首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective was to compare pregnancy rates and pregnancy losses in lactating dairy cows that were diagnosed not pregnant and re-inseminated following either the Ovsynch or Heatsynch protocols. Also evaluated were the effects of stages of the estrous cycle, ovarian cysts and anestrus on pregnancy rates for both treatments. Non-pregnant cows (n = 332) as determined by ultrasonography on day 27 post-AI (study day 0) were divided into two groups. Cows in the Ovsynch group (n = 166) received GnRH on day 0, PGF2alpha on day 7, GnRH on day 9, and timed AI (TAI) 16 h later (day 10). Cows in the Heatsynch group (n = 166) received GnRH on day 0, PGF2alpha on day 7, estradiol cypionate (ECP) on day 8, and TAI 48 h later (day 10). Cows detected in estrus on days 8 and 9 were inseminated and included in the study. On day 0, cows were classified according to different stages of the estrous cycle, or presence of ovarian cysts or anestrus. Pregnancy rates were evaluated 27, 45 and 90 days after resynchronized AI. Overall, there was no difference in pregnancy rates on days 27, 45 and 90 between cows in the Ovsynch (25.2, 17.5, and 13.9%) and Heatsynch (25.8, 19.9, and 16.1%) groups. There was no difference in pregnancy losses from days 27 to 45 and days 45 to 90 for cows in the Ovsynch (25.0 and 17.9%) and Heatsynch (14.7 and 10.3%) groups. However, pregnancy rates were increased when cows in metestrus were subjected to the Heatsynch protocol and cows with ovarian cysts were subjected to the Ovsynch protocol.  相似文献   

2.
To determine the efficacy of reducing the dosage of GnRH used in a protocol for synchronization of ovulation and timed AI, primiparous and multiparous lactating Holstein cows (n=237) were randomly assigned to 1 of 2 treatment groups. Ovulation was synchronized for cows in the first group using intramuscular injections of GnRH and PGF2 as follows: Day 0, 100 μg GnRH; Day 7, 25 mg PGF2; Day 9, 100 μg GnRH. Ovulation was synchronized in the second group of cows using the same injection schedule and dosage of PGF2 but only 50 μg GnRH per injection. All cows underwent a timed AI at 12 to 18 h after the second GnRH injection. The proportion of cows ovulating in response to the second GnRH injection (synchronization rate) and pregnancy status at 28 and 56 d post AI were determined using transrectal ultrasonography. The synchronization rate, double-ovulation rate, conception rate at 28 and 56 d post AI, and pregnancy loss from 28 to 56 d post AI did not differ statistically between treatment groups. For all cows, synchronization rate was 84.0%, and double-ovulation rate was 14.1%. Conception rates calculated using all cows receiving synchronization of ovulation were 41.1% at 28 d and 34.4% at 56 d post AI. Conception rates calculated for only synchronized cows were 47.6% at 28 d and 40.1% at 56 d post AI. For all cows, pregnancy loss from 28 to 56 d post AI was 13.5%, with an attrition rate of 0.5% per day. Estimated savings in hormone costs using 50 rather than 100 μg GnRH per injection for synchronizing ovulation were $6.40 per cow and $20.27 per pregnancy. Thus, decreasing the dosage of GnRH used for synchronization of ovulation and timed AI in lactating dairy cows reduces synchronization costs per cow and per pregnancy without compromising the efficacy of the synchronization protocol.  相似文献   

3.
The objective of this study was to compare the effectiveness of the Ovsynch and controlled internal drug releasing (CIDR) protocols under commercial conditions for the treatment of cystic ovarian disease in dairy cattle. A total of 401 lactating dairy cows with ovarian cysts were alternatively allocated to two treatment groups on the day of diagnosis. Cows in the Ovsynch group were treated with GnRH on Day 0, PGF2alpha on Day 7, GnRH on Day 9, with timed insemination 16-20 h later. Cows in the CIDR group were treated with a CIDR insert on Day 0 for 7 days; on Day 7, the CIDR was removed, and cows were treated with PGF2alpha. All cows in the CIDR group were observed for estrus and cows exhibiting estrus within 7 days following removal of the CIDR and PGF2alpha administration were inseminated. The outcomes of interest for this experiment were the likelihood to be inseminated, return to cyclicity (determined by a CL on Day 21), conception and pregnancy rates. Data for these variables were analyzed using logistic regression. The percentage of cows inseminated in the Ovsynch and CIDR groups were 82 and 44%, respectively. Cows in the Ovsynch group were 5.8 times more likely to be inseminated than cows in the CIDR group. Cows with a low BCS were 0.48 times less likely to be inseminated than cows with a high BCS. The percentage of cows with a CL on Day 21 for the Ovsynch and CIDR groups was 83 and 79%, respectively (P > 0.05). Cows with a low BCS were 0.49 times less likely to have CL on Day 21 than cows with a high BCS. Conception and pregnancy rates for cows in the Ovsynch group were 18.3 and 14.4%, respectively. Conception and pregnancy rates for cows in the CIDR group were 23.1 and 9.5%, respectively. There was no significant differences between conception or pregnancy rates in cows in both groups. Primiparous cows were 2.6 times more likely to conceive than multiparous cows. In conclusion, the results of this study suggested that fertility was not different between cows with ovarian cysts treated with either the Ovsynch or the CIDR protocols in this dairy herd. In addition, primiparous cows had an increased likelihood for conception compared to multiparous cows, and cows with a low BCS were less likely to be inseminated or have a CL on Day 21, regardless of treatment.  相似文献   

