首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphopantothenoylcysteine (PPC) synthetase (PPCS) catalyzes nucleoside triphosphate-dependent condensation reaction between 4′-phosphopantothenate (PPA) and l-cysteine to form PPC in CoA biosynthesis. The catalytic mechanism of PPCS has not been resolved yet. Coenzyme A biosynthesis protein 2 (Cab2) possesses activity of PPCS in Saccharomyces cerevisiae. Our enzymatic assays suggest that Cab2 could utilize both ATP and CTP to activate PPA in vitro. The results of isothermal titration calorimetry indicate that PPA, CTP, and ATP could bind to Cab2 individually, with PPA having the highest binding affinity. To provide further insight into the catalytic mechanism of Cab2, we determined the crystal structures of Cab2 and its complex with PPA, the reaction intermediate 4′-phosphopantothenoyl-CMP, the final reaction product PPC, and the product analogue phosphopantothenoylcystine. Except for PPA, all other ligands were generated in situ and present in the active-site pocket of Cab2. Structures of Cab2 in complex with ligands provide insight into substrates binding and its catalytic mechanism. Analysis of structures indicates that the carboxyl of PPA-moiety of ligands and the γ-amino group of Asn97 possess different conformations in these complex structures. The cysteine/cystine/serine selectivity assays for Cab2 indicate that the amino group rather than the thiol group of l-cysteine attacks the carbonyl of 4′-phosphopantothenoyl-CMP to form PPC. Based on structural and biochemical data, the catalytic mechanism of Cab2 was proposed for the first time.  相似文献   

2.
The process of stimulation of Escherichia coli aspartate transcarbamylase activity by ATP was investigated. The efficiency of the phenomenon increases with the number of phosphate groups bound to adenosine. The pH dependence of the stimulation by ATP and adenylyl methylenediphosphonate indicates that the binding of these nucleotides requires the ionization of their last phosphate acidic group. The aspartate trans-carbamylase activity does not appear to be under the influence of the “energy charge ratio” but rather to depend directly on the ATP concentration. The stimulation decreases when the aspartate concentration increases. Saturating amounts of ATP do not provoke the shift in optimum pH for the catalytic activity which is shown to be associated with the homotropic co-operative interactions between the catalytic sites. This result provides additional evidence that homotropic and heterotropic interactions correspond to different molecular mechanisms. ATP reverses the effect of the feedback inhibitor CTP. A model is proposed to account for the relationship between the process of stimulation by ATP and the other regulatory conformational changes.  相似文献   

3.
Endrizzi JA  Kim H  Anderson PM  Baldwin EP 《Biochemistry》2005,44(41):13491-13499
Cytidine triphosphate synthetases (CTPSs) synthesize CTP and regulate its intracellular concentration through direct interactions with the four ribonucleotide triphosphates. In particular, CTP product is a feedback inhibitor that competes with UTP substrate. Selected CTPS mutations that impart resistance to pyrimidine antimetabolite inhibitors also relieve CTP inhibition and cause a dramatic increase in intracellular CTP concentration, indicating that the drugs act by binding to the CTP inhibitory site. Resistance mutations map to a pocket that, although adjacent, does not coincide with the expected UTP binding site in apo Escherichia coli CTPS [EcCTPS; Endrizzi, J. A., et al. (2004) Biochemistry 43, 6447-6463], suggesting allosteric rather than competitive inhibition. Here, bound CTP and ADP were visualized in catalytically active EcCTPS crystals soaked in either ATP and UTP substrates or ADP and CTP products. The CTP cytosine ring resides in the pocket predicted by the resistance mutations, while the triphosphate moiety overlaps the putative UTP triphosphate binding site, explaining how CTP competes with UTP while CTP resistance mutations are acquired without loss of catalytic efficiency. Extensive complementarity and interaction networks at the interfacial binding sites provide the high specificity for pyrimidine triphosphates and mediate nucleotide-dependent tetramer formation. Overall, these results depict a novel product inhibition strategy in which shared substrate and product moieties bind to a single subsite while specificity is conferred by separate subsites. This arrangement allows for independent adaptation of UTP and CTP binding affinities while efficiently utilizing the enzyme surface.  相似文献   

