首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 454 毫秒
1.
腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)是细胞能量调节的关键激酶,近期研究表明AMPK也在炎症这一高耗能分子反应中发挥重要调控作用。目前常用的AMPK激活剂有5-氨基咪唑-4-甲酰胺核苷酸(5-aminoimidazole-4-carboxamide ribonucleotide, AICAR)和A-769662,此外二甲双胍及脂联素发挥生物活性也与激活AMPK密切相关。大量研究表明,这些激活剂可在急性肺损伤、哮喘、结肠s炎、肝炎、动脉粥样硬化等多种炎症相关性疾病动物模型中发挥有效的保护作用。因而,AMPK激活剂在炎症相关性疾病的防治中具有广阔的研发和应用前景。  相似文献   

2.
单磷酸腺苷激活的蛋白质激酶(AMP-activated protein kinase,AMPK)作为真核细胞内重要的能量感受器,是一种进化上高度保守的丝氨酸/苏氨酸蛋白质激酶,能够维持和调控细胞能量动态平衡,在糖脂代谢调控的生理状态以及癌症和糖尿病等病理状态中均发挥着不可或缺的作用。随着对AMPK调控网络研究的进一步深入,发现在不同肿瘤细胞及特定发展阶段中,AMPK可能通过不同的信号通路发挥其促进和抑制肿瘤发生发展的双重功能。深入理解AMPK复杂的调控网络与癌细胞不同代谢需求之间相互作用的方式具有重要指导意义。AMPK激活剂二甲双胍(metformin)作为经典的抗糖尿病药物如今备受肿瘤界关注,但其是否依赖于AMPK发挥作用仍存在很多争议,其能否用于临床肿瘤治疗还有待进一步研究讨论。本文通过对AMPK的功能结构及其与肿瘤生长(能量代谢、自噬、死亡方式)、肿瘤转移、血管生成之间的关系进行系统阐述,并着重讨论AMPK激活剂二甲双胍与肿瘤的相关研究,旨在为靶向AMPK抑制肿瘤发生发展提供理论基础。  相似文献   

3.
单磷酸腺苷活化蛋白激酶(AMPK)是一个调控能量稳态的重要激酶,也是一个参与许多细胞信号传导通路的关键蛋白。目前认为,AMPK不仅在代谢障碍而且在心血管疾病及生殖障碍等许多病理状态中都具有重要的调节作用。此外,它在人类恶性肿瘤中也扮演着重要的角色。然而,有关AMPK在临床上的作用及其重要意义尚未完全阐明。该文从分子生物学基础到临床应用等多个方面详细综述了AMPK的研究进展,指出AMPK是转化医学研究的热点,围绕AMPK的研究及其结果将作为未来多种疾病的分子治疗手段应用于个体化医疗中。  相似文献   

4.
葡萄糖激酶分布在体内多个脏器中,可感应葡萄糖和调节糖代谢激素,在稳定血糖水平方面起到重要作用。葡萄糖激酶激活剂系 针对这一靶点而开发,能够通过葡萄糖浓度刺激的胰岛素分泌、降低胰高血糖素浓度和肝糖输出、促进肝糖原合成以及调控肠促胰素释 放等机制来稳定体内血糖水平,近年来已成为2 型糖尿病新型药物研发的热点。介绍现有葡萄糖激酶激活剂药物的开发策略、作用特点 及临床研究进展。  相似文献   

5.
目的球状脂联素在波动性高血糖诱导人脐静脉内皮细胞凋亡中的作用。方法在不同条件下体外培养人脐静脉内皮细胞,分别或联合加入球状脂联素(gAD)、单磷酸腺苷激活蛋白激酶(AMPK)的激活剂AICAR和AMPK的阻滞剂araA。采用MTT比色法测定细胞活性,流式细胞仪检测细胞凋亡率,Western blot检测AMPKα和磷酸化AMPKα蛋白表达。结果分别与对照组和恒定高血糖组比较,波动性高血糖显著抑制细胞活性和增加细胞凋亡率。gAD明显抑制波动性高血糖诱导的细胞凋亡。AICAR和gAD可明显激活AMPK的表达。araA可明显抑制gAD诱导的AMPK蛋白表达。结论波动性高血糖比恒定性高血糖更易促进内皮细胞凋亡,gAD明显抑制波动性高血糖诱导内皮细胞凋亡,其机制可能与激活AMPK有关。  相似文献   

