首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A missense mutation (N1411) in Presenilin-2 (PS-2) gene is associated with early-onset familial Alzheimer's disease. In this study, SK-N-SH human neuroblastoma cells were transfected with wild-type and mutant PS-2 gene to examine presenilin-2 effects on apoptosis. Serum deprivation resulted in enhanced apoptosis in mutant PS-2 comparing with wild-type PS-2. Similarly, mutant PS-2 induced lactate dehydrogenase release to greater extent than wild-type PS-2. Time course experiment demonstrated that the increase in caspase-3-like activity was more pronounced and accelerated in mutant PS-2, compared to wild-type PS-2. While a significant decrease in bcl-2, an anti-apoptotic molecule, occurred in the cells overexpressing mutant PS-2, no significant change was observed in bax, a pro-apoptotic molecule, as compared with the cells overexpressing wild-type PS-2. Our study demonstrated that mutant PS-2 induces apoptosis accompanied by increased caspase-3-like activity and decreased bcl-2 expression in neuronal cells after serum-deprivation.  相似文献   

2.
The death of cholinergic neurons in the cerebral cortex and certain subcortical regions is linked to irreversible dementia relevant to AD (Alzheimer's disease). Although multiple studies have shown that expression of a FAD (familial AD)-linked APP (amyloid β precursor protein) or a PS (presenilin) mutant, but not that of wild-type APP or PS, induced neuronal death by activating intracellular death signals, it remains to be addressed how these signals are interrelated and what the key molecule involved in this process is. In the present study, we show that the PS1-mediated (or possibly the PS2-mediated) signal is essential for the APP-mediated death in a γ-secretase-independent manner and vice versa. MOCA (modifier of cell adhesion), which was originally identified as being a PS- and Rac1-binding protein, is a common downstream constituent of these neuronal death signals. Detailed molecular analysis indicates that MOCA is a key molecule of the AD-relevant neuronal death signals that links the PS-mediated death signal with the APP-mediated death signal at a point between Rac1 [or Cdc42 (cell division cycle 42)] and ASK1 (apoptosis signal-regulating kinase 1).  相似文献   

3.
Role of apoptosis in photodynamic sensitivity of human tumour cell lines   总被引:2,自引:0,他引:2  
Photodynamic therapy (PDT) using a photosensitizer, such as haematoporphyrin derivative (HpD), in conjunction with visible light is a promising new modality to treat localized cancer. Cell death caused by PDT (through the generation of reactive oxygen species) can occur either by apoptosis (interphase death or as a secondary event following mitosis) and/or necrosis depending on the cell type, concentration and intracellular localization of the sensitizer, and the light dose. Since, apoptosis induced by PDT treatment plays an important role in determining the photodynamic efficacy, in the present work we have investigated the role of apoptotic cell death in relation to the observed differences in sensitivity to HpD-PDT between a human glioma cell line (BMG-1) carrying wild-type tumour suppressor gene p53 and a human squamous carcinoma cell line (4451) with mutated p53. HpD (photosan-3; PS-3) -PDT induced apoptosis was studied by: [A] flow-cytometric analysis of DNA content (sub G0/G1 population); [B] phosphatidylserine externalization (Annexin-V +ve cells); [C] cell size and cytoskeleton reorganization (light-scatter analysis); and [D] fluorescence microscopy (morphological features). PS-3-PDT induced a significantly higher level of apoptosis in BMG-1 cells as compared to 4451 cells. This was dependent on the concentration of PS-3 as well as post-irradiation time in both the cell lines. At 2.5 microg/ml of PS-3 the fraction of BMG-1 cells undergoing apoptosis (60%) was nearly 6 folds higher than 4451 cells (10%). In BMG-1 cells the induction of apoptosis increased with PS-3 concentration up to 5 microg/ml (>80%). However, a decrease was observed at a concentration of 10 microg/ml, possibly due to a shift in the mode of cell death from apoptosis to necrosis. In 4451 cells, on the other hand, the increase in apoptosis could be observed even up to 10 microg/ml of PS-3 (60%). Present results show that the higher sensitivity to PS-3-PDT in glioma cells arise on account of a higher level of apoptosis and suggest that induction of apoptosis is an important determinant of photodynamic sensitivity in certain cell types.  相似文献   

