首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Disturbance regimes in many temperate, old growth forests are characterized by gap-scale events. However, prior to a complex stage of development, canopy gaps may still serve as mechanisms for canopy tree replacement and stand structural changes associated with older forests. We investigated 40 canopy gaps in secondary hardwood stands on the Cumberland Plateau in Tennessee to analyze gap-scale disturbance processes in developing forests. Gap origin, age, land fraction, size, shape, orientation, and gap maker characteristics were documented to investigate gap formation mechanisms and physical gap attributes. We also quantified density and diversity within gaps, gap closure, and gap-phase replacement to examine the influence of localized disturbances on forest development. The majority of canopy gaps were single-treefall events caused by uprooted or snapped stems. The fraction of the forest in canopy gaps was within the range reported from old growth remnants throughout the region. However, gap size was smaller in the developing stands, indicating that secondary forests contain a higher density of smaller gaps. The majority of canopy gaps were projected to close by lateral crown expansion rather than height growth of subcanopy individuals. However, canopy gaps still provided a means for understory trees to recruit to larger size classes. This process may allow overtopped trees to reach intermediate positions, and eventually the canopy, after future disturbance events. Over half of the trees located in true gaps with intermediate crown classifications were Acer saccharum, A. rubrum, or Liriodendron tulipifera. Because the gaps were relatively small and close by lateral branch growth of perimeter trees, the most shade-tolerant A. saccharum has the greatest probability of becoming dominant in the canopy under the current disturbance regime. Half of the gap maker trees removed from the canopy were Quercus; however, Acer species are the most probable replacement trees. These data indicate that canopy gaps are important drivers of forest change prior to a complex stage of development. Even in relatively young forests, gaps provide the mechanisms for stands to develop a complex structure, and may be used to explain patterns of shifting species composition in secondary forests of eastern North America.  相似文献   

2.
Question: To what extent do small‐scale disturbances in the forest canopy, created by natural disturbance agents, affect stand development? Doubts exist as to whether small canopy openings have any real effect on the understory tree recruitment, especially in boreal forests. Location: Conifer and mixed stands in the Gaspesian region in eastern Québec. The main natural disturbance agents are recurring outbreaks of Choristoneura fumiferana (eastern spruce budworm) and winds. Methods: Linear transects in 27 sites were used to describe the gap (< 0.1 ha) regime parameters, including gap fraction, gap size and change in disturbance severity through time. Three stand types were distinguished, based on a gradient of abundance of tree host species for the eastern spruce budworm. The impact of gaps was evaluated on the basis of changes in the number, the period of recruitment, and the composition of tree saplings present within gap areas. Changes were measured along the gap size gradient, and according to the pattern of recent budworm epidemics. Results: The gap fraction is highly variable (18%‐64%) and is on average relatively high (42%). Gap sizes have a positively skewed distribution. In most cases the growth rate among gap filling saplings increased sufficiently to date disturbance events. The composition and the structure of understory trees were affected by gap formation. The number of shade‐intolerant tree species did increase during or following periods of particularly severe canopy disturbances. However, the establishment or survival of shade intolerant species was not restricted to larger gaps or more intensely disturbed periods. Conclusions: In sub‐boreal forests of Eastern Canada, small scale disturbances in the tree canopy influence stand regeneration dynamics, but not to the extent that parameters such as sapling composition and recruitment patterns depend on gap regime characteristics.  相似文献   

3.
To detect the factors that affect sapling species composition in gaps, we investigated 55 gaps in an old-growth temperate deciduous forest in Ogawa Forest Reserve, central Japan. Gap size, gap age, gap maker species, topographic location, adult tree composition around gaps, and saplings of tree species growing in the gaps were censused. For gaps 5 m2, mean gap size was 70 m2 and the maximum was 330 m2. Estimated ages of gaps had a tendency to be concentrated in particular periods relating to strong wind records in the past. The sapling composition in gaps was highly and significantly correlated to that under closed canopy, indicating the importance of advance regeneration in this forest. However, some species showed significant occurrence biases in gaps or under closed canopy, suggesting differences in shade tolerance. The result of MANOVA showed that gap size and topography were important factors in determining the sapling composition in gaps. Species of gap makers affected the sapling composition indirectly by influencing gap size. The existence of parent trees around gaps had effects on sapling densities of several species. Gap age did not have clear influences on sapling composition. Variations in gap size and topography were considered as important factors that contribute to maintenance of species diversity in this forest.  相似文献   