4.
The effect of using a dose of 50 micro g rather than 100 micro g fertirelin in an ovulation/fixed-time insemination protocol for Holstein-Friesian dairy cows was investigated in three experiments. In each experiment, fertirelin was administered at the beginning of the protocol followed 7 days later by 500 micro g cloprosterol. Two days later, a second dose of fertirelin was given and AI performed 16-19 h later regardless of the incidence of behavioral oestrus.The effect on conception rate was studied in experiment 1 using 114 postpartum anoestrus cows. There was no significant difference in the age, parity or number of days after parturition in each treatment groups. The conception rate did not differ between the 50 micro g fertirelin group (61.1%; n=72) and the 100 micro g group (59.5%; n=42; NS). In experiment 2, a further 12 cows at 40-60 days postpartum were treated with 100 or 50 micro g fertirelin (n=6 per dose) with treatment commencing in the follicular or luteal phase of the oestrous cycle. The plasma concentration of luteinizing hormone (LH) reached similar peaks of over 5 ng/ml 120 min after the intramuscular administration of fertirelin in both groups. There were no significant differences in LH levels between treatments or phase of the oestrous cycle when treatment commenced. Doses of 50 and 100 micro g fertirelin were compared in experiment 3 using 17 cows to study follicular wave development and synchronization by transrectal ultrasonography, conception rate and corpus luteum function. There were no significant differences between treatments for these factors.It was concluded that using a dose of 50 micro g fertirelin enabled the drug costs to be reduced without affecting the efficiency of a synchronization of ovulation/fixed-time AI protocol for dairy cows.  相似文献   

5.
The objectives of the present study were to determine the effects of resynchronization with GnRH on Day 21 after artificial insemination (AI) on pregnancy rate and losses of pregnancy in lactating dairy cows. Holstein cows (n=585) on two dairy farms were assigned to one of two treatments in a randomized complete block design. On Day 21 after a pre-enrollment AI, animals assigned to the resynchronization (RES) group received 100 microg of GnRH i.m., whereas animals in the control (CON) group received no treatment. All animals were examined ultrasonographically on Days 21 and 28 after AI, and blood samples were taken for progesterone measurement on Day 21. Pregnancy was diagnosed on Day 28 and reconfirmed 14 days later. Nonpregnant cows on Day 28 were inseminated using timed AI after the completion of the Ovsynch protocol 10 and 17 days after enrollment in the study for RES and CON groups, respectively. Progesterone concentration > or =2.35 ng/ml was used as an indicator of pregnancy on Day 21. For RES and CON cows, pregnancy rate at Days 21 (70.9% versus 73.0%, P<0.56), 28 (33.1% versus 33.6%; P<0.80) and 42 (27.0% versus 26.8%; P<0.98) after the pre-enrollment AI did not differ. Administration of GnRH on Day 21 after AI had no effect on pregnancy loss in RES and CON groups from days 21 to 28 (53.2% versus 53.5%; P<0.94) and days 28 to 42 (17.9%; P<0.74) after AI. Pregnancy rate after the resynchronization period was similar for both treatment groups. Resynchronization with GnRH given on Day 21 after AI for initiation of a timed AI protocol prior to pregnancy diagnosis does not affect pregnancy rate and pregnancy loss in lactating dairy cows.  相似文献   