4.
5.
Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.  相似文献   

6.
Proteinase inhibitor 9 (PI-9, SerpinB9) is the only known human intracellular granzyme B inhibitor. Whether expression of PI-9 is sufficient to block cytolysis induced by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells remains controversial. To evaluate the roles of PI-9, we isolated and tested three lines of stably transfected HeLa cells expressing wild-type PI-9 and one line expressing an inactive mutant PI-9. Expressions of wild-type PI-9, but not the inactive mutant PI-9, inhibited cytolysis induced by human NK92 and NKL natural killer cells. Expression of high levels of PI-9 is therefore sufficient to protect human cells against NK cell-mediated cell death. Using two assays, we show that expressing wild-type PI-9, but not the inactive mutant PI-9, blocks Fas/Fas ligand (Fas/FasL)-mediated apoptosis. PI-9 expression has no effect on etoposide-induced apoptosis. HeLa cells exhibiting substantial resistance to Fas/FasL-mediated apoptosis contain 2- to 3-fold higher PI-9 levels than HCT116 human colon cancer cells and 2- to 3-fold lower PI-9 levels than MCF7/ERHA breast cancer cells, in which PI-9 is strongly induced by estrogens, and by tamoxifen. Expression of increasing levels of PI-9 in target cells may progressively inhibit immune surveillance by blocking NK and CTL-induced cytotoxicity through the perforin/granzyme pathway and then through the Fas/FasL pathway.  相似文献   

7.
Malignant glioma is resistant to the induction of apoptosis, resulting in a subsequent failure of chemotherapy in clinical treatment strategies. Downregulation of bcl-2 and bcl-xl expression in glioblastoma cells can induce apoptosis. BH3-only proteins, which include Bmf, are essential initiators of stress-induced cell death and apoptosis. Whether PS-341 regulates expression of BH3-only proteins in glioblastoma cells during the procedure of apoptosis is unclear. This study was designed to investigate the effects of PS-341 on glioma cell death and its possible signaling pathway. Our results demonstrate that Bmf is upregulated by PS-341 in A172 and T98G cells, and Bmf has a crucial role in PS-341-mediated cell death. In addition, we found that expression of Bmf is regulated by JNK phosphorylation.  相似文献   

8.
Mutant human presenilins cause early-onset familial Alzheimer's disease and render cells susceptible to apoptosis in cultured cell models. We show that loss of presenilin function in Drosophila melanogaster increases levels of apoptosis in developing tissues. Moreover, overexpression of presenilin causes apoptotic and neurogenic phenotypes resembling those of Presenilin loss-of-function mutants, suggesting that presenilin exerts a dominant negative effect when expressed at high levels. In Drosophila S2 cells, Psn overexpression leads to reduced Notch receptor synthesis affecting levels of the intact approximately 300-kD precursor and its approximately 120-kD processed COOH-terminal derivatives. Presenilin-induced apoptosis is cell autonomous and can be blocked by constitutive Notch activation, suggesting that the increased cell death is due to a developmental mechanism that eliminates improperly specified cell types. We describe a genetic model in which the apoptotic activities of wild-type and mutant presenilins can be assessed, and we find that Alzheimer's disease-linked mutant presenilins are less effective at inducing apoptosis than wild-type presenilin.  相似文献   

9.
Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS‐induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild‐type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin‐binding protein F1‐disrupted mutant SAM1‐infected cells. In Bcl‐2‐overexpressing HeLa cells (HBD98‐2‐4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98‐2‐4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS‐infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.  相似文献   