4.
Abstract. We conducted a study in the laurel forest of Tenerife (Canary Islands, Spain) to describe the characteristics of natural gaps and to assess the role of treefall gaps in forest dynamics. Very little is left of the natural laurel forest with i.a. Laurus azorica, Ilex canariensis and Prunus lusitanica. We looked for treefall gaps in 80 randomly located 2500 m2 plots. These plots represented ca. 1% of the remaining and protected laurel forest of Tenerife. We recorded the characteristics of the species causing the gaps, gap architecture and gap age in all observed gaps larger than 10 m2. We inventoried the regeneration in each gap and in a neighbouring control plot with the same topography. Large gaps (>75 m2) were not common in the laurel forest. The absence of large gaps could be due to the physiognomy of the vegetation, the mild weather or the rarity of disturbances. Instead of forming gaps, many trees decompose in place and branches from neighbouring trees and suckers from the decomposed trees occupy the free space. Also, the high rate of asexual regeneration could contribute to the fast closing of the gap. The number of gaps created by Prunus lusitanica was higher than expected (based on canopy composition) while Ilex canariensis and Laurus azorica created fewer gaps. In this evergreen forest, differences between gap and non-gap conditions are not as distinct as in other forest types. Only 0.4% of the canopy is in the gap phase (0.6% including gaps smaller than 10m2). No differences were found in patterns of regeneration between gap and non-gap phases in the forest. Gaps do not explain the persistence of pioneer species in the laurel forest.  相似文献   

5.
The disturbance regime of an old-growth forest in coastal California   总被引:1,自引:0,他引:1  
This study deals with the disturbance regime of an old-growth, mixed-evergreen forest with a canopy composed of Arbutus menziesii, Lithocarpus densiflora, Pseudotsuga menziesii, Quercus chrysolepis, Q. wislizenii, and Sequoia sempervirens. 80 canopy gaps were randomly selected from throughout a 230-ha watershed. Of the land area sampled, 11.1 to 16.6 % was within gaps. Gap area had a mode of < 50m2 and a range of 6–3437 m2. Gaps were formed by snags, snaps, tips, and slope failures. Although < 10 % of the gaps sampled were due to slope failures, these accounted for 43 % of the total land area within gaps. All snags resulted from the death of a Pseudotsuga or Arbutus individual, the widely branched trunks of Arbutus individuals accounted for most of the irregularly shaped gaps, and larger gaps resulted from the death of Pseudotsuga and Sequoia individuals, averaging 119 and 111 m2 respectively, than from the death of Lithocarpus or Arbutus, averaging 54 and 52 m2. Gaps were more frequent over concave sections of slopes and large gaps were more frequent on north-facing slopes. The creation of a gap increased disturbance to the adjacent canopy, with half of the gaps formed through more than one disturbance. The relationship of disturbance regime to topography, the influence of canopy species biology on gap properties, and the repeated events involved in gap formation all indicate a fine scale variation in the pattern of gaps and their characteristics.  相似文献   

6.
Question: Is tree regeneration in canopy gaps characterized by chance or predictable establishment. Location: Coastal scarp forests, Umzimvubu district, Eastern Cape Province, South Africa. Methods: Estimation of richness of gap‐filling species across canopy gaps of different size. Data are compared with regeneration under the canopy. Probability of self‐replacement of gap forming species is calculated. Results: Forest area under natural gap phase was 7.8%, caused mostly by windthrow (54%). The abundance and average size of gaps (87.8 m2) suggests that species diversity may be maintained by gap dynamics. However, only four of 53 gap‐filler species displayed gap size specialization and these were pioneer species. An additional 13 species were more common in larger gaps but there was no gradient in composition of gap‐filler species across gap size (p= 0.61). Probabilities of self‐replacement in a gap were low (< 0.3) and common canopy species were equally abundant in gaps and the understorey. Species composition in gaps showed no pattern of variation, i.e. was unpredictable, which suggests absence of a successional sequence within tree‐fall gaps. There was also only a slight increase in species richness in gaps at intermediate levels of disturbance. Conclusions: Coastal scarp forest appears not to comprise tightly co‐evolved, niche‐differentiated tree species. Unpredictable species composition in gaps may be a chance effect of recruitment limitation of species from the species pool. Chance establishment slows competitive exclusion and may maintain tree diversity in these forests. These data suggest that current levels (≤ 3 gaps per ha) of selective tree harvesting may not cause a reduction in species richness in this forest.  相似文献   

