首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The secondary structure of DNA aptamer to Taq DNA polymerase was established as a hairpin. Both stem and loop structures of DNA ligand were shown to be involved in the interaction with Taq DNA polymerase. Moreover, the structure and sequence of DNA aptamer that was the most effective inhibitor of DNA polymerase activity were established. This crucial structure was evaluated as a GC-rich stem longer than 17 bp, and a loop consisting of 12 bases with strictly determined nucleotide sequence. It was demonstrated that nucleotide in position 23 counting from the 5"-end of DNA ligand was involved in direct contact with Taq DNA polymerase. The ability of optimized DNA aptamer TQ21-11 to form a complex with the enzyme was increased 5-fold in comparison to the initial aptamer.  相似文献   

2.
A PCR procedure has been developed for routine analysis of viable Salmonella spp. in feed samples. The objective was to develop a simple PCR-compatible enrichment procedure to enable DNA amplification without any sample pretreatment such as DNA extraction or cell lysis. PCR inhibition by 14 different feed samples and natural background flora was circumvented by the use of the DNA polymerase Tth. This DNA polymerase was found to exhibit a high level of resistance to PCR inhibitors present in these feed samples compared to DyNAzyme II, FastStart Taq, Platinum Taq, Pwo, rTth, Taq, and Tfl. The specificity of the Tth assay was confirmed by testing 101 Salmonella and 43 non-Salmonella strains isolated from feed and food samples. A sample preparation method based on culture enrichment in buffered peptone water and DNA amplification with Tth DNA polymerase was developed. The probability of detecting small numbers of salmonellae in feed, in the presence of natural background flora, was accurately determined and found to follow a logistic regression model. From this model, the probability of detecting 1 CFU per 25 g of feed in artificially contaminated soy samples was calculated and found to be 0.81. The PCR protocol was evaluated on 155 naturally contaminated feed samples and compared to an established culture-based method, NMKL-71. Eight percent of the samples were positive by PCR, compared with 3% with the conventional method. The reasons for the differences in sensitivity are discussed. Use of this method in the routine analysis of animal feed samples would improve safety in the food chain.  相似文献   

3.
We previously identified a thrombin-inhibiting DNA aptamer that was presumed to form a G-quartet structure with a duplex. To investigate the importance of the sequences in the duplex region and to obtain aptamers with higher inhibitory activities, we randomized the sequences of the duplex region of this aptamer and carried out selection based on inhibitory activity using a genetic algorithm. This method consisted of selection via an inhibition assay, crossover, and mutation in silico. After two cycles, we obtained ligands with greater inhibitory activities than that of the original aptamer. In addition, the duplex sequences were found to contribute to the inhibitory activities of aptamers.  相似文献   

4.
The human tumor necrosis factor α (hTNF-α) is an important pro-inflammatory cytokine which plays critical roles in inflammatory diseases such as rheumatoid arthritis (RA). The anti-TNF-α proteins can reduce symptoms of RA. Due to limitations of protein-based therapies, it is necessary to find new anti-TNF-α agents instead of common anti-TNF-α proteins. Therefore, the aim of the current study was to identify a new DNA aptamer with anti-hTNF-α activity. The protein systematic evolution of ligands by exponential enrichment (SELEX) process was used for identifying DNA aptamers. Anti-hTNF-α aptamers were selected using dot blot, real-time PCR, and in vitro inhibitory assay. The selected aptamers were truncated in two steps, and finally, a dimer aptamer was constructed from different selected truncates to improve their inhibitory effect. Also, Etanercept was used as a positive control to inhibit TNF-α, in comparison to the designed aptamers. After 11 rounds, four aptamers with anti-hTNF-α inhibitory effect were identified. The truncation and dimerization strategy revealed a new dimer aptamer with 67 nM Kd, which has 40% inhibitory effect compared with Etanercept (60%). Overall, the dimerization and truncation aptamers could improve its activity. With regard to the several limitations of anti-TNF-α proteins therapies including immunogenicity, side effects, and cost-intensive, a new designed anti-hTNF-α dimer aptamer could be considered as a potential therapeutic and/or diagnostic agent for hTNF-α-related disorders.  相似文献   