4.
Regulation of uridine kinase. Evidence for a regulatory site   总被引:2,自引:0,他引:2  
Uridine kinase from mouse Ehrlich ascites tumor cells may exist at 4 degrees C in multiple aggregation states that only slowly equilibrate with one another. Increasing the temperature leads to dissociation, and the appearance of a single predominant species: at 22 degrees C the enzyme exists as a tetramer. There is also a break in the dependence of enzyme activity on temperature as measured in an Arrhenius plot. The feedback inhibitors CTP and UTP cause the enzyme to dissociate to the monomer, whereas the substrate ATP reverses this process. Kinetic studies show that the monomer has little or no activity. Studies of the reaction mechanism show that binding of substrates is ordered, leading to a ternary complex, and release of products is ordered: uridine is the first substrate bound, ADP the first product released. Except for the inhibitors UTP and CTP, all other nucleoside triphosphates, whether purine or pyrimidine, or containing ribose or deoxyribose, act as phosphate donor. Especially interesting are the opposite effects of CTP and dCTP on uridine kinase: unlike CTP, dCTP does not dissociate the enzyme and is competent as a phosphate donor. We propose that the various effects of different ligands are best explained by the existence of a regulatory site (with more stringent specificity than the catalytic site) that controls dissociation of uridine kinase to the inactive monomer.  相似文献   

5.
The native Escherichia coli aspartate transcarbamoylase (ATCase, E.C. 2.1.3.2) provides a classic allosteric model for the feedback inhibition of a biosynthetic pathway by its end products. Both E. coli and Erwinia herbicola possess ATCase holoenzymes which are dodecameric (2(c3):3(r2)) with 311 amino acid residues per catalytic monomer and 153 and 154 amino acid residues per regulatory (r) monomer, respectively. While the quaternary structures of the two enzymes are identical, the primary amino acid sequences have diverged by 14 % in the catalytic polypeptide and 20 % in the regulatory polypeptide. The amino acids proposed to be directly involved in the active site and nucleotide binding site are strictly conserved between the two enzymes; nonetheless, the two enzymes differ in their catalytic and regulatory characteristics. The E. coli enzyme has sigmoidal substrate binding with activation by ATP, and inhibition by CTP, while the E. herbicola enzyme has apparent first order kinetics at low substrate concentrations in the absence of allosteric ligands, no ATP activation and only slight CTP inhibition. In an apparently important and highly conserved characteristic, CTP and UTP impose strong synergistic inhibition on both enzymes. The co-operative binding of aspartate in the E. coli enzyme is correlated with a T-to-R conformational transition which appears to be greatly reduced in the E. herbicola enzyme, although the addition of inhibitory heterotropic ligands (CTP or CTP+UTP) re-establishes co-operative saturation kinetics. Hybrid holoenzymes assembled in vivo with catalytic subunits from E. herbicola and regulatory subunits from E. coli mimick the allosteric response of the native E. coli holoenzyme and exhibit ATP activation. The reverse hybrid, regulatory subunits from E. herbicola and catalytic subunits from E. coli, exhibited no response to ATP. The conserved structure and diverged functional characteristics of the E. herbicola enzyme provides an opportunity for a new evaluation of the common paradigm involving allosteric control of ATCase.  相似文献   

6.
A Banerjee  H R Levy  G C Levy  W W Chan 《Biochemistry》1985,24(7):1593-1598
Transferred nuclear Overhauser effects were used to determine the conformations of ATP, CTP, and ITP bound to the regulatory site of aspartate transcarbamylase. The results are in accord with the predictions of the London-Schmidt model [London, R. E., & Schmidt, P. G. (1972) Biochemistry 11, 3136] and show that ATP and CTP bind in the anti conformation while ITP binds in the syn conformation.  相似文献   