7.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

8.
Gap characteristics and regeneration in gaps were studied in some primary evergreen broad-leaved forests of the warm temperate zone in western Japan. Total observed 161 gaps covered 15.7% of the total land area of 8.23 ha. Gap density was 19. 6 gaps ha−1 and mean gap size was 80.3 m2. Smaller gaps (<80 m2) were much more frequent than larger ones, and gaps larger than 400 m2 were rare. Gaps created by the death or the injury of single trees were 79.5%. Canopy trees died most often with broken trunks and not so often by uprooting or leaving standing-dead. Different types of gap regeneration behaviour were recognized among the major canopy tree species, though gap regeneration of the common evergreen broad-leaved tree species did not clearly depend on a species-specific gap size.Distylium racemosum, which occurred in equal importance (about 25%) in the canopy layer of each study stand, regenerates in gaps from saplings recruited before gap creation and can replace not only its own gaps but also gaps of other species. Therefore, it can be considered a typical climax species in this forest type of western Japan.Persea thunbergii, which can reproduce vegetatively, showed a similar type of gap regeneration behaviour.Castanopsis cuspidata can replace itself with relatively higher frequency by means of vegetative reproduction (stump sprouting) after gap creation.Quercus acuta andQuercus salicina did not regenerate under the current gap-disturbance regime. Though the frequency of uprooting is low, soil disturbance by uprooting seems to be important for the perpetuation of the pioneer tree species,Fagara ailanthoides, which recruits from buried seeds in the soil  相似文献   

9.
Taylor  Scott O.  Lorimer  Craig G. 《Plant Ecology》2003,167(1):71-88
Gap capture methods predict future forest canopy species composition from the tallest trees growing in canopy gaps rather than from random samples of shaded understory trees. We used gap capture methods and a simulation approach to forecast canopy composition in three old oak forests (Quercus spp.) on dry-mesic sites in southern Wisconsin, USA. In the simulation, a gap sapling is considered successful if it exceeds a threshold height of 13–17 m (height of maximum crown width of canopy trees) before its crown center can be overtopped by lateral crown growth of mature trees. The composition of both the tallest gap trees and simulated gap captures suggests that 68–90% of the next generation of canopy trees in the stands will consist of non-Quercus species, particularly Ulmus rubra, Carya ovata and Prunus serotina. Quercus species will probably remain as a lesser stand component, with Quercus alba and Quercus rubra predicted to comprise about 19% of successful gap trees across the three stands. Several methods of predicting future canopy composition gave similar results, probably because no gap opportunist species were present in these stands and there was an even distribution of species among height strata in gaps. Gap trees of competing species already average 11–13 m tall, and mean expected time for these trees to reach full canopy height is only 19 years. For these reasons, we suggest that dominance will shift from oaks to other species, even though late successional species (e.g., Acer and Tilia) are not presently common in the understories of these stands.  相似文献   

10.
An unresolved question of temperate forests is how pioneer tree species persist in mature forests. In order to understand the responsible mechanisms, we investigated a near‐climax mixed temperate forest dominated by Betula albosinensis in the Qinling Mountains of China. Through establishing four 50 m × 50 m plots, we examined the canopy disturbance characteristics and its effects on tree recruitments. We further test the intra‐ and interspecific effects on the recruitment of B. albosinensis. The obtained data demonstrated canopy disturbance was frequent but most small‐sized. The canopy gaps are caused mainly by adult B. albosinensis by snapping. The regeneration of coexistent tree species shows a distinct preference for gap size. B. albosinensis were clumped at the juvenile stage and small scales. B. albosinensis juveniles were positively associated with B. utilis juveniles and negatively associated with the conspecific and B. utilis large trees. In addition, B. albosinensis juveniles showed negative associations with contemporary other tree species. Our results suggested that canopy disturbance caused by canopy trees and gap partitioning among the coexistent tree species are important for the persistence of the mixed forest. As a main gapmaker, B. albosinensis appear to develop a self‐perpetuating life‐history trait and allow them to persist.  相似文献   