6.
能量敏感的AMPK-SIRT1通路与炎症调控   总被引:1,自引:0,他引:1  
  相似文献   

7.
重组纤溶酶原激活剂抑制剂-2基因在HT1080亚克隆中的表达曹祥荣(南京师范大学生物学系,210024)关键词纤溶酶原激活剂,基因重组,纤溶酶原激活剂抑制剂活性表达目前认为纤溶酶系统是肿瘤细胞浸润和转移蛋白水解过程中重要的酶,纤溶酶能直接水解细胞外间...  相似文献   

8.
尿激酶型纤溶酶原激活剂的研究   总被引:1,自引:0,他引:1  
尿激酶型纤溶酶原激活剂u-PA(urokinase-type plasminogen activator)属于丝氨酸蛋白酶类,能激活细胞外基质中丰富的纤溶酶原生成纤溶酶,从而催化细胞外基质降解,对纤溶和癌细胞侵染及扩散等一系列生理和病理过程中发生的胞外蛋白水解起重要调节作用。 人u-PA基因位于第10号染色体之上,表达产生一个约54kD的单链糖基化多肽——尿激酶原。尿激酶原经纤溶酶在其158位赖氨酸  相似文献   

9.
高密度脂蛋白(HDL)保护血管的主要活性成分载脂蛋白AⅠ和磷酸鞘氨醇1的细胞表面受体皆存在于脂肪组织,而参与HDL重构的脂质转运蛋白亦在脂肪组织高表达,提示HDL可以通过上述成分调节脂肪细胞能量代谢.相关分子机制研究发现,健康人体内和重组的HDL颗粒皆可活化脂肪细胞腺苷酸激活蛋白激酶(AMPK),并抑制脂肪酸氧化,而体外和体内实验均证明HDL可能通过其主要活性成分的多个受体途径协调激活AMPK活性,从而参与调节脂肪细胞能量代谢.期待HDL对脂肪细胞AMPK的调节作用研究能为防治脂肪代谢异常所致肥胖性疾患提供新的治疗靶点.  相似文献   

10.
高密度脂蛋白(HDL)保护血管的主要活性成分载脂蛋白AⅠ和磷酸鞘氨醇1的细胞表面受体皆存在于脂肪组织,而参与HDL重构的脂质转运蛋白亦在脂肪组织高表达,提示HDL可以通过上述成分调节脂肪细胞能量代谢.相关分子机制研究发现,健康人体内和重组的HDL颗粒皆可活化脂肪细胞腺苷酸激活蛋白激酶(AMPK),并抑制脂肪酸氧化,而体外和体内实验均证明HDL可能通过其主要活性成分的多个受体途径协调激活AMPK活性,从而参与调节脂肪细胞能量代谢.期待HDL对脂肪细胞AMPK的调节作用研究能为防治脂肪代谢异常所致肥胖性疾患提供新的治疗靶点.  相似文献   

11.
Cardiac fibroblasts are known to be essential for adaptive responses in the pathogenesis of cardiovascular diseases, and increased intercellular communication of myocardial cells and cardiac fibroblasts acts as a crucial factor in maintaining the functional integrity of the heart. AMP-activated kinase (AMPK) is a key stress signaling kinase, which plays an important role in promoting cell survival and improving cell function. However, the underlying link between AMPK and gap junctional communication (GJIC) is still poorly understood. In this study, a connection between AMPK and GJIC in high glucose-mediated neonatal cardiac fibroblasts was assessed using fibroblast migration, measurement of dye transfer and connexin43 (Cx43) expression. 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and Compound C (CC) were used to regulate AMPK activity. The levels of cell migration and Cx43 protein expression in neonatal cardiac fibroblasts increased during high glucose treatment, accompanied by developed dye transfer. In addition, high glucose induced abundant phosphorylation of AMPK. Suppression of AMPK phosphorylation using CC reduced dye transfer, cell migration and Cx43 protein expression in neonatal cardiac fibroblasts, whereas the activation of AMPK using AICAR mimicked the high glucose-mediated cell migration, Cx43 protein expression and dye transfer enhancement. AMPK appears to participate in regulating GJIC in high-glucose-treated neonatal cardiac fibroblasts, including cell migration, dye transfer, Cx43 expression and distribution.  相似文献   

