF activation is catalyzed by guanine nucleotide exchange factors (GEFs) that facilitate GTP binding. We had earlier reported a 100-kDa ARF-GEF, termed ARF-guanine nucleotide exchange protein 100, GEP100, that preferentially activates ARF6 and was also described by Dunphy et al. (Dunphy, J. L., Moravec, R., Ly, K., Lasell, T. K., Melancon, P., and Casanova, J. E. (2006) Curr. Biol. 16, 315–320) as brefeldin A-resistant ARF-GEF2 (BRAG2). We have now examined a role for GEP100 in phagocytosis. Stable depletion of GEP100 decreased phagocytosis of serum-treated zymosan and IgG-coated latex beads by human monocyte-macrophage-like U937 cells differentiated with phorbol 12-myristate 13-acetate. Decrease of phagocytic activity by RNAi was not rescued by GEP100ΔSec7, a deletion mutant lacking the ARF-activating domain. GEP100-depleted cells also exhibited reduced F-actin fibers around internalized particles. Attachment of these particles to cells and amounts of C3bi and Fcγ receptors, however, were not affected by GEP100 depletion. On immunofluorescence microscopy, GEP100 and ARF6 were concentrated and partially colocalized around internalized particles. Phagocytosis by GEP100-depleted cells was not further affected by depletion of ARF6. Phagocytic activity of GEP100-depleted cells was, however, rescued by expression of the constitutively active ARF6Q67N mutant but not by the dominant-negative ARF6T27N mutant. These data are consistent with the conclusion that GEP100 functions in phagocytosis via its role in ARF6-dependent actin remodeling.  相似文献   

16.
Cdc42, a member of the Ras superfamily of small guanine nucleotide binding proteins, plays an important role in regulating the actin cytoskeleton, intracellular trafficking, and cell polarity. Its activation is controlled by guanine nucleotide exchange factors (GEFs), which stimulate the dissociation of bound guanosine-5′-diphosphate (GDP) to allow guanosine-5′-triphosphate (GTP) binding. Here, we investigate the exchange factor activity of the Dbl-homology domain containing constructs of the adaptor protein Intersectin1L (ITSN1L), which is a specific GEF for Cdc42. A detailed kinetic characterisation comparing ITSN1L-mediated nucleotide exchange on Cdc42 in its GTP- versus GDP-bound state reveals a kinetic discrimination for GEF-stimulated dissociation of GTP: The maximum acceleration of the intrinsic mGDP [2′/3′-O-(N-methyl-anthraniloyl)-GDP] release from Cdc42 by ITSN1L is accelerated at least 68,000-fold, whereas the exchange of mGTP [2′/3′-O-(N-methyl-anthraniloyl)-GTP] is stimulated only up to 6000-fold at the same GEF concentration. The selectivity in nucleotide exchange kinetics for GDP over GTP is even more pronounced when a Cdc42 mutant, F28L, is used, which is characterised by fast intrinsic dissociation of nucleotides. We furthermore show that both GTP and Mg2+ ions are required for the interaction with effectors. We suggest a novel model for selective nucleotide exchange residing on a conformational change of Cdc42 upon binding of GTP, which enables effector binding to the Cdc42 · GTP complex but, at the same time, excludes efficient modulation by the GEF. The higher exchange activity of ITSN1L towards the GDP-bound conformation of Cdc42 could represent an evolutionary adaptation of this GEF that ensures nucleotide exchange towards the formation of the signalling-active GTP-bound form of Cdc42 and avoids dissociation of the active complex.  相似文献   

17.
Inositol polyphosphate kinase (IPK2) is a key component of inositol polyphosphate signaling. There are two highly homologous inositol polyphosphate kinases (AtIPK2α and AtIPK2β) in Arabidopsis. Previous studies that overexpressed or reduced the expression of AtIPK2α and AtIPK2β revealed their roles in auxiliary shoot branching, abiotic stress responses and root growth. Here, we report that AtIPK2α and AtIPK2β act redundantly during pollen development, pollen tube guidance and embryogenesis. Single knock‐out mutants of atipk2α and atipk2β were indistinguishable from the wild type, whereas the atipk2α atipk2β double mutant could not be obtained. Detailed genetic and cytological investigations showed that the mutation of AtIPK2α and AtIPK2β resulted in severely reduced transmission of male gametophyte as a result of abnormal pollen development and defective pollen tube guidance. In addition, the early embryo development of the atipk2α atipk2β double mutant was also aborted. Expressing either catalytically inactive or substrate specificity‐altered variants of AtIPK2β could not rescue the male gametophyte and embryogenesis defects of the atipk2α atipk2β double mutant, implying that the kinase activity of AtIPK2 is required for pollen development, pollen tube guidance and embryogenesis. Taken together, our results provide genetic evidence for the requirement of inositol polyphosphate signaling in plant sexual reproduction.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号