6.
The objective of this study was to determine the effect of GnRH (100 microg i.m.) treatment 5 and 15 days after timed insemination (TAI) on pregnancy rate and pregnancy loss in lactating dairy cows subjected to synchronization of ovulation. The study included 831 lactating dairy cows subjected to a Presynch-Ovsynch protocol for first service. On the day of TAI (Day 0), cows were randomly assigned to one of four experimental groups. Cows in Group 1 (n = 214) were treated with GnRH on Day 5; cows in Group 2 (n = 209) were treated with GnRH on Day 15; cows in Group 3 (n = 212) were treated with GnRH on both Day 5 and Day 15; cows in Group 4 (n = 196) were not treated. Pregnancy rate was evaluated at Day 27 and Day 45 after TAI. The interestrus interval and the proportion of cows diagnosed not pregnant based on expression of estrus and insemination before pregnancy diagnosis on Day 27 were determined. The results of this study are: (1) GnRH treatment on Day 5 or Day 15 did not increase pregnancy rate, or reduce pregnancy loss between Day 27 and Day 55 after TAI; (2) cows treated with GnRH on both Day 5 and Day 15 had a lower (P < 0.01) proportion of cows diagnosed not pregnant based on expression of estrus before ultrasonography on Day 27 (26.5%) compared to control cows (52.9%), and these cows had an extended (P = 0.05) interestrus interval (23.4 days vs. 21.5 days); and (3) GnRH treatment on both Day 5 and Day 15 after TAI reduced pregnancy rate on Day 27 (36.8% vs. 44.4% for control cows; P < 0.03) and Day 55 (28.3% vs. 36.2% for control cows; P < 0.01). Therefore, strategies to stimulate CL function using multiple doses of GnRH during the luteal phase need to consider potential negative effects.  相似文献   

7.
Body condition may influence pregnancy rates to a timed insemination (Ovsynch/TAI) protocol and affect the economical performance of dairy farms. The objectives were to compare pregnancy rates using the Ovsynch/TAI protocol for the first service of lactating dairy cows with body condition scores < 2.5 (scale: 1 to 5, low BCS group) versus > or = 2.5 (control group) and to estimate the economic impact of the effect of body condition on reproductive performance. At 63 +/- 3 d post partum, cows were assigned to 2 experimental groups (low BCS = 81; control = 126), and were treated with GnRH at d 0 and with PGF2alpha 7 d later. At 48 h after PGF2alpha, cows received an injection of GnRH and were inseminated 16 h later. Pregnancy rates to the Ovsynch/TAI protocol were lower for the low BCS group than for the control group at 27 d (18.1 +/- 6.1% < 33.8 +/- 4.5%; P<0.02) and at 45 d (11.1 +/- 5.4% < 25.6 +/- 4.1%; P<0.02) after insemination. Economic analysis indicated that reducing the percentage of the herd in low body condition increases net revenues per cow per year. Body condition influenced pregnancy rates to the Ovsynch/TAI protocol.  相似文献   

8.
Pregnancy rates were compared in lactating dairy cows (n = 1083) assigned to protocols for resynchronization of ovulation based on stages of the estrous cycle, or presence of ovarian cysts or anestrus. Cows were detected not pregnant by ultrasonography 30 d after a previous AI (study day 0) and classified as diestrus, metestrus, proestrus, with ovarian cysts or anestrus. Cows in diestrus (January-May) were assigned to either Ovsynch (GnRH day 0, PGF2alpha day 7, GnRH day 9, and timed-AI [TAI] 16 h later; n = 96), or Quicksynch (PGF2alpha day 0, estradiol cypionate [ECP] day 1, AI at detected estrus [AIDE] on day 2, or TAI on day 3; n = 96). Cows in diestrus (June-December) were assigned to either Ovsynch (n = 156) or Modified Quicksynch (PGF2alpha day 0, ECP day 1, AIDE days 2 and 3, and to Ovsynch on day 4 if not detected in estrus; n = 142). Cows in metestrus were assigned either to Ovsynch (n = 68), Heatsynch (GnRH day 0, PGF2alpha day 7, ECP day 8, AIDE day 9, or TAI day 10; n = 62), or GnRH + Ovsynch (GnRH on day 0, followed by Ovsynch on day 8; n = 64). Cows in proestrus, with ovarian cysts, or anestrus were assigned to either Ovsynch (proestrus n = 89, ovarian cysts n = 97, anestrus n = 8) or GnRH + Ovsynch (proestrus n = 87, ovarian cysts n = 109, anestrus n = 9). Pregnancy rate was evaluated 30, 55 and 90 d after resynchronized AI. For cows in diestrus (January-May), pregnancy rates were higher for Ovsynch (35.9, 29.2 and 26.0%) than for Quicksynch (21.7, 16.7 and 15.6%). For cows in diestrus (June-December), pregnancy rates were similar for Ovsynch (34.4, 24.0 and 23.6%) and Modified Quicksynch (27.1, 26.2 and 21.6%). For cows in metestrus, pregnancy rates were higher for GnRH + Ovsynch (33.3, 24.5 and 20.3%) than for Heatsynch (20.3, 12.9 and 9.8%). For cows with ovarian cysts, pregnancy rates were higher for GnRH + Ovsynch (30.3, 26.6 and 22.9%) than for Ovsynch (20.2, 18.5 and 14.7%). Assignment to resynchronization protocols based on the stages of the estrous cycle, or presence of ovarian cysts improved pregnancy rates.  相似文献   