10.
In response to a diverse array of signals, IkappaBalpha is targeted for phosphorylation-dependent degradation by the proteasome, thereby activating NF-kappaB. Here we demonstrate a role of the cleavage product of IkappaBalpha in various death signals. During apoptosis of NIH3T3, Jurkat, Rat-1, and L929 cells exposed to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), Fas, serum deprivation, or TNF-alpha, respectively, IkappaBalpha was cleaved in a caspase-dependent manner. In vitro and in vivo cleavage assays and site-directed mutagenesis showed that caspase-3 cleaved IkappaBalpha between Asp31 and Ser32. Expression of the cleavage product lacking amino-terminus (1-31), DeltaIkappaBalpha, sensitized otherwise resistant NIH3T3 fibroblast cells to apoptosis induced by TNF-alpha or TRAIL, and HeLa tumor cells to TNF-alpha. DeltaIkappaBalpha was more pro-apoptotic compared to wild type or cleavage-resistant (D31E)IkappaBalpha mutant and the sensitization elicited by DeltaIkappaBalpha was as effective as that by the dominant negative mutant, (S32,36A)IkappaBalpha, in NIH3T3 cells. DeltaIkappaBalpha suppressed the transactivation of NF-kappaB induced by TNF-alpha or TRAIL, as reflected by luciferase-reporter activity. Conversely, expression of the p65 subunit of NF-kappaB suppressed TNF-alpha-, TRAIL-, and serum deprivation-induced cell death. On the contrary, DeltaIkappaBalpha was less effective at increasing the death rate of HeLa cells that were already sensitive to death signals including TRAIL, etoposide, or taxol. These results suggest that DeltaIkappaBalpha generated by various death signals sensitizes cells to apoptosis by suppressing NF-kappaB activity.  相似文献   

11.
The induction of apoptosis in host cells is a prominent cytopathic effect of vesicular stomatitis virus (VSV) infection. The viral matrix (M) protein is responsible for several important cytopathic effects, including the inhibition of host gene expression and the induction of cell rounding in VSV-infected cells. This raises the question of whether M protein is also involved in the induction of apoptosis. HeLa or BHK cells were transfected with M mRNA to determine whether M protein induces apoptosis when expressed in the absence of other viral components. Expression of M protein induced apoptotic morphological changes and activated caspase-3 in both cell types, indicating that M protein induces apoptosis in the absence of other viral components. An M protein containing a point mutation that renders it defective in the inhibition of host gene expression (M51R mutation) activated little, if any, caspase-3, while a deletion mutant lacking amino acids 4 to 21 that is defective in the virus assembly function but fully functional in the inhibition of host gene expression was as effective as wild-type (wt) M protein in activating caspase-3. To determine whether M protein influences the induction of apoptosis in the context of a virus infection, the M51R M protein mutation was incorporated onto a wt background by using a recombinant infectious cDNA clone (rM51R-M virus). The timing of the induction of apoptosis by rM51R-M virus was compared to that by the corresponding recombinant wt (rwt) virus and to that by tsO82 virus, the mutant virus in which the M51R mutation was originally identified. In HeLa cells, rwt virus induced apoptosis faster than did rM51R-M virus, demonstrating a role for M protein in the induction of apoptosis. In contrast to the results obtained with HeLa cells, rwt virus induced apoptosis more slowly than did rM51R-M virus in BHK cells. This indicates that a viral component other than M protein contributes to induction of apoptosis in BHK cells and that wt M protein acts to delay induction of apoptosis by the other viral component. tsO82 virus induced apoptosis more rapidly than did rM51R-M virus in both HeLa and BHK cells. These two viruses contain the same point mutation in their M proteins, suggesting that sequence differences in genes other than that for M protein affect their rates of induction of apoptosis.  相似文献   

12.
Mutant presenilins cause early-onset of familial Alzheimer's disease and render cells vulnerable to apoptosis. Calsenilin/DREAM/KChIP3 is a multifunctional calcium-binding protein that interacts with presenilin and mediates calcium-mediated apoptosis. In the present study, we report that the calsenilin-mediated apoptosis is regulated by presenilin. The expression of calsenilin was highly up-regulated in neuronal cells undergoing Abeta42-triggered cell death. The incidence of calsenilin-mediated apoptosis was diminished in presenilin-1(-/-) mouse embryonic fibroblast cells or neuronal cells stably expressing a loss-of-function presenilin-1 mutant. On the contrary, an array of familial Alzheimer's disease-associated presenilin mutants (gain-of-function) increased calsenilin-induced cell death. Moreover, gamma-secretase inhibitors, including compound E and DAPT, decreased the calsenilin-induced cell death. These results suggest that the pro-apoptotic activity of calsenilin coordinates with presenilin/gamma-secretase activity to play a crucial role in the neuronal death of Alzheimer's disease.  相似文献   