5.
We introduce the TA cloning antibody method for the high-fidelity PCR product amplified by family B DNA polymerase without purification. This method uses antibodies and Thermus aquaticus (Taq) DNA polymerase. The antibodies can inhibit only the activity of family B DNA polymerase, and Taq can co-work for A-tailing. This method has nearly cloning efficiency to that of the PCR product of Taq.  相似文献   

6.
7.
DNA polymerase β (polβ), a member of the X family of DNA polymerases, is the major polymerase in the base excision repair pathway. Using in vitro selection, we obtained RNA aptamers for polβ from a variable pool of 8 × 1012 individual RNA sequences containing 30 random nucleotides. A total of 60 individual clones selected after seven rounds were screened for the ability to inhibit polβ activity. All of the inhibitory aptamers analyzed have a predicted tri-lobed structure. Gel mobility shift assays demonstrate that the aptamers can displace the DNA substrate from the polβ active site. Inhibition by the aptamers is not polymerase specific; inhibitors of polβ also inhibited DNA polymerase κ, a Y-family DNA polymerase. However, the RNA aptamers did not inhibit the Klenow fragment of DNA polymerase I and only had a minor effect on RB69 DNA polymerase activity. Polβ and κ, despite sharing little sequence similarity and belonging to different DNA polymerase families, have similarly open active sites and relatively few interactions with their DNA substrates. This may allow the aptamers to bind and inhibit polymerase activity. RNA aptamers with inhibitory properties may be useful in modulating DNA polymerase actvity in cells.  相似文献   

8.
Thermus aquaticus DNA polymerase (Taq polymerase) made the polymerase chain reaction feasible and led to a paradigm shift in genomic analysis. Other Thermus polymerases were reported to have comparable performance in PCR and there was an analysis of their properties in the 1990s. We re-evaluated our earlier phylogeny of Thermus species on the basis of 16S rDNA sequences and concluded that the genus could be divided into eight clades. We examined 22 representative isolates and isolated their DNA polymerase I genes. The eight most diverse polymerase genes were selected to represent the eight clades and cloned into an expression vector coding for a His-tag. Six of the eight polymerases were expressed so that there was sufficient protein for purification. The proteins were purified to homogeneity and examination of the biochemical characteristics showed that although they were competent to perform PCR, none was as thermostable as commercially available Taq polymerase; all had similar error-frequencies to Taq polymerase and all showed the expected 5′–3′ exonuclease activity. We conclude that the initial selection of T. aquaticus for DNA polymerase purification was a far-reaching and fortuitous choice but simple mutagenesis procedures on other Thermus-derived polymerases should provide comparable thermostability for the PCR reaction.  相似文献   

9.
There are two approaches in detection of bacterium Erwinia amylovora by PCR. One is based on detection of plasmid pEA29 and the other is based on detection of a chromosomal DNA sequence, specific for E. amylovora, in a sample. Since pathogenic strains without pEA29 have been isolated from the environment, methods based on this plasmid have been compromised and PCR methods based on chromosomal DNA species specific sequences became only reliable methods. PCR method with chromosomal primers FER1-F and FER1-R is currently the most reliable method due to its high sensitivity and specificity. The goal of this research is to make a significant improvement of the method by optimization of PCR in application of hot start DNA Taq polymerase, instead of wax, to obtain a hot start reaction. This enzyme, which is currently widely applied, can provide simpler achievement of hot start, saving labor and time and decreasing possibility of cross contamination of samples. Experiments showed that simple replacement of a regular recombinant Taq DNA polymerase by a hot start Taq DNA polymerase leads to complete failure of the reaction. Many optimization experiments had to be carried out to obtain an operational and reliable PCR which simultaneously has high sensitivity and specificity. Content of the reaction mixture, as well as temperature and time parameters of PCR, were significantly changed to achieve proper optimization.  相似文献   

