首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Profilin is an actin-binding protein that shows complex effects on the dynamics of the actin cytoskeleton. There are five profilin isoforms in Arabidopsis thaliana L. However, it is still an open question whether these isoforms are functionally different. In the present study, two profilin isoforms from Arabidopsis, PRF1 and PRF2 were fused with green fluorescent protein (GFP) tag and expressed in Escherichia coli and A. thaliana in order to compare their biochemical properties in vitro and their cellular distributions in vivo. Biochemical analysis revealed that fusion proteins of GFP-PRF1 and GFP-PRF2 can bind to poly-L-proline and G-actin showing remarkable differences. GFP-PRF1 has much higher affinities for both poly-L-proline and G-actin compared with GFP-PRF2. Observations of living cells in stable transgsnic A. thaliana lines revealed that 35S::GFP-PRF1 formed a filamentous network, while 35S::GFP-PRF2 formed polygonal meshes. Results from the treatment with latrunculin A and a subsequent recovery experiment indicated that filamentous alignment of GFP-PRF1 was likely associated with actin filaments. However, GFP-PRF2 localized to polygonal meshes resembling the endoplasmic reticulum. Our results provide evidence that Arabidopsis profllin isoforms PRF1 and PRF2 have different biochemical affinities for poly-L-proline and G-actin, and show distinctive Iocalizations in living cells. These data suggest that PRF1 and PRF2 are functionally different isoforms.  相似文献   

2.
Cerebellar granule neurons (CGNs) exploit Bergmann glia (BG) fibres for radial migration, and cell-cell contacts have a pivotal role in this process. Nevertheless, little is known about the mechanisms that control CGN-BG interaction. Here we demonstrate that the actin-binding protein profilin1 is essential for CGN-glial cell adhesion and radial migration. Profilin1 ablation from mouse brains leads to a cerebellar hypoplasia, aberrant organization of cerebellar cortex layers and ectopic CGNs. Conversely, neuronal progenitor proliferation, tangential migration of neurons and BG morphology appear to be independent of profilin1. Our mouse data and the mapping of developmental neuropathies to the chromosomal region of PFN1 suggest a similar function for profilin1 in humans.  相似文献   

3.
The closely related proteins AtFH4 and AtFH8 represent the group Ie clade of Arabidopsis formin homologues. The subcellular localization of these proteins and their ability to affect the actin cytoskeleton were examined. AtFH4 protein activity was identified using fluorimetric techniques. Interactions between Arabidopsis profilin isoforms and AtFH4 were assayed in vitro and in vivo using pull-down assays and yeast-2-hybrid. The subcellular localization of group Ie formins was observed with indirect immunofluorescence (AtFH4) and an ethanol-inducible green fluorescent protein (GFP) fusion construct (AtFH8). AtFH4 protein affected actin dynamics in vitro, and yeast-2-hybrid assays suggested isoform-specific interactions with the actin-binding protein profilin in vivo. Indirect immunofluorescence showed that AtFH4 localized specifically to the cell membrane at borders between adjoining cells. Expression of an AtFH8 fusion protein resulted in GFP localization to cell membrane zones, similar to AtFH4. Furthermore, aberrant expression of AtFH8 resulted in the inhibition of root hair elongation. Taken together, these data suggest that the group Ie formins act with profilin to regulate actin polymerization at specific sites associated with the cell membrane.  相似文献   

4.
Chlorophyllase (EC 3.1.1.14) is involved in the first step of chlorophyll degradation. Isolation of chlorophyllase genes greatly facilitates characterization of chlorophyllase properties and elucidation of molecular regulation of their in vivo activities. There are two chlorophyllase genes, AtCLH1 and AtCLH2, in Arabidopsis thallana. The in vivo roles of AtCLH1 have been reported previously. However, few studies have been carried out on AtCLH2. Here,we show that purified recombinant Chlase2, encoded by AtCLH2, exhibits in vitro chlorophyllase activity. Interestingly,"activation" of in vitro activity of the recombinant Chlase2 required higher concentrations of a detergent or a polar solvent. To determine its activity in vivo, the expression of AtCLH2 was inhibited by RNA interference. RNAi plants showed decreased contents of chlorophyllide without a substantial change in the total amount of the extractable chlorophyll and consequently presented lower chlorophyllide to chlorophyll ratios in their leaves. In addition, the two AtCLHs exhibited differential expression patterns. Our results suggest that AtCLH2 might play a distinctive role in chlorophyll catabolism in vivo.  相似文献   