13.
14.
E1A expression during adenovirus infection induces apoptosis. E1A expression causes accumulation of the p53 tumor suppressor protein, and E1A-induced apoptosis is p53 mediated in primary rodent cells, implying that p53 induction may be linked to apoptosis induction by E1A. Adenoviruses containing mutations in the E1A gene were tested for the ability to trigger both p53 accumulation and the appearance of enhanced cytopathy (cyt phenotype) and degradation of DNA (deg phenotype), indicative of apoptosis in infected HeLa cells. The adenoviruses had mutations which disrupted the pRb- and/or p300-binding activities of E1A so that the relationship between p53 induction and apoptosis and binding to these cellular proteins by E1A could be determined. An E1A mutation that specifically disrupted the p300-binding activity failed to induce p53 accumulation, whereas mutations in E1A which affected pRb binding induced p53 accumulation. Thus, p300 binding was required and pRb binding was dispensable for E1A-mediated accumulation of p53 in HeLa cells. All the E1A mutant viruses, regardless of the ability to induce p53 accumulation, induced the cyt and deg phenotypes, suggesting that p53 induction in infected HeLa cells was not essential for apoptosis, nor was binding of E1A to the pRb and/or p300 protein. The possibility that E1A induced a p53-independent apoptosis pathway was tested by analyzing the appearance of the cyt and deg phenotypes in Saos-2 cells, which were null for both alleles of p53, upon adenovirus infection. An adenovirus expressing wild-type 12S E1A induced both the cyt and deg phenotypes in Saos-2 cells, as did all the E1A mutant viruses. Thus, E1A expression during infection of human cells may trigger redundant p53-independent and -dependent apoptotic pathways.  相似文献   

15.
We carried out gain-of-function mutagenesis screening and identified a mutant in which GAL4 induction led to both hyperplasia and apoptosis. The gene involved was identified as stonewall (stwl), a myb-related gene involved in germ cell proliferation and differentiation during oogenesis. As observed with dmyb, the ectopic expression of stwl(UY823) inhibited endoreplication in salivary glands. We also found that stwl(UY823) overexpression, like overexpression of the wild-type gene, activated G1/S transition and apoptosis. The apoptosis triggered by stwl(UY823) expression is correlated to induction of the proapoptotic gene reaper. Finally, the death of flies induced by ectopic stwl(UY823) expression is efficiently prevented in vivo by triggering cell death in stwl(UY823)-expressing cells. Our results suggest that stwl(UY823) kills flies by causing inappropriate cell cycle entry, and that triggering the death of these overproliferating cells or slowing their proliferation restores viability.  相似文献   

16.
Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs) resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF)-κB-p65 phosphorylation and cyclooxygenase (COX)-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER) stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor) to inhibit prostaglandin E2 (PGE2) production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE) protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation.  相似文献   

