首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rate of regeneration of rat sciatic nerve sensory axons was measured using the pinch-reflex test method, and confirmed by studying the transport of labelled protein into the regenerating axons. For nerves receiving a single test crush lesion the rate was 4.02 ± 0.03 (SE) mm/day. For nerves with a conditioning lesion made at the knee seven days prior to the test lesion at the hip the rate was 5.73 ± 0.06 mm/day, and for nerves where both conditioning and test lesions were made at the same site (hip or knee) but separated by seven days, the rate was 6.76 ± 0.04 mm/day, a 68% increase over the normal rate, showing that pre-degeneration of the nerve distal to the site of the test lesion increases the rate of regeneration. It is concluded that the rate of axon regeneration can be influenced by the environment through which the regenerating axons grow.  相似文献   

2.
Neurons regulate Schwann cell genes by diffusible molecules   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

3.
4.
Tullidinol, a neurotoxin extracted from the Karwinskia humboldtiana fruit, dissolved in peanut oil was injected into the right sciatic nerve of adult cats. The contralateral sciatic nerve received an equivalent volume of peanut oil alone. The fast axonal transport of labeled ([3H]Leucine) protein was studied in sensory and motor axons of both sciatic nerves. The radioactive label was pressure injected either into the L7 dorsal root ganglion or the ventral region of the same spinal cord segment. Several days after the toxin injection, the cat limped and the Achilles tendon reflex was nearly absent in the right hind limb. The amount of transported label was decreased distal to the site of toxin injection. Proximal to this site, the transported material was dammed. Sensory and motor axons showed similar changes. In addition, the toxin produced demyelination and axonal degeneration. Axonal transport and the structure of the axons were normal in the contralateral nerve. Both, Schwann cells and axons of the right sciatic nerve showed globular inclusions, presumably oil droplets containing the toxin. We conclude that Schwann cells and axons as well are tullidinol targets.Departamento de Química. Centro de Investigación y de Estudios Avanzados del IPN.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

5.
Laminin is an extracellular matrix component which can promote neuritic elongation in vitro and has been implicated in the promotion of nerve regeneration in vivo. The present study was undertaken to determine if implantation of Elvax pellets containing exogenous laminin distal to site of lesion could promote regenerative responses in vivo in the adult rat peripheral (sciatic) and central (optic) nerve. In peripheral nerve preparations, Elvax pellets containing laminin or collagen were assessed for their ability to "lure" transected axons into 5-mm-long silicone tubes. In optic nerve studies, laminin pellets were inserted distal to site of nerve crush, and the extent of axonal elongation 2.5 mm to the injury site was assessed. Laminin-containing pellets appeared to support appreciable axonal elongation in both systems. This effect was dose-dependent and not exerted by collagen pellets, substrate-free pellets, or pellets containing irradiated laminin. Collagen IV had some beneficial effect in peripheral, but not central, nerve preparations.  相似文献   

6.
Reversal of axonal transport at a nerve crush.   总被引:5,自引:0,他引:5  
Abstract— —We have compared retrograde axonal transport of 3H-labeled protein in normal rat motor and sensory axons, and axons which were injured by a distal ligation of the sciatic nerve. After injection of L-[3H]leucine into the vicinity of the neuron cell bodies, labeled protein was transported into the axons. A premature return of protein towards the cell bodies occurred in the injured axons, which we interpret as a reversal of axonal transport occurring at the site of injury. We estimate that reversal of transport occurred within 1.9–2.4 h of the arrival of labeled protein at the injury, and that the minimum velocity of the subsequent retrograde transport was 112–133 mm day?1. The ability of the injured axons to reverse transport developed about 0.8 h after making the injury. A large fraction of the orthograde transported protein was returned towards the cell body: it is estimated that by 28 h after labeled protein in sensory axons reached the injury, 46% of the3H-labeled protein originally transported to the injury site had been returned. In intact sensory nerves at this time only 15% of the transported protein had returned. It is suggested that axonal injury produces a sudden increase in the return of newly synthesized protein to the cell body, and that this might serve as a signal for chromatolysis.  相似文献   