7.
Most investigations of the allosteric properties of the regulatory enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli are based on the sigmoidal dependence of enzyme activity on substrate concentration and the effects of the inhibitor, CTP, and the activator, ATP, on the saturation curves. Interpretations of these effects in terms of molecular models are complicated by the inability to distinguish between changes in substrate binding and catalytic turnover accompanying the allosteric transition. In an effort to eliminate this ambiguity, the binding of the 3H-labeled bisubstrate analog N-(phosphonacetyl)-L-aspartate (PALA) to aspartate transcarbamoylase in the absence and presence of the allosteric effectors ATP and CTP has been measured directly by equilibrium dialysis at pH 7 in phosphate buffer. PALA binds with marked cooperativity to the holoenzyme with an average dissociation constant of 110 nM. ATP and CTP alter both the average affinity of ATCase for PALA and the degree of cooperativity in the binding process in a manner analogous to their effects on the kinetic properties of the enzyme; the average dissociation constant of PALA decreases to 65 nM in the presence of ATP and increases to 266 nM in the presence of CTP while the Hill coefficient, which is 1.95 in the absence of effectors, becomes 1.35 and 2.27 in the presence of ATP and CTP, respectively. The isolated catalytic subunit of ATCase, which lacks the cooperative kinetic properties of the holoenzyme, exhibits only a very slight degree of cooperativity in binding PALA. The dissociation constant of PALA from the catalytic subunit is 95 nM. Interpretation of these results in terms of a thermodynamic scheme linking PALA binding to the assembly of ATCase from catalytic and regulatory subunits demonstrates that saturation of the enzyme with PALA shifts the equilibrium between holoenzyme and subunits slightly toward dissociation. Ligation of the regulatory subunits by either of the allosteric effectors leads to a change in the effect of PALA on the association-dissociation equilibrium.  相似文献   

8.
A latent RNAase activity stimulated by nucleoside triphosphates has been isolated from a yeast chromatin extract, by filtration on Sepharose 6B and hydroxyapatite chromatography. The RNAase was separated from a thermolabile proteic inhibitor on phosphocellulose. When separated from the inhibitor, the RNAase hydrolyses RNA to 5′-mononucleotides. Its activity is retained in the presence of EDTA, and 50% inhibited by 1 mM ATP or CTP. The RNAase is inhibited by the thermolabile component only in the presence of divalent cations. The activity is recovered upon addition of 0.01 mM ATP to the mixture. The Km for ATP is 10 μM. ATP can be replaced by other ribo- or deoxyribonucleoside triphosphates with varying efficiency but not by ADP, AMP or cAMP. These results suggest multiple interactions between the RNAase, a regulatory component, divalent cations and nucleoside triphosphates.  相似文献   

9.
The specificities of phosphate donors and the effects of metal chelating agents and divalent metal ions on NAD kinase activation by phytochrome-far red-absorbing form (Pfr) were examined. ATP was the most efficient phosphorylating agent. Uridine 5′-triphosphate, cytidine 5′-triphosphate (CTP), inosine 5′-triphosphate, and guanosine 5′-triphosphate in this order caused significant phosphorylation in the dark. Under red light, striking photoactivation of NAD kinase was obtained with ATP and subsequently CTP.  相似文献   

10.
The Type I isozyme of rat hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) is comprised of N- and C-terminal domains, associated with regulatory and catalytic functions, respectively. Extensive sequence similarity between the domains is consistent with evolution of the enzyme by gene duplication and fusion. Cleavage at tryptic sites located in the C-terminal domain is markedly sensitive to ligands present during digestion, while analogous sites in the N-terminal domain are either resistant to trypsin or unaffected by the presence of ligands. These results imply a lack of structural equivalence between the N- and C-terminal domains, with the overall structure of the N-terminal domain being "tighter" and with a major component of ligand-induced conformational changes being focused in the C-terminal domain. Based on a previously proposed structure for brain hexokinase, protection by substrate hexoses is attributed to substrate-induced closing of a cleft in the C-terminal domain. Similar protection at C-terminal cleavage sites results from binding of inhibitory hexose-6-phosphates to the N-terminal domain. In addition, hexose-6-phosphates evoke cleavage at a site, T5, located in a region that has been associated with binding of ATP to the C-terminal domain. Thus, alterations in this region, coupled with reduced accessibility resulting from cleft closure, may account for the mutually exclusive binding of inhibitory hexose-6-phosphates and substrate ATP. In the absence of Mg2+, all nucleoside triphosphates examined (ATP, UTP, CTP, and GTP) protected against digestion by trypsin. In contrast, ATP-Mg2+ stabilized the C-terminal domain but destabilized the N-terminal domain, while the chelated forms of the other nucleoside triphosphates were similar to the unchelated forms in their effect on proteolysis; the unique response to ATP-Mg2+ reflects the specificity for ATP as a substrate.  相似文献   