5.
Chlorophyllase (EC 3.1.1.14) is involved in the first step of chlorophyll degradation. Isolation of chlorophyllase genes greatly facilitates characterization of chlorophyllase properties and elucidation of molecular regulation of their in vivo activities. There are two chlorophyllase genes, AtCLH1 and AtCLH2, in Arabidopsis thaliana. The in vivo roles of AtCLH1 have been reported previously. However, few studies have been carried out on AtCLH2. Here, we show that purified recombinant Chlase2, encoded by AtCLH2, exhibits in vitro chlorophyllase activity. Interestingly, "activation" of in vitro activity of the recombinant Chlase2 required higher concentrations of a detergent or a polar solvent. To determine its activity in vivo, the expression of AtCLH2 was inhibited by RNA interference. RNAi plants showed decreased contents of chlorophyllide without a substantial change in the total amount of the extractable chlorophyll and consequently presented lower chlorophyllide to chlorophyll ratios in their leaves. In addition, the two AtCLHs exhibited differential expression patterns. Our results suggest that AtCLH2 might play a distinctive role in chlorophyll catabolism in vivo.  相似文献   

6.
The endoplasmic reticulum (ER) has the ability to maintain the balance between demand for and synthesis of secretory proteins. To ensure protein‐folding homeostasis in the ER, cells invoke signaling pathways known as the unfolded protein response (UPR). To initiate UPR, yeasts largely rely on a conserved sensor, IRE1. In metazoans, there are at least three independent UPR signalling pathways. Some UPR transducers have been identified in plants, but no genetic interaction among them has yet been examined. The Arabidopsis genome encodes two IRE1 sequence homologs, AtIRE1A and AtIRE1B. Here we provide evidence that AtIRE1A and AtIRE1B have overlapping functions that are essential for the plant UPR. A double mutant of AtIRE1A and AtIRE1B, atire1a atire1b, showed reduced ER stress tolerance and a compromised UPR activation phenotype. We have also established that Arabidopsis AGB1, a subunit of the ubiquitous heterotrimeric GTP‐binding protein family, and AtIRE1A/AtIRE1B independently control two essential plant UPR pathways. By demonstrating that atire1a atire1b has a short root phenotype that is enhanced by an agb1 loss‐of‐function mutation, we have identified a role for UPR transducers in organ growth regulation.  相似文献   

7.
《Current biology : CB》2020,30(14):2651-2664.e5
  1. Download : Download high-res image (306KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
We have identified two endoplasmic reticulum (ER)-associated Arabidopsis proteins, KMS1 and KMS2, which are conserved among most species. Fluorescent protein fusions of KMS1 localised to the ER in plant cells, and over-expression induced the formation of a membrane structure, identified as ER whorls by electron microscopy. Hydrophobicity analysis suggested that KMS1 and KMS2 are integral membrane proteins bearing six transmembrane domains. Membrane protein topology was assessed by a redox-based topology assay (ReTA) with redox-sensitive GFP and confirmed by a protease protection assay. A major loop domain between transmembrane domains 2 and 3, plus the N- and C-termini were found on the cytosolic side of the ER. A C-terminal di(tri)-lysine motif is involved in retrieval of KMS1 and deletion led to a reduction of the GFP-KMS1 signal in the ER. Over-expression of KMS1/KMS2 truncations perturbed ER and Golgi morphology and similar effects were also seen when KMS1/KMS2 were knocked-down by RNA interference. Microscopy and biochemical experiments suggested that expression of KMS1/KMS2 truncations inhibited ER to Golgi protein transport.  相似文献   