7.
Abstract: Biochemical methods were used to study the time course of transport of choline phospholipids (labeled by the injection of [3H]choline into the ventral horn of the lumbar spinal cord) in rat sciatic nerve. Autoradiographic methods were used to localize the transported lipid within motor axons. Transported phospholipid, primarily phosphatidylcholine, present in the nerve at 6 h, continued to accumulate over the following 12 days. No discrete waves of transported lipid were observed (a small wave of radioactive phospholipid moving at the high rate would have been missed); the amounts of radioactive lipid increased uniformly along the entire sciatic nerve. In light-microscope autoradiographs, a class of large-caliber axons, presumably motor axons, retained the labeled lipid. Some lipid, even at 6 h, was seen within the myelin sheaths. Later, the labeling of the myelin relative to axon increased. The continued accumulation of choline phospholipids in the axons probably signifies their prolonged release from cell bodies and their retention in various axonal membranes, including the axolemma. The build-up of these phospholipids in myelin probably represents their transfer from the axons to the myelin sheaths surrounding them. When nerves are crushed and allowed to regenerate for 6 or 12 days, choline phospholipids transported during these times enter the regenerating nerve. In light and electron microscope autoradiographs, transported lipid was seen to be localized primarily in the regenerating axons. However, grains overlay the adjacent Schwann cell cytoplasm, indicating transported lipids were transferred from the regenerating axons to the associated Schwann cells. In addition, some cells not associated with growing axons were labeled, suggesting that phosphatidylcholine and possibly acetylcholine, carried to the regenerating axons by axonal transport, were actively metabolized in the terminal, with released choline label being used by other cells. These results demonstrate that axonal transport supplies mature and growing axons and their glial cells with choline phospholipids.  相似文献   

8.
Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis), in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis) repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries.  相似文献   

9.
Primary sensory neurons project to motor neurons directly or through interneurons and affect their activity. In our previous paper we showed that intramuscular sprouting can be affected by changing the sensory synaptic input to motor neurons. In this work, motor axon sprouting within a peripheral nerve (extramuscular sprouting) was induced by nerve injury at such a distance from muscle so as not to allow nerve-muscle trophic interactions. Two different procedures were carried out: (1) sciatic nerve crush and (2) sciatic nerve crush with homosegmental ipsilateral L3-L5 dorsal rhizotomy. The number of regenerating motor axons innervating extensor digitorum longus muscle was determined by in vivo muscle tension recordings and an index of their individual conduction rate was obtained by in vitro intracellular recordings of excitatory postsynaptic end-plate potentials in muscle fibers. The main findings were: (1) there are more regenerated axons distally from the lesion than parent axons proximally to the lesion (sprouting at the lesion); (2) sprouting at the lesion was negatively affected by homosegmental ipsilateral dorsal rhizotomy; (3) the number of motor axons innervating extensor digitorum longus muscle extrafusal fibers counted proximally to the lesion increased following nerve injury and regeneration but this did not occur when sensory input was lost. A transient innervation of extrafusal fibers by &#110 motor neurons may explain the increase of motor axons counted proximally to the lesion.  相似文献   

10.
In this report, we have identified two apolipoproteins (apo), apoD and apoA-IV, that, together with the previously identified apoA-I and apoE, accumulate in the regenerating peripheral nerve. These four apolipoproteins were identified in regenerating rat sciatic nerves by their molecular weights, their isoelectric points, and their recognition by specific antibodies. Antibodies were also used to document the changing concentrations of these apolipoproteins in homogenates of regenerating sciatic nerves collected 1 day to 6 weeks after a denervating crush injury. By 3 weeks after injury, at their peak accumulation, apoA-IV and apoA-I had increased 14- and 26-fold, respectively, relative to their concentrations in the normal nerve. Apolipoproteins D and E, in contrast, increased over 500- and 250-fold, respectively, by 3 weeks. These same apolipoproteins also accumulated in the regenerating sciatic nerves of two other species, the rabbit and the marmoset monkey. Immunocytochemistry showed that apoD was produced by astrocytes and oligodendrocytes in the normal central nervous system, and by neurolemmal or fibroblastic cells in the normal peripheral nervous system. Metabolic labeling of both apoD and apoE by [35S]methionine during an in vitro incubation of regenerating rat sciatic nerve segments confirmed that these apolipoproteins are synthesized by the nerve. Neither apoA-IV nor apoA-I was metabolically labeled, however, suggesting that they enter the nerve from the plasma. The results from this study provide evidence that several different apolipoproteins from various sources may play a role in lipid transport within neural tissues.  相似文献   

11.
Abstract: The concentration of apolipoprotein E (apoE), a high-affinity ligand for the low-density lipoprotein receptor, increases dramatically in peripheral nerve following injury. This endoneurial apoE is thought to play an important role in the redistribution of lipids from the degenerating axonal and myelin membranes to the regenerating axons and myelin sheaths. The importance of apoE in nerve repair was examined using mutant mice that lack apoE. We show that at 2 and 4 weeks following sciatic nerve crush, regenerating nerves in apoE-deficient mice were morphologically similar to regenerating nerves in control animals, indicating that apoE is not essential for peripheral nerve repair. Moreover, cholesterol synthesis was reduced in regenerating nerves of apoE-deficient mice as much as in regenerating nerves of control animals. These results suggest that the intraneural conservation and reutilization of cholesterol following nerve injury do not require apoE.  相似文献   