11.
Advanced recruitment and neutral processes play important roles in determining tree species composition in tropical forest canopy gaps, with few gaps experiencing clear secondary successional processes. However, most studies are limited to the relatively limited spatial scales provided by forest inventory plots, and investigations over the entire range of gap size are needed to better understand how ecological processes vary with tree mortality events. This study employed a landscape approach to test the hypothesis that tree species composition and forest structural attributes differ between large blowdown gaps and relatively undisturbed primary forest. Spectral mixture analysis on hyperspectral satellite imagery was employed to direct field sampling to widely distributed sites, and blowdown plots were compared with undisturbed primary forest plots. Tree species composition and forest structural attributes differed markedly between gap and non-gap sites, providing evidence of niche partitioning in response to disturbance across the region. Large gaps were dominated by classic Neotropical pioneer genera such as Cecropia and Vismia, and average tree size was significantly smaller. Mean wood density of trees recovering in large gaps (0.55 g cm−3) was significantly lower than in primary forest plots (0.71 g cm−3), a difference similar to that found when comparing less dynamic (i.e., tree recruitment, growth, and mortality) Central Amazon forests with more dynamic Western Amazon forests. Based on results, we hypothesize that the importance of neutral processes weaken, and niche processes strengthen, in determining community assembly along a gradient in gap size and tree mortality intensity. Over evolutionary time scales, pervasive dispersal among colonizers could result in the loss of tree diversity in the pioneer guild through competitive exclusion. Results also underscore the importance of considering disturbance processes across the landscape when addressing forest carbon balance.  相似文献   

12.
Rare species are one of the principal components of the species richness and diversity encountered in Dense Ombrophilous Tropical Forests. This study sought to analyze the rare canopy species within the Atlantic Coastal Forest in Rio de Janeiro State, Brazil. Six different communities were examined: Dense Ombrophilous alluvial Forest; Dense sub-montane Ombrophilous Forest; Dense Montane Ombrophilous in Serra do Mar and Serra da Mantiqueira. In each area the vegetation was sampled within forty 10 × 25 m plots alternately distributed along a linear transect. All trees with DBH (1.3 m above ground level) ≥5 cm were sampled. The canopy was characterized using the allometric relationship between diameter and height, and included all trees with BDH ≥10 cm and height ≥10 m. A total of 64 families, 206 genera, and 542 species were sampled, of which 297 (54.8%) represented rare species (less than one individual per hectare). The percentage of rare species varied from 34 to 50% in each of the different communities sampled. A majority of these rare trees belonged to the Rosidae, and a smaller proportion to the Dilleniidae. It was concluded that there was no apparent pattern to rarity among families, that rarity was probably derived from a number of processes (such as gap formation), and that a great majority of the rare species sampled were consistently rare. This indicates that the restricted geographic distribution and high degree of endemism of many arboreal taxa justifies the conservation of even small fragments of Atlantic Forest.  相似文献   

13.
In order to maintain biodiversity in forests, it has been recommended that harvests be designed after patterns of natural disturbance. Using a long-term study that includes harvest treatments designed to emulate tree-fall gap disturbances in Maine’s Acadian forest, we examined how the species richness, abundance, diversity, and assemblage similarity of click beetles inhabiting coarse woody material (CWM) were affected by gap harvesting and CWM characteristics (diameter, degree of decay, and type of wood). There were few differences in beetle assemblages between 0.07 and 0.12 ha harvest gap treatments. Four of the most common species had higher abundances under a closed forest canopy than within harvest gaps. Species richness and total abundance were higher in CWM that had larger diameters and were more decayed. Species assemblages also differed with the degree of wood decomposition. Diversity was higher in CWM from softwood trees than hardwood trees. Results from this study suggest that small (<0.2 ha) harvest gaps with living trees retained throughout the gap can maintain click beetle assemblages similar to that of an unharvested forest. Forest managers also need to address the temporal continuity of CWM, including different types of wood (hardwood and softwood), a range of decay conditions, and a range of diameter classes, especially larger diameters (>35 cm).  相似文献   

14.
卧龙自然保护区林隙干扰特征   总被引:7,自引:1,他引:6       下载免费PDF全文
 林隙干扰对森林的结构和多样性的维持具有重要意义。对五一棚周围林隙干扰格局和林隙特征进行了3条样线调查,样线总长度为4.4 km。结果表明:1)本区以小型林隙干扰为主,林隙平均密度为12.5个•km-1,林隙的分布格局在阳坡和山脊为集聚分布,阴坡近均匀分布;林隙形成木以针叶树为主,岷江冷杉(Abies faxoniana)、铁杉(Tsuga chinensis)和糙皮桦(Betula utilis)在形成木的数量和径级组成上均居前列。2)林隙形成木的腐烂等级分布揭示出林隙形成木的形成方式和种类组成均随时间变化。表现为针叶树组形成木对林隙的贡献随时间降低,阔叶树组反之;砍伐和倒木是早期林隙形成的主要方式,而枯立和折干是近期林隙形成的主要方式。3)林隙木形成方式关联度分析结果为砍伐与倒木、折干与倒木之间存在显著负关联,林隙其它各形成方式之间的关联不显著,但砍伐与其它形成方式的负联结系数均较高。  相似文献   