10.
The ER body is a novel compartment that is derived from endoplasmic reticulum (ER) in Arabidopsis. In contrast to whole seedlings which have a wide distribution of the ER bodies, rosette leaves have no ER bodies. Recently, we reported that wound stress induces the formation of many ER bodies in rosette leaves, suggesting that the ER body plays a role in the defense system of plants. ER bodies were visualized in transgenic plants (GFP-h) expressing green fluorescent protein (GFP) with an ER-retention signal, HDEL. These were concentrated in a 1000-g pellet (P1) of GFP-h plants. We isolated an Arabidopsis mutant, nai1, in which fluorescent ER bodies were hardly detected in whole plants. We found that a 65-kDa protein was specifically accumulated in the P1 fraction of GFP-h plants, but not in the P1 fraction of nai1 plants. N-terminal peptide sequencing revealed that the 65-kDa protein was a beta-glucosidase, PYK10, with an ER-retention signal, KDEL. Immunocytochemistry showed that PYK10 was localized in the ER bodies. Compared with the accumulation of GFP-HDEL, which was associated with both cisternal ER and ER bodies, the accumulation of PYK10 was much more specific to ER bodies. PYK10 was one of the major proteins in cotyledons, hypocotyls and roots of Arabidopsis seedlings, while PYK10 was not detected in rosette leaves that have no ER bodies. These findings indicated that PYK10 is the main component of ER bodies. It is possible that PYK10 produces defense compounds when plants are damaged by insects or wounding.  相似文献   

11.
FAB1/PIKfyve是介导PI(3,5)P2 (磷脂酰肌醇3,5-二磷酸)生物合成的磷酸肌醇激酶。在动物和酵母(Saccharomyces cerevisiae)中, PI(3,5)P2参与调控胞内膜运输, 但在植物中的研究较少。该文通过分析拟南芥(Arabidopsis thaliana) FAB1的T-DNA插入突变体的表型解析PI(3,5)P2的生物学功能。拟南芥FAB1基因家族包含FAB1AFAB1BFAB1CFAB1D四个基因。研究发现, fab1a/b呈现雄配子体致死的表型。利用遗传杂交获得fab1b/c/d三突变体, 发现FAB1BFAB1CFAB1D功能缺失导致根毛相比野生型变短, 经FAB1特异性抑制剂YM201636处理后的野生型中也观察到相似的短根毛表型。此外, fab1b/c/d三突变体中DR5转录水平降低。同时, 外源施加生长素类似物2,4-D和NAA能部分恢复fab1b/c/d植株短根毛的表型, 但fab1b/c/d突变体对生长素转运抑制剂(1-NOA和TIBA)的敏感性与野生型相似。此外, FAB1B/C/D功能缺失使根毛中ROS的含量减少且影响肌动蛋白的表达。上述结果表明, FAB1B/C/D通过调控生长素分布、ROS含量和肌动蛋白的表达影响拟南芥根毛伸长。  相似文献   

12.
Gastrulation is a critical morphogenetic event during vertebrate embryogenesis, and it is comprised of directional cell movement resulting from the polarization and reorganization of the actin cytoskeleton. The non-canonical Wnt signaling pathway has emerged as a key regulator of gastrulation. However, the molecular mechanisms by which the Wnt pathway mediates changes to the cellular actin cytoskeleton remains poorly defined. We had previously identified the Formin protein Daam1 and an effector molecule XProfilin1 as links for Wnt-mediated cytoskeletal changes during gastrulation. We report here the identification of XProfilin2 as a non-redundant and distinct effector of Daam1 for gastrulation. XProfilin2 interacts with FH1 domain of Daam1 and temporally interacts with Daam1 during gastrulation. In the Xenopus embryo, XProfilin2 is temporally expressed throughout embryogenesis and it is spatially expressed in cells undergoing morphogenetic movement during gastrulation. While we have previously shown XProfilin1 regulates blastopore closure, overexpression or depletion of XProfilin2 specifically affects convergent extension movement independent of mesodermal specification. Specifically, we show that XProfilin2 modulates cell polarization and axial alignment of mesodermal cells undergoing gastrulation independent of XProfilin1. Together, our studies demonstrate that XProfilin2 and XProfilin1 are non-redundant effectors for Daam1 for non-canonical Wnt signaling and that they regulate distinct functions during vertebrate gastrulation.  相似文献   