12.
Fry EJ  Ho C  David S 《Neuron》2007,53(5):649-662
We report a role for Nogo receptors (NgRs) in macrophage efflux from sites of inflammation in peripheral nerve. Increasing numbers of macrophages in crushed rat sciatic nerves express NgR1 and NgR2 on the cell surface in the first week after injury. These macrophages show reduced binding to myelin and MAG in vitro, which is reversed by NgR siRNA knockdown and by inhibiting Rho-associated kinase. Fourteen days after sciatic nerve crush, regenerating nerves with newly synthesized myelin have fewer macrophages than cut/ligated nerves that lack axons and myelin. Almost all macrophages in the cut/ligated nerves lie within the Schwann cell basal lamina, while in the crushed regenerating nerves the majority migrate out. Furthermore, crush-injured nerves of NgR1- and MAG-deficient mice and Y-27632-treated rats show impaired macrophage efflux from Schwann cell basal lamina containing myelinated axons. These data have implications for the resolution of inflammation in peripheral nerve and CNS pathologies.  相似文献   

13.
Primary sensory neurons project to motor neurons directly or through interneurons and affect their activity. In our previous paper we showed that intramuscular sprouting can be affected by changing the sensory synaptic input to motor neurons. In this work, motor axon sprouting within a peripheral nerve (extramuscular sprouting) was induced by nerve injury at such a distance from muscle so as not to allow nerve-muscle trophic interactions. Two different procedures were carried out: (1) sciatic nerve crush and (2) sciatic nerve crush with homosegmental ipsilateral L3-L5 dorsal rhizotomy. The number of regenerating motor axons innervating extensor digitorum longus muscle was determined by in vivo muscle tension recordings and an index of their individual conduction rate was obtained by in vitro intracellular recordings of excitatory postsynaptic end-plate potentials in muscle fibers. The main findings were: (1) there are more regenerated axons distally from the lesion than parent axons proximally to the lesion (sprouting at the lesion); (2) sprouting at the lesion was negatively affected by homosegmental ipsilateral dorsal rhizotomy; (3) the number of motor axons innervating extensor digitorum longus muscle extrafusal fibers counted proximally to the lesion increased following nerve injury and regeneration but this did not occur when sensory input was lost. A transient innervation of extrafusal fibers by gamma motor neurons may explain the increase of motor axons counted proximally to the lesion.  相似文献   

14.
15.
A reduction in neurofilament (NF) protein synthesis and changes in their phosphorylation state are observed during nerve regeneration. To investigate how such metabolic changes are involved in the reorganization of the axonal cytoskeleton, we studied the injury-induced changes in the solubility and axonal transport of NF proteins as well as their phosphorylation states in the rat sciatic nerve. In the control nerve, 15-25% of high-molecular-mass NF subunit (NF-H) was recovered in the 1% Triton-soluble fraction when fractionated in the presence of phosphatase inhibitors. After a complete loss of NF proteins distal to the injury site (70-75 mm from the spinal cord) 1 week after injury, NF-H detected in the regenerating sprouts at 2 weeks or later exhibited higher solubility (>50%) and lower C-terminal phosphorylation level than NF-H in the control nerve. Solubility increase was also apparent with L-[35S]methionine-labeled NF-H that was in transit in the proximal axon at the time of injury. The low-molecular-mass subunit remained in the insoluble fraction in both the normal and the regenerating nerves, indicating that selective solubilization of NF-H rather than total filament disassembly occurs during regeneration.  相似文献   

16.
Abstract— The redistribution of rapidly migrating [3H]leucine-labelled proteins and [3H]fucose-labelled glycoproteins was studied in ligated regenerating hypoglossal and vagus nerves of the rabbit. When regenerating and contralateral hypoglossal nerves were ligated 16 h after labelling of the nerve cell bodies, rapidly migrating proteins and glycoproteins accumulated distal to the ligatures indicating a rapid retrograde transport from the peripheral parts of the nerves within 6 h. The retrograde accumulation of both proteins and glycoproteins was greater on the regenerating side than on the contralateral side at both 1 and 5 weeks after a nerve crush. Labelled proteins and glycoproteins also accumulated proximal to the ligatures, indicating a delayed rapid anterograde phase of axonal transport. The accumulation of this phase was also greater on the regenerating side 1 week after a nerve crush for both labelled proteins and glycoproteins. One week after a crush of the cervical vagus nerve, rapidly migrating proteins and glycoproteins redistributed between he crush zone and a proximal ligature applied 16 h after labelling of the nerve cell bodies. A retrograde accumulation occurred distal to the ligature within 6 h, indicating a rapid retrograde transport from the crush zone.  相似文献   