10.
Formation of micro- and nanoparticles of condensed DNA during PCR with microbial genomic DNA or plasmid DNA as templates was reported previously. Initially, the microparticles were formed using a thermostable KlenTaq polymerase, which is a deletion variant of Taq polymerase. The present work shows that Taq polymerase is also capable of efficient formation of micro- and nanoparticles of condensed DNA in PCR. Electron microscopy revealed a number of morphological types (more than four) of microparticles produced in PCR with different reaction buffers in the presence of Taq polymerase and different plasmid DNAs as a template. In the case of some kinds of amplicons, an increase in the number of thermal cycles was shown to result in production of numerous nanowires and electron-dense spherical nanoparticles. The PCR conditions for preferential formation of discs (or ellipsoids) a few micrometers in diameter and several dozens of nanometers in thickness were determined. The structure of microparticles formed in the presence of Taq polymerase was found to depend on the level of synthesis of single-stranded DNA fragments in PCR. Experiments with nuclease S1 revealed that, along with double-stranded DNAs of the amplicon, micro- and nano-particles contained single-stranded DNA fragments, which were absolutely necessary for their formation. In light of these data, the molecular mechanism of micro- and nanoparticle formation in the course of PCR is discussed.  相似文献   

11.
The family B DNA polymerase gene was amplified from Thermococcus celer genomic DNA by using the degenerate primers and DNA walking PCR. The Tce DNA polymerase gene was cloned and sequenced. The gene contains an ORF of 2,325 bp encoding 774 amino acid residues with a calculated molecular weight of 89,788.9 kDa. The Tce DNA polymerase was purified by heat treatment and heparin column chromatography. The optimal conditions for PCR were determined. Long-range PCR and time-saving PCR were performed using various specific ratios of Taq and Tce DNA polymerases (Tce plus DNA polymerase). Tce plus DNA polymerase surpassed the PCR performance of Tce, Taq and Pfu DNA polymerases in terms of yield and efficiency.  相似文献   

12.
The specimens of DNA microparticles formed during PCR amplification of IS-elements ISAfe1 and IST2 by KlenTaq or Taq polymerases and plasmid DNA as a template under varying conditions were investigated by electron microscopy. Microparticle yield and morphology were found to depend on the level of synthesis of single-stranded DNA fragments during PCR. The conditions were studied for formation of discs (ellipsoids) several micrometers in diameter and several dozens of nanometers thick, as well as of microparticles of other morphologies, in the course of PCR with Taq polymerase. The structure of the microparticles produced during an asymmetric PCR, i.e., under conditions of low concentration of one of the two primers, was investigated. Morphology of the DNA micro- and nanoparticles was found to depend mainly on the DNA polymerase used in asymmetric PCR. In particular, in the presence of the KlenTaq polymerase, discs or ellipsoids a few dozen nanometers thick were formed, while in the presence of the Taq polymerase, micro- and nanospheres, heterogeneous in size with rugged surfaces, were produced. The effect of Mn2+ cations on DNA microparticle morphology was studied. In the presence of Mn2+, microparticle morphology changed dramatically; in PCR mixtures containing KlenTaq polymerase supplemented with Mn2+, DNA microspheres with fringed surfaces were formed; in the presence of Taq polymerase, microparticles in the form of short, rounded rods were produced. In light of these data, the molecular mechanism of micro- and nanoparticle formation in the course of PCR is discussed.  相似文献   

13.
N-Terminally truncated DNA polymerase from Thermus thermophilus(Tth polymerase) lacking 5'-3' exonuclease activity was usedfor DNA sequencing and polymerase chain reaction (PCR). In contrastto the high background of the sequencing ladder observed withthe wild-type Tth polymerase, Tth polymerase gave readable sequencingpatterns which extend up to more than 500 bases from the primersite on cycle sequencing and automated sequencing. The Tth polymerasewas used for the standard and mutagenic PCR, and net amplificationof the DNA and the mutations accumulated during PCR were analyzed.Under mutagenic PCR, the mutation rates were 7.0 x 10–4(Tth) and 8.3 x 10–4 (Tth) per nucleotide per cycle ofamplification, which were 4–9 times higher than the ratesunder standard PCR.  相似文献   

