首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inactivation of tumor-related genes through the aberrant methylation of promoter CpG islands is thought to contribute to tumor initiation and progression. We therefore investigated promoter methylation events involved in cutaneous melanoma by screening 30 genes of interest for evidence of promoter hypermethylation, examining 20 melanoma cell lines and 40 freshly procured melanoma samples. Utilizing quantitative methylation-specific PCR, we identified five genes (SOCS1, SOCS2, RAR-beta 2, TNFSF10C, and TNFSF10D) with hypermethylation frequencies ranging from 50% to 80% in melanoma cell lines as well as freshly procured tissue samples. Eighteen genes (LOX, RASSF1A, WFDC1, TM, APC, TFPI2, TNFSF10A, CDKN2A, MGMT, TIMP3, ASC, TPM1, IRF8, CIITA-PIV, CDH1, SYK, HOXB13, and DAPK1) were methylated at lower frequencies (2-30%). Two genes (CDKN1B and PTEN), previously reported as methylated in melanoma, and five other genes (RECK, IRF7, PAWR, TNFSF10B, and Rb) were not methylated in the samples screened here. Daughter melanoma cell lines showed identical methylation patterns when compared with original samples from which they were derived, as did synchronous metastatic lesions from the same patient. We identified four genes (TNFSF10C, TNFSF10D, LOX, and TPM1) that have never before been identified as hypermethylated in melanoma, with an overall methylation frequency of 60, 80, 50, and 10%, respectively, hypothesizing that these genes may play an important role in melanoma progression.  相似文献   

2.
Melanoma is one of the most common skin cancer that is characterized by rapid growth, early metastasis, high malignant, and mortality. Accumulating evidence demonstrated that promoter methylation of tumor-suppressor genes is implicated in the pathogenesis of melanoma. In the current study, we performed a meta-analysis to identify promising methylation biomarkers in the diagnosis of melanoma. We carried out a systematic literature search using Pubmed, Embase, and ISI web knowledge database and found that gene promoter methylation of 50 genes was reported to be associated with the risk of melanoma. Meta-analysis revealed that hypermethylation of claudin 11 (CLDN11; odds ratio [OR], 16.82; 95% confidence interval [CI], 1.97–143.29; p = 0.010), O-6-methylguanine-DNA methyltransferase (MGMT; OR, 5.59; 95% CI, 2.51–12.47; p < 0.0001), cyclin-dependent kinase inhibitor 2A (p16; OR, 6.57; 95% CI, 2.19–19.75; p = 0.0008), retinoic acid receptor β (RAR-β2; OR, 24.31; 95% CI, 4.58–129.01; p = 0.0002), and Ras association domain family member (RASSF1A; OR, 9.35; 95% CI, 4.73–18.45; p < 0.00001) was significantly higher in melanoma patients compared with controls. CLDN11 (OR, 14.52; 95% CI, 1.84–114.55; p = 0.01), MGMT (OR, 8.08; 95% CI, 1.84–35.46; p = 0.006), p16 (OR, 9.44; 95% CI, 2.68–33.29; p = 0.0005), and RASSF1A (OR, 7.72; 95% CI, 1.05–56.50; p = 0.04) hypermethylation was significantly increased in primary melanoma compared with controls. Methylation frequency of CLDN11 (OR, 25.56; 95% CI, 2.32–281.66; p = 0.008), MGMT (OR, 4.64; 95% CI, 1.98–10.90; p = 0.0004), p16 (OR, 4.31; 95% CI, 1.33–13.96; p = 0.01), and RASSF1A (OR, 10.10; 95% CI, 2.87–35.54; p = 0.0003) was significantly higher in metastasis melanoma compared with controls. These findings indicated that CLDN11, MGMT, p16, RAR-β2, and RASSF1A hypermethylation is a risk factor and a potential biomarker for melanoma. CLDN11, MGMT, p16, and RASSF1A promoter methylation may take part in the development of melanoma and become useful biomarkers in the early diagnosis of the disease.  相似文献   