17.
Remyelination is an important aspect of nerve regeneration after nerve injury but the underlying mechanisms are not fully understood. The neurotrophin receptor, p75(NTR), in activated Schwann cells in the Wallerian degenerated nerve is up-regulated and may play a role in the remyelination of regenerating peripheral nerves. In the present study, the role of p75(NTR) in remyelination of the sciatic nerve was investigated in p75(NTR) mutant mice. Histological results showed that the number of myelinated axons and thickness of myelin sheath in the injured sciatic nerves were reduced in mutant mice compared with wild-type mice. The myelin sheath of axons in the intact sciatic nerve of adult mutant mice is also thinner than that of wild-type mice. Real-time RT-PCR showed that mRNA levels for myelin basic protein and P0 in the injured sciatic nerves were significantly reduced in p75(NTR) mutant animals. Western blots also showed a significant reduction of P0 protein in the injured sciatic nerves of mutant animals. These results suggest that p75(NTR) is important for the myelinogenesis during the regeneration of peripheral nerves after injury.  相似文献   

18.
Abstract: Axonal transport of phospholipids in normal and regenerating sciatic nerve of the rat was studied. At various intervals after axotomy of the right sciatic nerve in the midthigh region and subsequent perineurial sutures of the transected fascicles, a mixture of 60 μCi [Me-HC]choline and 15 μCi [2-3H]glycerol in the region of the spinal motor neurons of the L5 and L6 segments was injected bilaterally. The amount of radioactive lipid (and in certain cases its distribution in various lipid classes) along the nerve was determined as a function of time. Three days after fascicular suture and 6 h after spinal cord injection of precursors, there was an accumulation of labeled phospholipids and sphingolipids in the transected sciatic nerve in the region immediately proximal to the site of suture. Nine days after, there was a marked increase in the accumulation of radioactivity in the distal segments of the injured nerve, which increased up to 14 days after cutting and disappeared as regeneration proceeded (21–45 days). In all segments of both normal and regenerating nerve fibers, as well as in L5 and L6 spinal cord segments, only phosphatidylcholine and sphingomyelin were labeled with [14C]choline. These results suggest that the regeneration process in a distal segment of a peripheral neuron, following cutting and fascicular repairing by surgical sutures, is sustained in the first 3 weeks by changes in the amount of phospholipids rapidly transported along the axon towards the site of nerve fiber outgrowth.  相似文献   

19.
The axonal transport of putrescine or its polyamine derivatives spermidine or spermine is a subject of some debate. We investigated this question by injecting [3H]putrescine into the lumbar spinal cord of the rat and measuring the accumulation of radioactivity central to ligatures placed on intact and regenerating sciatic nerves. In normal nerves, approximately twice as much radioactivity built up proximal to these ligatures 2 or 3 days after injection than at more distal ligatures used to control for accumulation of radioactivity which might be due to tissue damage alone. In regenerating nerves the amount of radioactivity accumulating at the ligature was approximately five times that at the distal ligature and two to three times greater than in intact nerves. The identity of the radioactivity in regenerating nerves, determined on an amino acid analyzer, was found to be primarily spermidine and an unknown compound that migrated as a frontal elution peak. Autoradiographic analysis showed that the radioactivity was largely confined to axons, but a significant amount of the silver grains was associated with Schwann cells and myelin sheaths surrounding labeled axons in both intact and regenerating nerves. The data indicate that polyamine derivatives of putrescine are transported axonally in rat sciatic nerves, and some of this transported material accumulates in Schwann cells surrounding the labeled axons. These processes are apparently augmented during regeneration of the injured axons.  相似文献   

20.
Injury to the rat sciatic nerve leads to the induction of nerve growth factor (NGF) receptors on the denervated Schwann cells and their disappearance on the regenerating axons of the axotomized, normally NGF-sensitive sensory and sympathetic neurons. This disappearance in the axonal expression and retrograde transport of NGF receptors is associated with a similarly dramatic reduction in the axonal uptake and retrograde transport of NGF following axotomy and during regeneration. In view of the massive NGF synthesis occurring in the injured nerve, these results suggest that, while sensory and sympathetic neurons are the primary targets of NGF in the normal peripheral nervous system, the denervated Schwann cells may become its primary target in the aftermath of nerve injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号