11.
Pnkp is the end-healing and end-sealing component of an RNA repair system present in diverse bacteria from many phyla. Pnkp is composed of three catalytic modules: an N-terminal polynucleotide 5′-kinase, a central 2′,3′ phosphatase, and a C-terminal ligase. Here we report the crystal structure of the kinase domain of Clostridium thermocellum Pnkp bound to ATP•Mg2+ (substrate complex) and ADP•Mg2+ (product complex). The protein consists of a core P-loop phosphotransferase fold embellished by a distinctive homodimerization module composed of secondary structure elements derived from the N and C termini of the kinase domain. ATP is bound within a crescent-shaped groove formed by the P-loop (15GSSGSGKST23) and an overlying helix-loop-helix “lid.” The α and β phosphates are engaged by a network of hydrogen bonds from Thr23 and the P-loop main-chain amides; the γ phosphate is anchored by the lid residues Arg120 and Arg123. The P-loop lysine (Lys21) and the catalytic Mg2+ bridge the ATP β and γ phosphates. The P-loop serine (Ser22) is the sole enzymic constituent of the octahedral metal coordination complex. Structure-guided mutational analysis underscored the essential contributions of Lys21 and Ser22 in the ATP donor site and Asp38 and Arg41 in the phosphoacceptor site. Our studies suggest a catalytic mechanism whereby Asp38 (as general base) activates the polynucleotide 5′-OH for its nucleophilic attack on the γ phosphorus and Lys21 and Mg2+ stabilize the transition state.  相似文献   

12.
Escherichia coli Lon, also known as protease La, is a serine protease that is activated by ATP and other purine or pyrimidine triphosphates. In this study, we examined the catalytic efficiency of peptide cleavage as well as intrinsic and peptide-stimulated nucleotide hydrolysis in the presence of hydrolyzable nucleoside triphosphates ATP, CTP, UTP, and GTP. We observed that the k(cat) of peptide cleavage decreases with the reduction in the nucleotide binding affinity of Lon in the following order: ATP > CTP > GTP approximately UTP. Compared to those of the other hydrolyzable nucleotide triphosphates, the ATPase activity of Lon is also the most sensitive to peptide stimulation. Collectively, our kinetic as well as tryptic digestion data suggest that both nucleotide binding and hydrolysis contribute to the peptidase turnover of Lon. The kinetic data that were obtained were further put into the context of the structural organization of Lon protease by probing the conformational change in Lon bound to the different nucleotides. Both adenine-containing nucleotides and CTP protect a 67 kDa fragment of Lon from tryptic digestion. Since this 67 kDa fragment contains the ATP binding pocket (also known as the alpha/beta domain), the substrate sensor and discriminatory (SSD) domain (also known as the alpha-helical domain), and the protease domain of Lon, we propose that the binding of ATP induces a conformational change in Lon that facilitates the coupling of nucleotide hydrolysis with peptide substrate delivery to the peptidase active site.  相似文献   

13.
Dengue virus nonstructural protein 3 (NS3) unwinds double stranded RNA driven by the free energy derived from the hydrolysis of nucleoside triphosphates. This paper presents the first systematic and quantitative characterization of the steady-state NTPase activity of DENV NS3 and their interaction with ssRNA. Substrate curves for ATP, GTP, CTP and UTP were obtained, and the specificity order for these nucleotides - evaluated as the ratio (kcat/KM)- was GTPATPCTP UTP, which showed that NS3 have poor ability to discriminate between different NTPs. Competition experiments between the four substrates indicated that all of them are hydrolyzed in one and the same catalytic site of the enzyme. The effect of ssRNA on the ATPase activity of NS3 was studied using poly(A) and poly(C). Both RNA molecules produced a 10 fold increase in the turnover rate constant (kcat) and a 100 fold decrease in the apparent affinity (KM) for ATP. When the ratio [RNA bases]/[NS3] was between 0 and 20 the ATPase activity was inhibited by increasing both poly(A) and poly(C). Using the theory of binding of large ligands (NS3) to a one-dimensional homogeneous lattice of infinite length (RNA) we tested the hypothesis that inhibition is the result of crowding of NS3 molecules along the RNA lattices. Finally, we discuss why this hypothesis is consistent with the idea that the ATPase catalytic cycle is tightly coupled to the movement of NS3 helicase along the RNA.  相似文献   

14.
F1-ATPase is a rotary molecular motor in which the central γ subunit rotates inside a cylinder made of α3β3 subunits. To clarify how ATP hydrolysis in three catalytic sites cooperate to drive rotation, we measured the site occupancy, the number of catalytic sites occupied by a nucleotide, while assessing the hydrolysis activity under identical conditions. The results show hitherto unsettled timings of ADP and phosphate releases: starting with ATP binding to a catalytic site at an ATP-waiting γ angle defined as 0°, phosphate is released at ∼200°, and ADP is released during quick rotation between 240° and 320° that is initiated by binding of a third ATP. The site occupancy remains two except for a brief moment after the ATP binding, but the third vacant site can bind a medium nucleotide weakly.  相似文献   