14.
Thrombin-inhibiting DNA aptamers have already been obtained through the systematic evolution of ligands by exponential enrichment (SELEX). However, SELEX is a method that screens DNA aptamers that bind to their target molecules, and it sometimes fails to screen good inhibitors. Therefore, it is necessary to develop a method of screening DNA aptamers based on their inhibitory effects on the target molecules. We developed a novel method of detecting aptamers using an evolution-mimicking algorithm, and we applied it to the search of new aptamers which inhibit thrombin. First, we randomly designed and synthesized ten 15mer oligonucleotides presumed to form G-quartet structures, and then measured their thrombin-inhibiting activities. The aptamers showing high inhibitory activity were selected, and we shuffled and mutated those sequences in silico to generate 10 new sequences of next-generation aptamers. After repeating the cycle five times, we successfully obtained the same aptamers reported previously, and they showed high inhibitory activity. In addition, we added 8mer oligonucleotides to both the 5′ and the 3′ end of the selected 15mer aptamers, and then repeated the evolution in silico. After two cycles, we were able to obtain aptamers with higher inhibitory activity than that of the 15mer aptamers.  相似文献   

15.
The success rate of diagnostic polymerase chain reaction (PCR) analysis is lowered by inhibitory substances present in the samples. Recently, we showed that tolerance to PCR inhibitors in crime scene saliva stains can be improved by replacing the standard DNA polymerase AmpliTaq Gold with alternative DNA polymerase-buffer systems (Hedman et al., BioTechniques 47 (2009) 951-958). Here we show that blending inhibitor-resistant DNA polymerase-buffer systems further increases the success rate of PCR for various types of real crime scene samples showing inhibition. For 34 of 42 “inhibited” crime scene stains, the DNA profile quality was significantly improved using a DNA polymerase blend of ExTaq Hot Start and PicoMaxx High Fidelity compared with AmpliTaq Gold. The significance of the results was confirmed by analysis of variance. The blend performed as well as, or better than, the alternative DNA polymerases used separately for all tested sample types. When used separately, the performance of the DNA polymerases varied depending on the nature of the sample. The superiority of the blend is discussed in terms of complementary effects and synergy between the DNA polymerase-buffer systems.  相似文献   

16.
In this work, a novel catalpol derivative (6,10,2′,6′-tetraacetyl-O-catalpol), which was previously obtained by our group and shown experimentally to inhibit a type of Taq DNA polymerase, was studied in silico. Studies of the interaction of 6,10,2′,6′-tetraacetyl-O-catalpol with the Klentaq fragment of the Taq DNA polymerase I from Thermus aquaticus helped to elucidate the mechanism of inhibition of the enzyme, and offered valuable information that can be used to propose substrate structural modifications aimed at increasing the binding affinity. Classical and semi-empirical methods were used to characterize the conformational preferences of this organic compound in solution. Using docking simulations, the most probable binding mode was found, and the stabilities of the docked solutions were tested in a series of molecular dynamics experiments. Results indicated that the mechanism of inhibition may be competitive, which agrees with previous binding experiments done with 6,10,2′,6′-tetraacetyl-O-catalpol.  相似文献   

17.
The known archaeal family B DNA polymerases are unable to participate in the PCR in the presence of uracil. Here, we report on a novel archaeal family B DNA polymerase from Nanoarchaeum equitans that can successfully utilize deaminated bases such as uracil and hypoxanthine and on its application to PCR. N. equitans family B DNA polymerase (Neq DNA polymerase) produced λ DNA fragments up to 10 kb with an approximately 2.2-fold-lower error rate (5.53 × 10−6) than Taq DNA polymerase (11.98 × 10−6). Uniquely, Neq DNA polymerase also amplified λ DNA fragments using dUTP (in place of dTTP) or dITP (partially replaced with dGTP). To increase PCR efficiency, Taq and Neq DNA polymerases were mixed in different ratios; a ratio of 10:1 efficiently facilitated long PCR (20 kb). In the presence of dUTP, the PCR efficiency of the enzyme mixture was two- to threefold higher than that of either Taq and Neq DNA polymerase alone. These results suggest that Neq DNA polymerase and Neq plus DNA polymerase (a mixture of Taq and Neq DNA polymerases) are useful in DNA amplification and PCR-based applications, particularly in clinical diagnoses using uracil-DNA glycosylase.  相似文献   

