首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Eusocial insects display a caste system in which different castes are morpho-logically and physiologically specialized for different tasks.Recent studies have revealed that epigenetic modifications,including DNA methylation and histone modification,me-diate caste determination and differentiation,longevity,and polyethism in eusocial insects.Although there has been a growing interest in the relationship between epigenetic mech-anisms and phenotypic plasticity in termites,there is ltte information about differential expression levels among castes and expression sites for these genes in termites.Here we show royaltissuc-specific expression of epigenetic modification genes in the termite Reticulitermes speratus.Using RNA-seq,we identified 74 genes,including three DNA methyltransferases,seven sirtuins,48 Trithorax group proteins,and 16 Polycomb group proteins.Among these genes,15 showed king-specific expression,and 52 showed age-dependent differential expression in kings and queens.Quantitative real-time PCR revealed that DNA methyltransferase 3 is expressed specifically in the king's testis and fat body,whereas some histone modification genes are remarkably expressed in the king's testis and queen's ovary.These findings imply that epigenetic modification plays important roles in the gamete production process in termite kings and queens.  相似文献   

3.
Lipid bodies store oils in the form of triacylglycerols. Oleosin, caleosin and steroleosin are unique proteins localized on the surface of lipid bodies in seed plants. This study has identified genes encoding lipid body proteins oleosin, caleosin and steroleosin in the genomes of five plants: Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Selaginella moellendorffii and Physcomitrella patens. The protein sequence alignment indicated that each oleosin protein contains a highly-conserved proline knot motif, and proline knob motif is well conserved in steroleosin proteins, while caleosin proteins possess the Dx[D/N]xDG-containing calcium-binding motifs. The identification of motifs (proline knot and knob) and conserved amino acids at active site was further supported by the sequence logos. The phylogenetic analysis revealed the presence of magnoliophyte-and bryophyte-specific subgroups. We analyzed the public microarray data for expression of oleosin, caleosin and steroleosin in Arabidopsis and rice during the vegetative and reproductive stages, or under abiotic stresses. Our results indicated that genes encoding oleosin, caleosin and steroleosin proteins were expressed predominantly in plant seeds. This work may facilitate better understanding of the members of lipid-body-membrane proteins in diverse organisms and their gene expression in model plants Arabidopsis and rice.  相似文献   

4.
5.
Jasmonates(JAs) are a new class of plant hormone that regulate expression of diverse genes to mediate various plant responses.The Arabidopsis F-box protein COI1 is required for plant defense and male fertility in JA signal pathway.To further investigate the regulatory role of COI1 in male fertility,we compared the proteomics profiles of Arabidopsis wild type(WT) flowers with coi1-1 mutan male-sterile flowers using two-dimensional difference gel electrophoresis coupled with matrix-assisted laser desoption/ionization-time-of-flight mass spectrometry.Sixteen proteins with potential function in specific biological processes such as metabolism processes and defense/stress responses were differentially expressed in WT and coi1-1 mutant flowers.Verification on a phi class glutathione transferase AtGSTF9,one out of these 16 identified proteins,revealed that the expression of AtGSTF9 was severely downregulated in flowers of coi1-1 mutant compared with that of WT.Further function analyses of these genes would provide new insights into the molecular basis of COI1-regulated male fertility.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Pluripotent stem cells(PSCs) can be expanded in vitro in different culture conditions,resulting in a spectrum of cell states with distinct properties. Understanding how PSCs transition from one state to another, ultimately leading to lineage-specific differentiation, is important for developmental biology and regenerative medicine. Although there is significant information regarding gene expression changes controlling these transitions, less is known about post-translational modifications of proteins. Protein crotonylation is a newly discovered post-translational modification where lysine residues are modified with a crotonyl group. Here, we employed affinity purification of crotonylated(LC–MS/MS) to systematically profile protein crotonylation in mouse PSCs in different states including ground, metastable, and primed states, as well as metastable PSCs undergoing early pluripotency exit. We successfully identified 3628 high-confidence crotonylated sites in 1426 proteins. These crotonylated proteins are enriched for factors involved in functions/processes related to pluripotency such as RNA biogenesis, central carbon metabolism, and proteasome function. Moreover, we found that increasing the cellular levels of crotonyl-coenzyme A(crotonyl-CoA) through crotonic acid treatment promotes proteasome activity in metastable PSCs and delays their differentiation, consistent with previous observations showing that enhanced proteasome activity helps to sustain pluripotency. Our atlas of protein crotonylation will be valuable for further studies of pluripotency regulation and may also provide insights into the role of metabolism in other cell fate transitions.  相似文献   

14.
15.
Understanding how human cardiomyocytes mature is crucial to realizing stem cell-based heart regeneration, modeling adult heart diseases, and facilitating drug discovery. However, it is not feasible to analyze human samples for maturation due to inaccessibility to samples while cardiomy-ocytes mature during fetal development and childhood, as well as difficulty in avoiding variations among individuals. Using model animals such as mice can be a useful strategy;nonetheless, it is not well-understood whether and to what degree gene expression profiles during maturation are shared between humans and mice. Therefore, we performed a comparative gene expression analysis of mice and human samples. First, we examined two distinct mice microarray platforms for shared gene expression profiles, aiming to increase reliability of the analysis. We identified a set of genes display-ing progressive changes during maturation based on principal component analysis. Second, we demonstrated that the genes identified had a differential expression pattern between adult and ear-lier stages (e.g., fetus) common in mice and humans. Our findings provide a foundation for further genetic studies of cardiomyocyte maturation.  相似文献   

16.
17.
18.
Microarray analyses of gene expression are widely used, but reports of the same analyses by different groups give widely divergent results, and raise questions regarding reproducibility and reliability. We take as an example recent published reports on microarray experiments that were designed to identify retinoic acid responsive genes. These reports show substantial differences in their results. In this article, we review the methodology, results, and potential causes of differences in these applications of microarrays. Finally, we suggest practices to improve the reliability and reproducibility of microarray experiments.  相似文献   

19.
Li G  Lin F  Xue HW 《Cell research》2007,17(10):881-894
Phospholipase D (PLD) plays a critical role in plant growth and development, as well as in hormone and stress responses. PLD encoding genes constitute a large gene family that are present in higher plants. There are 12 members of the PLD family in Arabidopsis thaliana and several of them have been functionally characterized; however, the members of the PLD family in Oryza sativa remain to be fully described. Through genome-wide analysis, 17 PLD members found in different chromosomes have been identified in rice. Protein domain structural analysis reveals a novel subfamily, besides the C2-PLDs and PXPH-PLDs, that is present in rice - the SP-PLD. SP-PLD harbors a signal peptide instead of the C2 or PXPH domains at the N-terminus. Expression pattern analysis indicates that most PLD-encoding genes are differentially expressed in various tissues, or are induced by hormones or stress conditions, suggesting the involvement of PLD in multiple developmental processes. Transgenic studies have shown that the suppressed expression office PLDβ1 results in reduced sensitivity to exogenous ABA during seed germination. Further analysis of the expression of ABA signaling-related genes has revealed that PLDβ1 stimulates ABA signaling by activating SAPK, thus repressing GAmyb exoression and inhibiting seed germination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号