15.
Replacement of Mg (II), the natural activator of brain hexokinase (EC 2.7.1.1) by paramagnetic Mn (II) without affecting the physiological properties of the enzyme, has rendered brain hexokinase accessible to investigations by magnetic resonance methods. Based on such studies, a site on the enzyme, where Mn (II) binds directly with high affinity has been identified and characterized in detail. Use ofβ,γ-bidentate Cr (III) ATP as an exchange-inert analogue for Mn (II) ATP has shown that Mn (II) binding directly to the enzyme has no catalytic role but another Mn (II) ion binding simultaneously and independently to the enzyme through the nucleotide bridge participates in enzyme function. However, using this direct binding Mn (II) ion and a covalently bound spin label as paramagnetic probes a beginning has been made in mapping the ligand binding sites of the enzyme. Ultra-violet difference spectroscopy has revealed the presence of at least two glucose 6-phosphate locations on the enzyme one of which presumably is the high affinity regulatory site modulated by substrate glucose. Elution behaviour of the enzyme on a phosphocellulose column suggests that glucose induces a specific phosphate site on the enzyme to which the phosphate bearing regulatory ligands of the enzyme may bind.  相似文献   

16.
Five analogues of ATP and six other non-nucleotide compounds with phosphate groups were tested as gorging stimulants for second-instar larvae of Rhodnius prolixus to determine the importance of the phosphate chain. Only molecules with terminal phosphate groups were potent. Insertion of an imido group (5′-Adenylylimidodiphosphate, AMP-PNP) or a methylene group (β, γ-Methylene adenosine 5′-triphosphate, AMP-PCP) between the β and γ phosphates of ATP reduced the potency compared to ATP by ratios of 1.8 and 25.5, respectively. Substituting ribose (Adenosine 5′-diphosphoribose, AMP-PR) for the γ phosphate group or an amidate or a sulphate group (Adenosine 5′-phosphoramidate, AMP-N; Adenosine 5′-phosphosulphate, AMP-S) for the β and γ phosphate groups of ATP resulted in a complete loss of stimulatory activity.Some non-nucleotide phosphate compounds were potent phagostimulants. Pyrophosphate with an ED50 of 64 μM had a potency ratio compared with ATP of 1:17. Methylene diphosphonic acid (ED50 680 μM) and even single phosphate ions (ED50 2.5 mM) had substantial potency. Two isomers of phosphoglyceric acid differ greatly in their ability to stimulate gorging; 2-PGA was active (ED50 160 μM) whereas 3-PGA had almost no activity.A summary of known phagostimulants to R. prolixus supports the hypothesis that ATP-like gorging stimulants act by forming a temporary binding to 3 sites on a receptor protein in the membrane of the chemosensory cell. The amino group on C6 of adenine, the OH group on C2 of ribose and the terminal phosphate group(s) determine potency, presumably by determining binding affinity. However, only the phosphate group appears essential to the chemosensory process.  相似文献   

17.
Modes of modifier action in E. coli aspartate transcarbamylase   总被引:4,自引:0,他引:4  
The observed patterns for inhibition by CTP and succinate of equilibrium exchange kinetics with native aspartate transcarbamylase (E. coli) are consistent with an ordered substrate-binding system in which aspartate binds after carbamyl phosphate, and phosphate is released after carbamyl aspartate. ATP selectively stimulates Asp carbamyl-Asp exchange, but not carbamyl phosphate Pi. Initial velocity studies at 5 °, 15 °, and 35 °C were carried out, using modifiers as perturbants of the system. Modifiers alter the Hill n and S0.5 for aspartate, most markedly at 15 °C but less so at the other temperatures. ATP does increase V under saturating substrate conditions, and substrate inhibition is observed for aspartate. ATP does not make the Hill n = 1 at any temperature. It is proposed that CTP and ATP act by separate mechanisms, not by simply perturbing in opposite directions the equilibrium for aspartate binding. ATP appears to act to increase the rate of aspartate association and dissociation, whereas CTP induces an intramolecular competitive effect in the protein.  相似文献   