9.
The objective of this study was to evaluate the effects of GnRH administered at Day 12 post-AI on the reproductive performance of dairy cows. Holstein-Friesian dairy cows (n=103) on a large Hungarian dairy farm were allocated randomly to treated (n=54) or control (n=49) groups. Twelve days after AI, treated cows received a GnRH agonist i.m., while the control group received a placebo (physiological saline). Progesterone radioimmunoassay was used to determine the correct timing of artificial insemination (Day 0) and the incidence of luteal insufficiency on Day 12. Ultrasonography and radioimmunoassay for pregnancy-associated glycoprotein were used to detect pregnancy and late embryonic/fetal mortality between Days 32 and 55 after AI. Three cows from each group were inseminated when progesterone concentrations were >1.0 ng/mL, and six cows (four from the treated and two from the control group) had luteal insufficiency (progesterone<1.0 ng/mL) on Day 12. Late embryonic/fetal mortality occurred in three treated cows and in two control cows. When these cows were removed from the model, calving rates after first service were 59.6% (28/47) and 59.1% (26/44) for treated and control cows, respectively (P>0.05). There was no significant difference between treated and control cows when they were inseminated before or after Day 100 from calving. In summary, administration of a GnRH agonist on Day 12 after AI did not improve reproductive performance in dairy cows. However, our approach may be used for the field evaluation of different treatment protocols.  相似文献   

10.
The objective of this study was to compare the conception rate for fixed-timed artificial insemination (FTAI) and observed heat artificial insemination (HAI) prior to the scheduled FTAI in Ovsynch and Heatsynch synchronization protocols. In Experiment 1, lactating dairy cows (n=535) received two set-up injections of 25mg prostaglandin F(2alpha) (PGF(2alpha)) i.m., 14 days apart starting at 36+/-3 days in milk (DIM). Cows were blocked by parity and were randomly allocated to either Ovsynch or Heatsynch groups. All cows received 100 microg of GnRH i.m. 14 days after the second set-up injection of PGF(2alpha), followed by a third injection of 25mg PGF(2alpha) i.m., 7 days later. In the Ovsynch group, HAI cows (n=29) were bred on standing estrus after the third PGF(2alpha) before the scheduled second GnRH, whereas FTAI cows (n=218) that were not observed in estrus, received a second injection of 100 microg of GnRH i.m., 48 h after the third PGF(2alpha) and received TAI 8 h after the second GnRH. In the Heatsynch group, all cows (n=288) received 0.5 mg of estradiol cypionate (ECP) 24 h after third PGF(2alpha) and HAI cows (n=172) were bred on standing estrus and FTAI cows (n=116) that were not observed in estrus, received TAI 72 h after the third PGF(2alpha). In Experiment 2, repeat breeder cows (n=186) were randomly assigned to either Ovsynch or Heatsynch groups. The FTAI and HAI cows were inseminated similar to Experiment 1. All cows were observed for estrus three times daily. The associations with the conception rate were modeled with logistic regression separately for Experiments 1 and 2. Of all the variables included in the model in Experiment 1, type of AI (HAI versus FTAI, P=0.0003) and parity (primiparous versus multiparous, P=0.05) influenced the first service conception rate. Over-all conception rate and first service conception rate for HAI cows were higher compared to FTAI cows (33.8% versus 21.3%, and 35.3% versus 21.0%; P=0.001). In the Heatsynch group, cows that received HAI had significantly higher over-all conception rate and first service conception rate compared to FTAI (35.2% versus 17.3% and 36.0% versus 15.5%; P=0.0001). The conception rates in repeat breeder cows for HAI and FTAI (30.1% versus 22.3%) were not different (P>0.1). In conclusion, it was recommended to include AI at observed estrus and fixed-time AI for cows not observed in estrus in order to improve the conception rate in synchronization protocols.  相似文献   