13.
The mechanisms underlying the organization and dynamics of plant endomembranes are largely unknown. Arabidopsis RHD3, a distant member of the dynamin superfamily, has recently been implicated in plant ER morphology and Golgi movement through analyses of dominant-negative mutants of the putative GTPase domain in a heterologous system. Whether RHD3 is indispensable for ER architecture and what role regions other than the putative GTPase domain play in RHD3 function are unanswered questions. Here we characterized an EMS mutant, gom8, with disrupted Golgi movement and positioning and compromised ER shape and dynamics. gom8 mapped to a missense mutation in the RHD3 hairpin loop domain, causing accumulation of the mutant protein into large structures, a markedly different distribution compared with wild-type RHD3 over the ER network. Despite the GOM8 distribution, tubules fused in the peripheral ER of the gom8 mutant. These data imply that integrity of the hairpin region is important for the subcellular distribution of RHD3, and that reduced availability of RHD3 over the ER can cause ER morphology defects, but does not prevent peripheral fusion between tubules. This was confirmed by evidence that gom8 was phenocopied in an RHD3 null background. Furthermore, we established that the region encompassing the RHD3 hairpin domain and the C-terminal cytosolic domain is necessary for RHD3 function. We conclude that RHD3 is important in ER morphology, but is dispensable for peripheral ER tubulation in an endogenous context, and that its activity relies on the C-terminal region in addition to the GTPase domain.  相似文献   

14.
15.
RAB GTPases are key regulators of membrane traffic. Among them, RAB11, a widely conserved sub‐group, has evolved in a unique way in plants; plant RAB11 members show notable diversity, whereas yeast and animals have only a few RAB11 members. Fifty‐seven RAB GTPases are encoded in the Arabidopsis thaliana genome, 26 of which are classified in the RAB11 group (further divided into RABA1–RABA6 sub‐groups). Although several plant RAB11 members have been shown to play pivotal roles in plant‐unique developmental processes, including cytokinesis and tip growth, molecular and physiological functions of the majority of RAB11 members remain unknown. To reveal precise functions of plant RAB11, we investigated the subcellular localization and dynamics of the largest sub‐group of Arabidopsis RAB11, RABA1, which has nine members. RABA1 members reside on mobile punctate structures adjacent to the trans‐Golgi network and co‐localized with VAMP721/722, R‐SNARE proteins that operate in the secretory pathway. In addition, the constitutive‐active mutant of RABA1b, RABA1bQ72L , was present on the plasma membrane. The RABA1b ‐containing membrane structures showed actin‐dependent dynamic motion . Vesicles labeled by GFP–RABA1b moved dynamically, forming queues along actin filaments. Interestingly, Arabidopsis plants whose four major RABA1 members were knocked out, and those expressing the dominant‐negative mutant of RABA1B, exhibited hypersensitivity to salinity stress. Altogether, these results indicate that RABA1 members mediate transport between the trans‐Golgi network and the plasma membrane, and are required for salinity stress tolerance.  相似文献   

16.
* Actin organization and dynamics are essential for cell division, growth and cytoplasmic streaming. Here we analyse the effects of the overexpression of Actin Interacting Protein 1 (AIP1) on Arabidopsis development. * Arabidopsis plants were transformed with an ethanol-inducible AIP1 construct and the characteristics of these plants were analysed after induction. * When AIP1 was increased to approx. 90% above wild-type values, root hair development and actin organization in all cell types examined were disrupted. * Our data demonstrate that AIP1 is a key regulator of actin organization and that its regulation is essential for normal plant cell morphogenesis.  相似文献   