18.
The PCR is an extremely powerful method for detecting microorganisms. However, its full potential as a rapid detection method is limited by the inhibition of the thermostable DNA polymerase from Thermus aquaticus by many components found in complex biological samples. In this study, we have compared the effects of known PCR-inhibiting samples on nine thermostable DNA polymerases. Samples of blood, cheese, feces, and meat, as well as various ions, were added to PCR mixtures containing various thermostable DNA polymerases. The nucleic acid amplification capacity of the nine polymerases, under buffer conditions recommended by the manufacturers, was evaluated by using a PCR-based detection method for Listeria monocytogenes in the presence of purified template DNA and different concentrations of PCR inhibitors. The AmpliTaq Gold and the Taq DNA polymerases from Thermus aquaticus were totally inhibited in the presence of 0.004% (vol/vol) blood in the PCR mixture, while the HotTub, Pwo, rTth, and Tfl DNA polymerases were able to amplify DNA in the presence of 20% (vol/vol) blood without reduced amplification sensitivity. The DNA polymerase from Thermotoga maritima (Ultma) was found to be the most susceptible to PCR inhibitors present in cheese, feces, and meat samples. When the inhibitory effect of K and Na ions was tested on the nine polymerases, HotTub from Thermus flavus and rTth from Thermus thermophilus were the most resistant. Thus, the PCR-inhibiting effect of various components in biological samples can, to some extent, be eliminated by the use of the appropriate thermostable DNA polymerase.  相似文献   

19.
We synthesized C5-modified analogs of 2′-deoxyuridine triphosphate and 2′-deoxycytidine triphosphate and investigated them as substrates for PCRs using Taq, Tth, Vent(exo-), KOD Dash and KOD(exo-) polymerases and pUC 18 plasmid DNA as a template. These assays were performed on two different amplifying regions of pUC18 with different T/C contents that are expected to have relatively high barriers for incorporation of either modified dU or dC. On the basis of 260 different assays (26 modified triphosphates × 5 DNA polymerases × 2 amplifying regions), it appears that generation of the full-length PCR product depends not only on the chemical structures of the substitution and the nature of the polymerase but also on whether the substitution is on dU or dC. Furthermore, the template sequence greatly affected generation of the PCR product, depending on the combination of the DNA polymerase and modified triphosphate. By examining primer extension reactions using primers and templates containing C5-modified dUs, we found that a modified dU at the 3′ end of the elongation strand greatly affects the catalytic efficiency of DNA polymerases, whereas a modified dU opposite the elongation site on the template strand has less of an influence on the catalytic efficiency.  相似文献   

20.
For many years, Taq polymerase has served as the stalwart enzyme in the PCR amplification of DNA. However, a major limitation of Taq is its inability to amplify damaged DNA, thereby restricting its usefulness in forensic applications. In contrast, Y-family DNA polymerases, such as Dpo4 from Sulfolobus solfataricus, can traverse a wide variety of DNA lesions. Here, we report the identification and characterization of five novel thermostable Dpo4-like enzymes from Acidianus infernus, Sulfolobus shibatae, Sulfolobus tengchongensis, Stygiolobus azoricus and Sulfurisphaera ohwakuensis, as well as two recombinant chimeras that have enhanced enzymatic properties compared with the naturally occurring polymerases. The Dpo4-like polymerases are moderately processive, can substitute for Taq in PCR and can bypass DNA lesions that normally block Taq. Such properties make the Dpo4-like enzymes ideally suited for the PCR amplification of damaged DNA samples. Indeed, by using a blend of Taq and Dpo4-like enzymes, we obtained a PCR amplicon from ultraviolet-irradiated DNA that was largely unamplifyable with Taq alone. The inclusion of thermostable Dpo4-like polymerases in PCRs, therefore, augments the recovery and analysis of lesion-containing DNA samples, such as those commonly found in forensic or ancient DNA molecular applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号