11.
The objective was to compare two protocols for synchronizing ovulation in lactating Holstein cows submitted to timed AI (TAI) or timed ET (TET). Within each farm (n = 8), cows (n = 883; mean ± SEM 166.24 ± 3.27 d postpartum, yielding 36.8 ± 0.34 kg of milk/d) were randomly assigned to receive either: 1) an intravaginal progesterone insert (CIDR®) with 1.9 g of progesterone + GnRH on Day -10, CIDR® withdrawal + PGF2α on Day -3, and 1 mg estradiol cypionate on Day -2 (treatment GP-P-E; nTAI = 180; nTET = 260); or 2) a CIDR® insert + 2 mg estradiol benzoate on Day -10, PGF2α on Day -3, CIDR® withdrawal + 1 mg estradiol cypionate on Day -2 (treatment EP-P-E; nTAI = 174; nTET = 269). Cows were subsequently randomly assigned to receive either TAI on Day 0 or TET on Day 7. Serum progesterone concentration on Day -3 was greater in GP-P-E than in EP-P-E (2.89 ± 0.15 vs 2.29 ± 0.15 ng/mL; P < 0.01), with no significant effect of group on serum progesterone on Day 7. Compared to cows submitted to TAI, those submitted to TET had greater pregnancy rates on Day 28 (44.0% [233/529] vs 29.7% [105/354]; P < 0.001) and on Day 60 (37.6% [199/529] vs 26.5 [94/354]; P < 0.001). However, there were no effects of treatments (GP-P-E vs EP-P-E; P > 0.10) on synchronization (87.0% [383/440] vs 85.3% [378/443]), conception (TAI: 35.3% [55/156] vs 33.8% [50/148]; TET: 50.7% [115/227] vs 51.3% [118/230]) and pregnancy rates on Days 28 (TAI: 30.5% [55/180] vs 28.7% [50/174]; TET: 44.2% [115/260] vs 43.9% [118/269]) and 60 (TAI: 27.2% [49/80] vs 25.9% [45/174]; TET: 38.8% [101/260] vs 36.4% [98/269]). In conclusion, GP-P-E increased serum progesterone concentrations on Day -3, but rates of synchronization, conception, and pregnancy were not significantly different between cows submitted to GP-P-E and EP-P-E protocols, regardless of whether they were inseminated or received an embryo.  相似文献   

12.
Ovulatory response to the first GnRH of Ovsynch is a very important factor for determining the outcome of a successful synchronization. The aim of the present study was to develop a protocol to increase the percentage of cows that ovulated in response to the first administration of Ovsynch. This study was designed to compare ovulation rates in response to GnRH or hCG at the beginning of Ovsynch and to evaluate the effects of this manipulation on pregnancy. Cows (n = 371) with corpus luteum (CL) and at least one follicle greater than 10 mm diameter size on either ovary were included in the study. Cows were divided into two groups. The Ovsynch protocol began with GnRH (10 μg) in the GPG group (n = 161; GnRH-7d-PGF2α-56h-GnRH-18h-AI), whereas in the HPG group, the first GnRH of the Ovsynch was replaced with 1500 IU hCG (n = 210; hCG-7d-PGF2α-56h-GnRH-18h-AI). Ovarian ultrasonography was performed at the times of GnRH or hCG and of PGF2α administration, at the time of artificial insemination (AI) and seven days after AI, to determine ovulation. Maximal follicle size at the beginning of the Ovsynch did not affect on response to the first GnRH/hCG treatment. Conception rate (31 d) was 0.6 times more likely to be higher (P < 0.001) in cows that responded to the first hormonal administration of Ovsynch than in those that did not respond (95% CI = 0.29-0.71). Conception rate was found to be different between the HPG (37.6%, 79/210) and the GPG groups (48.4%, 78/161). Thus, beginning of the Ovsynch protocol with hCG did not increase ovulation and conception rate in lactating dairy cows, suggesting that hCG is not a suitable replacement of the first GnRH of Ovsynch. However, our results do show that increasing the ovulation rate in response to the first hormonal administration of Ovsynch can have a significant effect on conception rate.  相似文献   