17.
Vesicular stomatitis virus (VSV) is a potent inducer of apoptosis in host cells. Recently, it has been shown that two VSV products are involved in the induction of apoptosis, the matrix (M) protein, and another viral product that has yet to be identified (S. A. Kopecky et. al., J. Virol. 75:12169-12181, 2001). Comparison of recombinant viruses containing wild-type (wt) or mutant M proteins showed that wt M protein accelerates VSV-induced apoptosis in HeLa cells, while wt M protein delays apoptosis in VSV-infected BHK cells. Our hypothesis to explain these results is that both effects of M protein are due to the ability of M protein to inhibit host gene expression. This hypothesis was tested by infecting cells with an M protein mutant virus defective in the inhibition of host gene expression (rM51R-M virus) in the presence or absence of actinomycin D, another inhibitor of host gene expression. Actinomycin D accelerated induction of apoptosis of HeLa cells infected with rM51R-M virus and delayed apoptosis in BHK cells infected with rM51R-M virus, similar to the effects of wt M protein. The idea that the induction of apoptosis by M protein in HeLa cells is due to its ability to inhibit host gene expression was further tested by comparing the activation of upstream caspase pathways by M protein versus that by actinomycin D or 5,6-dichlorobenzimidazole riboside (DRB). Expression of M protein activated both caspase-8 and caspase-9-like enzymes, as did treatment with actinomycin D or DRB. Induction of apoptosis by M protein, actinomycin D, and DRB was inhibited in stably transfected HeLa cell lines that overexpress Bcl-2, an antiapoptotic protein that inhibits the caspase-9 pathway. A synthetic inhibitor of caspase-8, Z-IETD-FMK, did not inhibit induction of apoptosis by M protein, actinomycin D, or DRB. Taken together, our data support the hypothesis that the induction of apoptosis by M protein is caused by the inhibition of host gene expression and that the caspase-9 pathway is more important than the caspase-8 pathway for the induction of apoptosis by M protein and other inhibitors of host gene expression.  相似文献   

18.
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.  相似文献   

19.
Golgin-160 is a coiled-coil protein on the cytoplasmic face of the Golgi complex that is cleaved by caspases during apoptosis. We assessed the sensitivity of cell lines stably expressing wild-type or caspase-resistant golgin-160 to several proapoptotic stimuli. Cells expressing a caspase-resistant mutant of golgin-160 were strikingly resistant to apoptosis induced by ligation of death receptors and by drugs that induce endoplasmic reticulum (ER) stress, including brefeldin-A, dithiothreitol, and thapsigargin. However, both cell lines responded similarly to other proapoptotic stimuli, including staurosporine, anisomycin, and etoposide. The caspase-resistant golgin-160 dominantly prevented cleavage of endogenous golgin-160 after ligation of death receptors or induction of ER stress, which could be explained by a failure of initiator caspase activation. The block in apoptosis in cells expressing caspase-resistant golgin-160 could not be bypassed by expression of potential caspase cleavage fragments of golgin-160, or by drug-induced disassembly of the Golgi complex. Our results suggest that some apoptotic signals (including those initiated by death receptors and ER stress) are sensed and integrated at Golgi membranes and that golgin-160 plays an important role in transduction of these signals.  相似文献   

20.
The adenovirus E1A oncogene products stimulate DNA synthesis and cell proliferation but fail to transform primary baby rat kidney (BRK) cells because of the induction of p53-mediated programmed cell death (apoptosis). Overexpression of dominant mutant p53 (to abrogate wild-type p53 function) or introduction of apoptosis inhibitors, such as adenovirus E1B 19K or Bcl-2 oncoproteins, prevents E1A-induced apoptosis and permits transformation of BRK cells. The ability of activated Harvey-ras (H-ras) to cooperate with E1A to transform BRK cells suggests that H-ras is capable of overcoming the E1A-induced, p53-dependent apoptosis. We demonstrate here that activated H-ras was capable of suppressing apoptosis induced by E1A and wild-type p53. However, unlike Bcl-2 and the E1B 19K proteins, which completely block apoptosis but not p53-dependent growth arrest, H-ras expression permitted DNA synthesis and cell proliferation in the presence of high levels of wild-type p53. The mechanism by which H-ras regulates apoptosis and cell cycle progression is thereby strikingly different from that of the E1B 19K and Bcl-2 proteins. BRK cells transformed with H-ras and the temperature sensitive murine mutant p53(val 135), which lack E1A, underwent growth arrest at the permissive temperature for wild-type p53. p53-dependent growth arrest, however, could be relieved by E1A expression. Thus, H-ras alone was insufficient and cooperation of H-ras and E1A was required to override growth suppression by p53. Our data further suggest that two complementary growth signals from E1A plus H-ras can rescue cell death and thus permit transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号