12.
Bupivacaine is a sodium channel blocker, which is widely used for local infiltration nerve block, epidural and intrathecal anesthesia. However, bupivacaine could cause nerve damage. Hispidulin was shown to be able to penetrate the blood–brain barrier and possess antiepileptic activity. In this study, we investigate whether hispidulin administration could attenuate bupivacaine-induced neurotoxicity. Bupivacaine-challenged mouse neuroblastoma N2a cells were treated with hispidulin. The neuron injury was assessed by examination of cell viability and apoptosis. The levels of activation of AMP-activated protein kinase (AMPK) signaling pathway were examined along with the effect of blocking AMPK signaling on cell viability in the presence of hispidulin and bupivacaine. Our results showed that Bupivacaine treatment significantly decreased cell viability and induced apoptosis. Treatment with hispidulin significantly attenuated bupivacaine-induced cell injury. In addition, hispidulin treatment increased the levels of phospho-AMPK and phospho-GSK3β and attenuated bupivacaine-induced loss in mitochondrial membrane potential. Furthermore, we found that blocking AMPK signaling pathway significantly abolished the cytoprotective effect of hispidulin against bupivacaine-induced cell injury. Our findings suggest that treatment of neuroblastoma cells with hispidulin-protected neural cells from Bupivacaine-induced injury via the activation of the AMPK/GSK3β signaling pathway.  相似文献   

13.
The complications caused by overweight, obesity and type 2 diabetes are one of the main problems that increase morbidity and mortality in developed countries. Hypothalamic metabolic sensors play an important role in the control of feeding and energy homeostasis. PAS kinase (PASK) is a nutrient sensor proposed as a regulator of glucose metabolism and cellular energy. The role of PASK might be similar to other known metabolic sensors, such as AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR). PASK-deficient mice resist diet-induced obesity. We have recently reported that AMPK and mTOR/S6K1 pathways are regulated in the ventromedial and lateral hypothalamus in response to nutritional states, being modulated by anorexigenic glucagon-like peptide-1 (GLP-1)/exendin-4 in lean and obese rats. We identified PASK in hypothalamic areas, and its expression was regulated under fasting/re-feeding conditions and modulated by exendin-4. Furthermore, PASK-deficient mice have an impaired activation response of AMPK and mTOR/S6K1 pathways. Thus, hypothalamic AMPK and S6K1 were highly activated under fasted/re-fed conditions. Additionally, in this study, we have observed that the exendin-4 regulatory effect in the activity of metabolic sensors was lost in PASK-deficient mice, and the anorexigenic properties of exendin-4 were significantly reduced, suggesting that PASK could be a mediator in the GLP-1 signalling pathway. Our data indicated that the PASK function could be critical for preserving the nutrient effect on AMPK and mTOR/S6K1 pathways and maintain the regulatory role of exendin-4 in food intake. Some of the antidiabetogenic effects of exendin-4 might be modulated through these processes.  相似文献   

14.
We found that a natural product, Sanguinarine, directly interacts with AMPK and enhances its enzymatic activity. Cell-based assays confirmed that cellular AMPK and the downstream acetyl-CoA carboxylase (ACC) were phosphorylated after Sanguinarine treatment. Sanguinarine was shown to exclusively activate AMPK holoenzymes containing α1γ1 complexes, and it activated both β1- and β2-containing isotypes of AMPK. Furthermore, a docking study suggested that Sanguinarine binds AMPK at the cleft between the β and γ domains whereas the physiological activator, AMP, binds at the well-characterized γ domain pocket. In summary, we report that Sanguinarine is a novel, direct activator of AMPK that binds by a unique allosteric mechanism different from that of the natural AMPK ligand, AMP, and other known AMPK activators. These studies have direct applications to the pharmacological study of AMPK activation and the potential development of new therapeutics.  相似文献   