13.
Synchronization of ovulation in dairy cows using PGF2alpha and GnRH   总被引:2,自引:0,他引:2  
This paper reports a new method for synchronizing the time of ovulation in cattle using GnRH and PGF(2alpha). In Experiments 1 and 2, lactating dairy cows (n=20) ranging from 36 to 280 d postpartum and dairy heifers (n=24) 14 to 16 mo old were treated with an intramuscular injection of 100 mug GnRH at a random stage of the estrous cycle. Seven d later the cattle received PGF(2alpha) to regress corpora lutea (CL). Lactating cows and heifers received a second injection of 100 mug GnRH 48 and 24 h later, respectively. Lactating cows were artificially inseminated 24 h after the second GnRH injection. Ovarian morphology was monitored daily by trans-rectal ultrasonography from 5 d prior to treatment until ovulation. In Experiment 3, the flexibility in the timing of hormonal injections with this synchronization protocol was evaluated by randomly assigning 66 lactating dairy cows to 3 different treatment groups. Lactating cows received the injection of PGF(2alpha) 48 (Group 1), 24 (Group 2), and 0 h (Group 3) prior to the second injection of GnRH, which was administered at the same time in each group to ensure the second injection of GnRH was given when follicles were at a similar stage of growth. In Experiments 1 and 2, the first injection of GnRH caused ovulation and formation of a new or accessory CL in 18 20 cows and 13 24 heifers. In addition, this injection of GnRH initiated or was coincident with initiation of a new follicular wave in 20 20 lactating cows and 18 24 heifers. Corpora lutea regressed after PGF(2alpha) in 20 20 cows and in 18 24 heifers. All cows and 18 24 heifers ovulated a newly formed dominant follicle between 24 and 32 h after the second injection of GnRH. Ten of 20 cows conceived to the timed artificial insemination. In Experiment 3, the conception rate in Groups 1 and 2 were greater than in Group 3, (55 and 46 % vs 11%, respectively). In summary, this protocol could have a major impact on managing reproduction in lactating dairy cows, because it allows for AI to occur at a known time of ovulation and eliminates the need for detection of estrus.  相似文献   

14.
In previous studies, we demonstrated that the administration of a luteolytic dose of cloprostenol, followed by 750 IU hCG plus 3 mg estradiol benzoate (EB) 12 h later, synchronized estrus in cows in the luteal phase. Most cows were ready for service 48 h after the beginning of treatment. The objectives of this study were to evaluate the reproductive performance of lactating dairy cows treated with this method of estrus synchronization and to determine the effect of decreasing the hCG-EB dose on synchronization and pregnancy rates after timed AI. Data were obtained from cows first inseminated within an interval of 45 to 70 d postpartum. A total of 2,472 lactating dairy cows in their first to second lactation period were assigned to 4 groups. Cows estimated to be in the luteal phase by rectal palpation were treated with 500 mcg, im, of cloprostenol and assigned to 1 of 3 groups to be intramuscularly injected with hCG-EB 12 h later at the following doses: Group 1 (n=626), 250 IU of hCG and 1 mg of EB; Group 2 (n=592), 500 IU of hCG and 2 mg of EB; and Group 3 (n=664), 750 IU of hCG and 3 mg of EB. Cows displaying natural estrus were inseminated to serve as controls (n=590). The synchronized cows were inseminated 48 h after cloprostenol injection, and control animals visually determined to be in natural estrus during the morning or afternoon were inseminated the following morning. Pregnancy diagnosis was performed by rectal palpation at 34 to 40 d postinsemination. All synchronized cows showed estrous activity within 24 to 36 h after cloprostenol treatment and were considered to be ready for service 48 h after this treatment. There was a significant effect of treatment on the pregnancy rate, either to first AI or to 2 rounds of AI. The pregnancy rate in response to first or second rounds of AI was similar to control rates for cows in Groups 1 and 2, and lower than control rates in Group 3. Cows in Group 1 showed a higher pregnancy rate to first AI than those in Group 3 (P<0.0001), and a higher pregnancy rate to second AI rounds than cows in Groups 2 (P<0.02) and 3 (P<0.0001). The number of cows returning to estrus was unaffected by treatment. However, treatment significantly decreased (P<0.01) the time of return to estrus as the hCG-EB dose increased. These findings indicate that the lowest dose of hCG-EB treatment tested gave the overall best pregnancy results among the treated groups. Furthermore, the synchronization protocol used in this experiment allows effective AI management of lactating dairy cows without the need for estrus detection.  相似文献   