15.
S. Yamamoto 《Plant Ecology》1996,127(2):203-213
Gap regeneration of major tree species was examined, based on the pattern of gap phase replacement, in primary old-growth stands of warm-temperate, cool-temperate and subalpine forests, Japan. Using principal component analysis, the gap-regeneration behavior of major tree species could be divided into three guilds and that of Fagus crenata (monodominant species of cool-temperate forests). The criteria used for this division were total abundance of canopy trees and regenerations and relative abundance of regenerations to canopy trees. The gap-regeneration behavior of species in the first guild was that canopy trees regenerate in gaps from seedlings or saplings recruited before gap formation; they had higher total abundance and more abundant regenerations relative to their canopy trees. The gap-regeneration behavior of F. crenata was same as species in the first guild, but F. crenata had less abundant regenerations relative to its canopy trees. Species in the second guild had lower total abundance and less abundant regenerations to their canopy trees. The guild contained species whose canopy trees regenerate in gaps from seedlings or saplings recruited after gap formation or regenerate following largescale disturbance. The third guild consisted of species with lower total aboundance and more abundant regenerations relative to their canopy trees. The gap-regeneration behavior of some species in this guild was that trees regenerate in gaps from seedlings or saplings recruited before gap formation, and grow, mature, and die without reaching the canopy layer, while the gap-regeneration behavior of other species was same as that of species in the first guild or F. crenata. Major tree species of subalpine forests were not present in the third guild.  相似文献   

16.
Tropical mangrove forests are characterized by clear zonation along a tidal gradient, and it has been supposed that the zonation is primarily controlled by soil factors. However, effects of disturbance on mangrove forests are still not well understood and may play an important role on the vegetation patterns and forest dynamics in some forest formations. In this study, the pattern of disturbance regime and its effects on regeneration of tropical mangrove forests along a tidal gradient were investigated in Ranong, Thailand. We established one or two 0.5 ha plots in four vegetation zones, i.e. Sonneratia albaAvicennia alba zone, Rhizophora apiculata zone, Ra – Bruguiera gymnorrhiza zone, Ceriops tagalXylocarpus spp. zone. Gap size (percentage gap area to total study area and individual gap size) was the largest in Sa–Aa zone which is located on the most seaward fringe, and it declined from seaward to inland. Canopy trees of S. alba and A. alba had stunted trunks and showed low tree density. On the contrary, canopy dominants in the other three inland zones, e.g. R. apiculata, B. gymnorrhiza, and Xylocarpus spp., had slender trunks and showed high tree density. Accordingly, differences in disturbance regime among the four zones were resulted from the forest structural features of each zone. Disturbance regime matched with regeneration strategies of canopy dominants. Seedlings and saplings of S. alba and A. alba, which need sunny condition for their growth, were abundant in gaps than in understorey. By contrast, R. apiculata, B. gymnorrhiza, and Xylocarpus spp., which can tolerate less light than S. alba and A. alba, had greater seedling and sapling density under closed canopy than gaps. Many large gaps may enhance the abundance of S. alba and A. alba in Sa–Aa zone, and a few small gaps may prevent the light demanding species to establish and grow in the other inland zones. Correspondence of disturbance regime and regeneration strategies (e.g. light requirement) of canopy dominants may contribute to the maintenance of the present species composition in each of the vegetation zones.  相似文献   

17.
In regenerating coastal dune forest, the canopy consists almost exclusively of a single species, Acacia karroo. When these trees die, they create large canopy gaps. If this promotes the persistence of pioneer species to the detriment of other forest species, then the end goal of a restored coastal dune forest may be unobtainable. We wished to ascertain whether tree species composition and richness differed significantly between canopy gaps and intact canopy, and across a gradient of gap sizes. In three known‐age regenerating coastal dune forest sites, we measured 146 gaps, the species responsible for gap creation, the species most likely to reach the canopy and the composition of adults, seedlings and saplings. We paired each gap with an adjacent plot of the same area that was entirely under intact canopy and sampled in the same way. Most species (15 of 23) had higher abundance in canopy gaps. The probability of self‐replacement was low for A. karroo even in the largest gaps. Despite this predominance of shade‐intolerant species, regenerating dune forest appears to be in the first phase of succession with ‘forest pioneers’ replacing the dominant canopy species. The nature of these species should lead to successful regeneration of dune forest.  相似文献   