15.
Genetic and epidemiologic evidence suggests that cellular energy homeostasis is critically associated with Parkinson''s disease (PD) pathogenesis. Here we demonstrated that genetic deletion of Poly (ADP-ribose) polymerase 1 completely blocked 6-hydroxydopamine-induced dopaminergic neurodegeneration and related PD-like symptoms. Hyperactivation of PARP-1 depleted ATP pools in dopaminergic (DA) neurons, thereby activating AMP-activated protein kinase (AMPK). Further, blockade of AMPK activation by viral infection with dominant-negative AMPK strongly inhibited DA neuronal atrophy with moderate suppression of nuclear translocation of apoptosis-inhibiting factor (AIF), whereas overactivation of AMPK conversely strengthened the 6-OHDA-induced DA neuronal degeneration. Collectively, these results suggest that manipulation of PARP-1 and AMPK signaling is an effective therapeutic approach to prevent PD-related DA neurodegeneration.  相似文献   

16.
Keratin intermediate filament proteins form cytoskeletal scaffolds in epithelia, the disruption of which affects cytoarchitecture, cell growth, survival, and organelle transport. However, owing to redundancy, the global function of keratins has not been defined in full. Using a targeted gene deletion strategy, we generated transgenic mice lacking the entire keratin multiprotein family. In this study, we report that without keratins, embryonic epithelia suffer no cytolysis and maintain apical polarity but display mislocalized desmosomes. All keratin-null embryos die from severe growth retardation at embryonic day 9.5. We find that GLUT1 and -3 are mislocalized from the apical plasma membrane in embryonic epithelia, which subsequently activates the energy sensor adenosine monophosphate kinase (AMPK). Analysis of the mammalian target of rapamycin (mTOR) pathway reveals that AMPK induction activates Raptor, repressing protein biosynthesis through mTORC1''s downstream targets S6 kinase and 4E-binding protein 1. Our findings demonstrate a novel keratin function upstream of mTOR signaling via GLUT localization and have implications for pathomechanisms and therapy approaches for keratin disorders and the analysis of other gene families.  相似文献   

17.
Amyloid-β (Aβ)-induced mitochondrial dysfunction has been recognized as a prominent, early event in Alzheimer’s disease (AD). Therefore, therapeutics targeted to improve mitochondrial function could be beneficial. Quercetin, a bioflavanoid, has been reported to have potent neuro-protective effects, but its preventive effects on Aβ-induced mitochondrial dysfunction and cognitive impairment have not been well characterised. Three-month-old APPswe/PS1dE9 transgenic mice were randomly assigned to a vehicle group, two quercetin (either 20 or 40 mg kg?1 day?1) groups, or an Aricept (2 mg kg?1 day?1) group. After 16 weeks of treatment, we observed beneficial effects of quercetin (40 mg kg?1 day?1), including lessening learning and memory deficits, reducing scattered senile plaques, and ameliorating mitochondrial dysfunction, as evidenced by restoration of mitochondrial membrane potential, reactive oxygen species and ATP levels in mitochondria isolated from the hippocampus compared to control. Furthermore, the AMP-activated protein kinase (AMPK) activity significantly increased in the quercetin-treated (40 mg kg?1 day?1) group. These findings suggest that a reduction in plaque burden and mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms by which quercetin improves cognitive functioning in the APPswe/PS1dE9 transgenic mouse model of AD.  相似文献   