15.
Lactating Holstein dairy cows (n=1,533) were allocated to one of three treatment groups, with Group I (n=514) receiving 10 mug of a GnRH analogue (buserelin) at artificial insemination (AI) and Group II (n=503) receiving 10 mug of the same analogue at both the time of AI and at 12 days post AI. Herdmates in Group III (n=516) were inseminated on the same day and served as contemporary AI controls. The trial was conducted on five large dairy farms during the spring and summer months in Saudi Arabia. Pregnancy rates were determined by palpation per rectum between 33 and 50 days following AI. The first service pregnancy rate for the control cows (42.4%) was lower (P<0.05) than that for cows treated with the GnRH analogue at AI (48.8%) or for the combined treatment at AI and at Day 12 post AI (51.5%). No additive effect on the pregnancy rate was noted from the combined analog treatment. The overall increase in pregnancy rate from the analogue treatment at AI resulted from an 11% increase in pregnancy rate in first parity cows over that of contemporary controls (P<0.05) and a 14.7% increase in pregnancy for cows mated at 40 to 59 days post partum and treated with the analogue at AI over that of the corresponding controls (P<0.05). The pregnancy rates from repeat AI (interval 相似文献   

16.
This study examined the influence of a GnRH agonist containing either 450 or 750 microg of deslorelin in an implant form or a gonadorelin injection (control) to induce ovulation in the Ovsynch protocol on pregnancy rates (PR), embryonic loss, and ovarian function in 593 lactating Holstein cows. Cows were given two injections of PGF2alpha 14 days apart, followed 14 days later by the Ovsynch protocol, and were timed artificially inseminated (TAI) at 68 +/- 3 days postpartum. Blood samples for determination of plasma progesterone concentrations were collected at 24 and 10 days prior to and 11 days after TAI. Pregnancy was diagnosed on Day 27 and reconfirmed on Day 41 after TAI. Non-pregnant, not re-inseminated cows at Day 27 had their ovaries examined by ultrasonography, and the number and size of follicles and presence of luteal tissue were determined. Simultaneously, these cows were re-synchronized with the Ovsynch protocol. Pregnancy during the re-synchronization period was determined between 35 and 41 days after insemination. On Day 27, PR were higher for control (39.0%) and deslorelin 450 microg (DESLORELIN 450) implant (41.3%) than for those receiving the deslorelin 750 microg (DESLORELIN 750) implant (27.5%; P<0.05). Pregnancy losses tended to decrease for DESLORELIN 450 compared with control (5.0% versus 12.7%; P<0.13). Plasma progesterone concentrations did not differ significantly among treatments. Deslorelin suppressed ovarian activity and decreased PR during the re-synchronization period compared with control. The percentage of non-pregnant animals that were re-inseminated by Day 27 was less for deslorelin compared with control. In conclusion, incorporation of an implant of the GnRH agonist deslorelin to induce ovulation in the Ovsynch protocol has the potential to reduce pregnancy losses, but the response was dependent upon implant concentration. Evaluation of lower doses to minimize the negative effects on subsequent fertility is warranted.  相似文献   

17.
The objective of this study was to determine the effect of pretreatment with bovine somatotropin (bST) and/or gonadotropin-releasing hormone (GnRH) 7 days prior to initiation of a protocol for synchronization of ovulation and timed insemination (Ovsynch) on conception rate (CR) of cows with ovarian cysts. A total of 254 lactating dairy cows with ovarian cysts was divided into four groups (Day 0). On Day 0, cows in Group 1 (n = 61) were pretreated with 500 mg bST, s.q., and 100 microg GnRH, i.m.; cows in Group 2 (n = 73) were pretreated with 100 microg GnRH, i.m.; cows in Group 3 (n = 59) were pretreated with 500 mg bST, s.q.; and cows in Group 4 (n = 61) received no pretreatment. All cows were subjected to the Ovsynch protocol 7 days later. All cows previously received routine bST treatment every 14 days until milk production decreased to a minimum level established by the management of the herd. CR was assessed using logistic regression after adjusting for timing of concurrent bST treatment relative to Day 0, parity, season at time of insemination, and days in milk (DIM) on Day 0. CR for cows in Group 3 (12%) was significantly lower (P < 0.05) than that for cows in Group 4 (27%), and CR for cows in Group 1 (18%) and Group 2 (15%) tended to be lower (P < 0.10) than that for cows in Group 4 (27%). From the results of this study, it was concluded that bST pretreatment decreased CR, and pretreatment with GnRH, and GnRH with bST tended to decrease CR in lactating dairy cows with ovarian cysts concurrently treated with bST and subjected to the Ovsynch protocol.  相似文献   