18.
Abstract. Tree size and age structures, treefall and canopy gap characteristics, and regeneration responses to treefalls were compared for three stands of old-growth beech (Nothofagus) forest dominated by N. fusca and N. menziesii on the South Island, New Zealand. Treefall gaps (up to 1000 m2) were most often caused by standing trees killed by drought and/or insect attack, or by trees snapped by wind. The causes of gap formation and the size and age distributions of treefall gaps varied between localities because of spatial and temporal differences in the histories of disturbance. At Fergies Bush where drought-related dieback had produced many large gaps with standing dead trees, gaps were generally young. Conversely, at Station Creek, small, old gaps formed by bolesnap dominated the disturbance regime. At Rough Creek, gaps of all ages and sizes were found along with an almost complete fern cover, and abundant shrubs and occasional subcanopy hardwood trees. Although overall patterns of regeneration were unrelated to differences in gap size, the relative abundance of N. fusca and N. menziesii varied between localities according to the seemingly minor differences in forest structure and disturbance history described above. Interpretations of regeneration response to gap parameters, therefore, need to account for differences in disturbance history between sites. Differences in the disturbance history between localities will also influence rates of gap closure, and because closure rates are used to estimate forest turnover times, meaningful comparisons of disturbance regimes for different forest types can only be made if this intersite variability is addressed.  相似文献   

19.
Forest loss and fragmentation drive widespread declines in biodiversity. However, hummingbirds seem to exhibit relative resilience to disturbance, characterized by increasing abundance alongside declining species richness and evenness. Yet, how widespread this pattern may be, and the mechanisms by which it may occur, remain unclear. To fill in this knowledge gap, we investigated habitat- and site-level patterns of diversity, and community composition of hummingbirds between continuous forest (transects n = 16 in ~3500 ha) and more disturbed surrounding fragments (n = 39, 2.5–48.0 ha) in the Chocó rain forest of northwestern Ecuador. Next, we assessed within-patch and patch-matrix characteristics associated with hummingbird diversity and composition. We found higher hummingbird species richness in forest fragments relative to the continuous forest, driven by increased captures of rare species in fragments. Community composition also differed between continuous forest and fragments, with depressed evenness in fragments. Increased canopy openness and density of medium-sized trees correlated with hummingbird diversity in forest fragments, although this relationship became nonsignificant after applying false discovery rate (p < .01). Higher species richness in fragments and higher evenness in the continuous forest highlight the complex trade-offs involved in the conservation of this ecologically important group of birds in changing Neotropical landscapes. Abstract in Spanish is available with online material.  相似文献   

20.
This study was conducted to determine the abundance of Quercus species, the spatial pattern of Quercus regeneration, the current canopy disturbance pattern, and their interrelationship in two old-growth deciduous forests in Ohio (Goll Woods and Sears-Carmean Woods). Acer saccharum and Fagus grandifolia had the greatest density and basal area in both forests, yet the largest trees (by basal area) present at each site were Quercus spp. Quercus spp. appeared to be decreasing in abundance in both sites. Though Quercus seedlings were common, few Quercus saplings or subcanopy trees were present. The current disturbance regimes were dominated by small canopy gaps created by death of 1–2 trees; canopy gaps 100 m2 in size were rare and only 2.5–2.8% of the forest area was covered by recognizable canopy gaps. No significant differences in the density of Quercus seedlings or saplings were found between gaps and non-gap areas at either site. Though no significant barrier to seedling establishment appeared to exist, the present disturbance regimes are not well suited for the growth of Quercus into the subcanopy size class or the recruitment of Quercus into the canopy. The most frequent gapmakers in Goll Woods were Tilia americana and Acer saccharum, and those in Sears-Carmean Woods were A. saccharum and F. grandifolia. The species most frequent as gap fillers were A. saccharum (in both sites) and F. grandifolia (in Goll Woods). These results suggest that A. saccharum will continue to increase in abundance, and Quercus decrease in abundance, in these two old-growth stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号