18.
Metabolic reprogramming is a unique but complex biochemical adaptation that allows solid tumors to tolerate various stresses that challenge cancer cells for survival. Under conditions of metabolic stress, mammalian cells employ adenosine monophosphate (AMP)-activated protein kinase (AMPK) to regulate energy homeostasis by controlling cellular metabolism. AMPK has been described as a cellular energy sensor that communicates with various metabolic pathways and networks to maintain energy balance. Earlier studies characterized AMPK as a tumor suppressor in the context of cancer. Later, a paradigm shift occurred in support of the oncogenic nature of AMPK, considering it a contextual oncogene. In support of this, various cellular and mouse models of tumorigenesis and clinicopathological studies demonstrated increased AMPK activity in various cancers. This review will describe AMPK's pro-tumorigenic activity in various malignancies and explain the rationale and context for using AMPK inhibitors in combination with anti-metabolite drugs to treat AMPK-driven cancers.  相似文献   

19.
Sodium salicylate (NaSal) is a nonsteroidal anti‐inflammatory drug. The putative mechanisms for NaSal's pharmacologic actions include the inhibition of cyclooxygenases, platelet‐derived thromboxane A2, and NF‐κB signaling. Recent studies demonstrated that salicylate could activate AMP‐activated protein kinase (AMPK), an energy sensor that maintains the balance between ATP production and consumption. The anti‐inflammatory action of AMPK has been reported to be mediated by promoting mitochondrial biogenesis and fatty acid oxidation. However, the exact signals responsible for salicylate‐mediated inflammation through AMPK are not well‐understood. In the current study, we examined the potential effects of NaSal on inflammation‐like responses of THP‐1 monocytes to lipopolysaccharide (LPS) challenge. THP‐1 cells were stimulated with or without 10 ug/mL LPS for 24 h in the presence or absence of 5 mM NaSal. Apoptosis was measured by flow cytometry using Annexin V/PI staining and by Western blotting for the Bcl‐2 anti‐apoptotic protein. Cell proliferation was detected by EdU incorporation and by Western blot analysis for proliferating cell nuclear antigen (PCNA). Secretion of pro‐inflammatory cytokines (TNF‐α, IL‐1β, IL‐6) was determined by enzyme‐linked immunosorbent assay (ELISA). We observed that the activation of AMPK by NaSal was accompanied by induction of apoptosis, inhibition of cell proliferation, and increasing secretion of TNF‐α and IL‐1β. These effects were reversed by Compound C, an inhibitor of AMPK. In addition, NaSal/AMPK activation inhibited LPS‐induced STAT3 phosphorylation, which was reversed by Compound C treatment. We conclude that AMPK activation is important for NaSal‐mediated inflammation by inducing apoptosis, reducing cell proliferation, inhibiting STAT3 activity, and producing TNF‐α and IL‐1β.  相似文献   

20.
Resveratrol, a naturally occurring phytoalexin, has reported cardioprotective, anti-inflammatory, chemopreventative and antidiabetic properties. Several studies indicate the multiple effects of resveratrol on cellular function are due to its inhibition of class 1A phosphoinositide 3-kinase (PI3K) mediated signaling pathways, but it also activates AMP-activated protein kinase (AMPK). As sodium transport in the kidney via the Epithelial Sodium Channel (ENaC) is highly sensitive to changes in phosphoinositide signaling in the membrane and AMPK, we employed resveratrol to probe the relative effects of phosphatidylinositol species in the plasma membrane and AMPK activity and their impact on ENaC activity in mouse cortical collecting duct (mpkCCDc14) cells. Here we demonstrate that resveratrol acutely reduces amiloride-sensitive current in mpkCCDc14 cells. The time course and dose dependency of this inhibition paralleled depletion of the PI(3,4,5)P3 reporter (AKT-PH) in live-cell microscopy, indicating the early inhibition is likely mediated by resveratrol''s known effects on PI3K activity. Additionally, resveratrol induces a late inhibitory effect (4–24 hours) that appears to be mediated via AMPK activation. Resveratrol treatment induces significant AMPK activation compared with vehicle controls after 4 h, which persists through 16 h. Knockdown of AMPK or treatment with the AMPK inhibitor Compound C reduced the late phase of current reduction but had no effect on the early inhibitory activity of resveratrol. Collectively, these data demonstrate that resveratrol inhibits ENaC activity by a dual effect: an early reduction in activity seen within 5 minutes related to depletion of membrane PIP3, and a sustained late (4–24 h) effect secondary to activation of AMPK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号