17.
In this work, we show that the proteins Pkc1 and Pfy1 play a role in the repolarization of the actin cytoskeleton and in cell survival in response to oxidative stress. We have also developed an assay to determine the actin polymerization capacity of total protein extracts using fluorescence recovery after photobleaching techniques and actin purified from rabbit muscle. This assay allowed us to demonstrate that Pfy1 promotes actin polymerization under conditions of oxidative stress, while Pkc1 induces actin polymerization and cell survival under all the conditions tested. Our assay also points to a relationship between Pkc1 and Pfy1 in the actin cytoskeleton polymerization that is required to adapt to oxidative stress.  相似文献   

18.
Trafficking of mRNA molecules from the nucleus to distal processes in neural cells is mediated by heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 trans‐acting factors. Although hnRNP A2/B1 is alternatively spliced to generate four isoforms, most functional studies have not distinguished between these isoforms. Here, we show, using isoform‐specific antibodies and isoform‐specific green fluorescent protein (GFP)‐fusion expression constructs, that A2b is the predominant cytoplasmic isoform in neural cells, suggesting that it may play a key role in mRNA trafficking. The differential subcellular distribution patterns of the individual isoforms are determined by the presence or absence of alternative exons that also affect their dynamic behavior in different cellular compartments, as measured by fluorescence correlation spectroscopy. Expression of A2b is also differentially regulated with age, species and cellular development. Furthermore, coinjection of isoform‐specific antibodies and labeled RNA into live oligodendrocytes shows that the assembly of RNA granules is impaired by blockade of A2b function. These findings suggest that neural cells modulate mRNA trafficking by regulating alternative splicing of hnRNP A2/B1 and controlling expression levels of A2b, which may be the predominant mediator of cytoplasmic‐trafficking functions. These findings highlight the importance of considering isoform‐specific functions for alternatively spliced proteins.  相似文献   

19.
利用gateway技术从拟南芥中克隆了3个蛋白磷酸酶2C基因At5G66080、At1G68410和At5G06750,3个基因的ORF全长分别为1 158 bp、1 311 bp和1 182 bp,分别编码一条385、376和393个氨基酸残基的多肽.构建了3个基因的植物表达载体35S:GFP:At5G66080、35S:GFP:At1G68410和35S:GFP:At5G06750,采用基因枪法进行的洋葱表皮细胞GFP瞬时表达实验表明,荧光信号主要分布在细胞核上,显示这3个基因的产物可能在细胞核上发挥作用.利用实时荧光定量PCR研究At5G66080、At1G68410和At5G06750基因在不同组织中的表达特性,结果表明:3个基因在各个器官均有表达,但表达量不同;At5G66080、At1G68410和At5G06750基因在花中表达量最大;At5G66080和At5G06750基因在根、叶和叶柄中的表达量次之,在茎中的表达量最低;At1G68410基因在根中的表达量次之,在茎、叶和叶柄中的表达量较低.  相似文献   

20.
Stromal interaction molecules STIM1 and STIM2 are endoplasmic reticulum (ER) Ca2+ sensors that initiate store-operated Ca 2+ entry (SOCE). The roles of STIM1-mediated SOCE in cancer biology have been highlighted in different types of cancer, but that of STIM2 is unknown. By the model of cervical cancer, here we focus on the cooperative regulation of SOCE by STIM proteins and their distinct roles in cellular function. Immunofluorescent stainings of surgical specimens of cervical cancer show that STIM1 and STIM2 are abundant in tumor tissues, but STIM1 is the major ER Ca 2+ sensor identified in the invasive front of cancer tissues. STIM1 or STIM2 overexpression in cervical cancer SiHa cells induces an upregulated SOCE. Regarding cellular function, STIM1 and STIM2 are necessary for cell proliferation, whereas STIM1 is the dominant ER Ca 2+ sensor involved in cell migration. During SOCE, STIM1 is aggregated and translocated towards the Orai1-containing plasma membrane in association with the microtubule plus-end binding protein EB1. In contrast, STIM2 is constitutively aggregated without significant trafficking or association with microtubules. These results show the distinct role of STIM1 and STIM2 in SOCE and cellular function of cervical cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号