18.
1. The binding of the fluorescent ATP analogue, Mg2+-1,N6-etheno-ATP, to the catalytic site of rabbit skeletal muscle phosphofructokinase has been studied by stopped-flow fluorimetry [Roberts & Kellet (1979) Biochem. J. 183, 349--360]. 2. Binding of Mg2+-1,N6-etheno-ATP to the catalytic site is consistent with a two-step mechanism of the type: (formula: see text); in which the diffusion-controlled binding of ligand, L, is accompanied by prior interconversion of enzyme from one form, E, to another, E. 3. The allosteric activators, phosphate and cyclic AMP, which promote an R-type conformation, appear to stabilize slightly different conformations, R and R' respectively. 4. The binding of Mg2+-1,N6-etheno-ATP to the catalytic site is strongly affected by its binding to the inhibitory site. The rate constant for the displacement of Mg2+-1,N6-ethenol-ATP from the catalytic site, k32, is 470 +/- 35 s-1 for the R' conformation, whereas it is 6.0 +/- 0.09 s-1 for the T conformation induced by binding of Mg2+-1,N6-ethenol-ATP to the inhibitory site.  相似文献   

19.
Yeast AMP deaminase is allosterically activated by ATP and MgATP and inhibited by GTP and PO4. The tetrameric enzyme binds 2 mol each of ATP, GTP, and PO4/subunit with Kd values of 8.4 +/- 4.0, 4.1 +/- 0.6, and 169 +/- 12 microM, respectively. At 0.7 M KCl, ATP binds to the enzyme, but no longer activates. Titration with coformycin 5'-monophosphate, a slow, tight-binding inhibitor, indicates a single catalytic site/subunit. ATP and GTP bind at regulatory sites distinct from the catalytic site and their binding is mutually exclusive. Inorganic phosphate competes poorly with ATP for the ATP sites (Kd = 20.1 +/- 4.1 mM). However, near-saturating ATP reduces the moles of phosphate bound per subunit to 1 PO4, which binds with a Kd = 275 +/- 22 microM. In the presence of ATP, PO4 cannot effectively compete with ATP for the nucleotide triphosphate sites. The PO4 which binds in the presence of ATP is competitive with AMP at the catalytic site since the Kd equals the kinetic inhibition constant for PO4. Initial reaction rate curves are a cooperative function of AMP concentration and activation by ATP is also cooperative. However, no cooperativity is observed in the binding of any of the regulator ligands and ATP binding and kinetic activation by ATP is independent of substrate analog concentration. Cooperativity in initial rate curves results, therefore, from altered rate constants for product formation from each (enzyme.substrate)n species and not from cooperative substrate binding. The traditional cooperative binding models of allosteric regulation do not apply to yeast AMP deaminase, which regulates catalytic activity by kinetic control of product formation. The data are used to estimate the rates of AMP hydrolysis under reported metabolite concentrations in yeast.  相似文献   

20.
The crystal structure of the ternary complex of hexameric purine nucleoside phosphorylase (PNP) from Escherichia coli with formycin A derivatives and phosphate or sulphate ions is determined at 2.0 A resolution. The hexamer is found as a trimer of unsymmetric dimers, which are formed by pairs of monomers with active sites in different conformations. The conformational difference stems from a flexible helix (H8: 214-236), which is continuous in one conformer, and segmented in the other. With the continuous helix, the entry into the active site pocket is wide open, and the ligands are bound only loosely ("open" or "loose binding" conformation). By segmentation of the helix (H8: 214-219 and H8': 223-236, separated by a gamma-turn), the entry into the active site is partially closed, the pocket is narrowed and the ligands are bound much more tightly ("closed" or "tight binding" conformation). Furthermore, the side-chain of Arg217 is carried by the moving helix into the active site. This residue, conserved in all homologous PNPs, plays an important role in the proposed catalytic mechanism. In this mechanism, substrate binding takes place in the open, and and the catalytic action occurs in the closed conformation. Catalytic action involves protonation of the purine base at position N7 by the side-chain of Asp204, which is initially in the acid form. The proton transfer is triggered by the Arg217 side-chain which is moved by the conformation change into hydrogen bond distance to Asp204. The mechanism explains the broad specificity of E. coli PNP, which allows 6-amino as well as 6-oxo-nucleosides as substrates. The observation of two kinds of binding sites is fully in line with solution experiments which independently observe strong and weak binding sites for phosphate as well as for the nucleoside inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号