18.
After 80 years of the commercial application of artificial insemination (AI) in the cow, the method still has numerous benefits over natural insemination including worldwide gene improvement. The efficiency of insemination depends, among many other factors, on the delivery of an appropriate number of normal spermatozoa to the appropriate reproductive tract site at the appropriate time of estrus. The metabolic clearance of steroid hormones and pregnancy associated glycoproteins and the negative effects of different types of stress related to high milk production makes the high-producing dairy cow a good animal model for addressing factors affecting fertility. Nevertheless, extensive studies have shown a positive link between high milk production in an individual cow and high fertility. When a cow becomes pregnant, the effect of pregnancy loss on its reproductive cycle is also a topic of interest. This paper reviews the factors of a noninfectious nature that affect the fertility of lactating dairy cows following AI. Special attention is paid to factors related to the cow and its environment and to estrus confirmation at insemination. Pregnancy maintenance during the late embryonic/early fetal period is discussed as a critical step. Finally, the use of Doppler ultrasonography is described as an available research tool for improving our current understanding of the health of the genital structures and conceptus.  相似文献   

19.
The purpose of this experiment was to determine if intramammary inflammation during the periovulatory period affects the occurrence of ovulation in lactating dairy cows. Ten lactating, cyclic, Holstein dairy cows received 2 injections of prostaglandin F2alpha at eleven-day intervals, to synchronize luteolysis. The day of the second injection was designated as day 0. Ovulation was anticipated to occur 3-5 days later (on days 3-5). Beginning at the morning milking on day 1, cows received intramammary infusions of either Escherichia coli endotoxin (10 microg; n=5) or infusion vehicle (pyrogen free Hank's balanced salt solution; n=5) into 2 quarters immediately after milking. The same quarters were infused after each milking through day 4. Venous blood samples were collected daily from day -1 through 13 for determination of progesterone to monitor luteolysis and formation of a new corpus luteum. Blood samples were also collected at 4-h intervals (days -1 to 2), then at 2-h intervals (days 2 to 5) to measure concentrations of luteinizing hormone. Ovaries were examined ultrasonographically on days -1 through 5 and on day 12 to monitor follicular growth and formation of the corpus luteum. Collectively, these observations were used to determine if and when ovulation occurred. Intramammary infusion of E. coli endotoxin induced an immediate increase in the concentration of somatic cells in milk from treated quarters. However, this treatment had no effect on the occurrence or timing of ovulation. Based on ultrasonography and concentrations of progesterone, four of five cows in each treatment group appeared to have ovulated. Preovulatory surges of LH were detected within the intensive bleeding periods for three cows in each treatment group. The magnitude of the LH surge was reduced in cows receiving endotoxin.  相似文献   

20.
A total of 226 out of 245 postpartum lactating dairy cows in a commercial dairy farm were allocated to two groups of oestrous synchronisation protocols in order to evaluate reproductive performance. One group was treated with oestradiol benzoate (ODB) and PGF2alpha on day 10 of the oestrous cycle with insemination at the detected oestrus, the second group underwent the Ovsynch (OVS) protocol (GnRH + PGF2alpha + GnRH) with timed AI. Pregnancy was diagnosed by ultrasonography on day 28 after AI and confirmed by rectal palpation on day 45. A higher (P < 0.001) proportion of cows in OVS (100%) were inseminated within (19.2 +/- 3.8 h) following the second GnRH injection than those of cows in EPE (ODB + PGF2alpha + ODB) (70.6%) inseminated at the detected oestrus within (35.6 +/- 5.2 h) following the second ODB injection. Pregnancy rates for the first AI at day 28 (64.0 +/- 4.6, 62.4 +/- 5.5%) and at day 45 post-insemination (40.4 +/- 4.7, 40.0 +/- 5.6%) for OVS and EPE cows respectively, did not differ between the two treatments, whereas, the overall pregnancy rates tended to be higher (P < 0.08) for the OVS (85.1 +/- 3.8%) cows than the EPE cows (74.1 +/- 4.5%). No differences were observed in pregnancy rates for first AI and overall up to fourth AI between primiparous (34.7 +/- 5.8 and 85.3 +/- 4.7%) and multiparous cows (43.5 +/- 4.5 and 77.4 +/- 3.6%). Days open for pregnant cows tended to be lower (P < 0.08) for OVS (76.2 +/- 3) than for EPE cows (84.7 +/- 4), while days open were higher (P < 0.05) in primiparous cows (85.3 +/- 4) than in multiparous cows (75.6 +/- 3). The results indicate that pregnancy rates for first AI were similar, but overall pregnancy rates up to the fourth AI tended to be higher for OVS than EPE cows, while days open was tended to be lower for OVS than EPE cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号