3.
4.
The aim of the present study was to identify genetic and epigenetic alterations involved in the progression of oligodendroglial tumors. We characterized 21 paired, World Health Organization (WHO) grade II and III oligodendroglial tumors from patients who received craniotomies for the partial or complete resection of primary and secondary oligodendroglial tumors. Tumor DNA was analyzed for alterations in selected genetic loci (1p36, 9p22, 10q23–24, 17p13, 19q13, 22q12), isocitrate dehydrogenase 1 (IDH1), isocitrate dehydrogenase 2 (IDH2) and the CpG island methylation status of critical tumor-related genes (MGMT, P16, DAPK, PTEN, RASSF1A, Rb1). Alterations of these markers were common early in the tumorigenesis. In the primary tumors we identified 12 patients (57.1%) with 1p36 deletions, 17 (81.0%) with 19q13 deletions, 9 (42.9%) with 1p36/19q13 codeletions, 11 (52.3%) with 9p22 deletions, and 12 (57.1%) with IDH1 mutation. Epigenetic analysis detected promoter methylation of the MGMT, P16, DAPK, PTEN, RASSF1A, and Rb1 genes in 38.1%, 19.0%, 38.1%, 33.3%, 66.7%, and 14.3% of primary tumors, respectively. After progression, additional losses of 1p, 9p, 10q, 17p, 19q and 22q were observed in 3 (14.3%), 1 (4.8%), 3 (14.3%), 2 (9.5%), 1 (4.8%) and 3 (14.3%) cases, respectively. Additional methylations of the MGMT, P16, DAPK, PTEN, RASSF1A, and RB1 promoters was observed in 4 (19.0%), 2 (9.5%), 0 (0%), 6 (28.6%), 2(9.5%) and 3 (14.3%) cases, respectively. The status of IDH1 mutation remained unchanged in all tumors after progression. The primary tumors of three patients with subsequent progression to high-grade astrocytomas, all had 9p deletion, intact 1p, intact 10q and unmethylated MGMT. Whether this may represent a molecular signature of patients at-risk for the development of aggressive astrocytomas needs further investigation.  相似文献   

5.
Hypermethylated genomic DNA is a common feature in tumoral tissues, although the prevalence of this modification remains poorly understood. We aimed to determine the frequency of five tumor suppressor (TS) genes in prostate cancer and the correlation between promoter hypermethylation of these genes and low and high grade of prostate carcinomas. A total of 30 prostate tumor specimens were investigated for promoter methylation status of TS hypermethylated in cancer 1 (HIC1), death-associated protein kinase 1 (DAPK1), secreted frizzled-related protein 2 (SFRP2), cyclin-dependent kinase inhibitor 2A (p16), and O-6-methylguanine-DNA methyltransferase (MGMT) genes by using bisulfite modifying method. A high frequency of promoter hypermethylation was found in HIC1 (70.9%), SFRP2 (58.3%), and DAPK1 (33.3%) genes in tumor samples that were examined. The current data show high frequency of hypermethylation changes in HIC1, SFRP2, and DAPK1 genes in prostate carcinomas of high Gleason Score (GS).  相似文献   

6.
Oral cavity cancer belongs to head-and-neck squamous cell carcinoma group. The purpose of the study was to assess the levels of certain proteins in a tumour and surgical margin in a group of patients with oral cavity cancer. The levels of DAPK1, MGMT, CDH1, SFRP1, SFRP2, RORA, TIMP3, p16, APC and RASSF1 proteins were measured by ELISA in tissue homogenates. The protein levels of DAPK1, MGMT, CDH1, SFRP2 and RASSF1 were significantly higher in tumour tissue than in the margin, contrary to TIMP3 which was lower in the tumour itself. DAPK1 level in the tumour was significantly higher in females than in males, the MGMT and p16 levels were lower in the tumours with lymph node metastasis (N1 + N2) than in N0 samples. The CDH1 expression was higher in a group with smoking habits, whereas TIMP3 was lower in this group. Changes in the levels of proteins in tumour and surgical margin may be either reflective of tumour occurrence and development, or they might be also responsible for the progress and reoccurrence of the disease. Levels of the studied proteins might be good prognostic factors; however, further studies are required.  相似文献   

7.
8.
9.
10.
侯道荣  马骏  夏龙  徐旭广  张小平  戴有金  温泽锌  郑媛 《生物磁学》2009,(20):3890-3893,3889
目的:研究脑胶质瘤中p16基因启动子区甲基化情况及其临床意义。方法:用甲基化特异性PCR技术检测42例脑胶质瘤组织和癌旁正常脑组织中p16基因启动子甲基化,并分析该基因启动子甲基化与临床病理特征之间的关系。结果:脑胶质瘤组织中p16基因异常甲基化率(38.27%)显著高于癌旁正常脑组织中p16基因的异常甲基化率(8.8%,P=0.000)。发生甲基化的肿瘤组织或者正常脑组织中p16基因mRNA和蛋白表达显著降低。此外,p16基因异常甲基化和肿瘤病理分级有相关性(P=0.007),而与患者性别、年龄及肿瘤类型等临床特征无关(P=0.669,0.869和0.944)。结论:p16基因启动子区CpG岛高甲基化与p16表达下调相关,推测p16启动子区CpG岛高甲基化是导致p16基因在脑胶质瘤中表达下调的重要因素,有望成为脑胶质瘤早期辅助诊断的分子标志物之一。  相似文献   

11.
The inactivation of tumour suppressor genes by aberrant methylation of promoter regions has been described as a frequent event in neoplasia development, including lung cancer. The p16 gene is a tumour suppressor gene involved in the regulation of cell cycle progression that has been reported to be inactivated by promoter methylation in lung carcinomas at variable frequencies around the world in a smoking habit dependent manner. The purpose of this study was to investigate the methylation status of the promoter region of the p16 gene in 74 non-small cell lung carcinomas from Chile. The frequency of p16 gene inactivation by promoter methylation was determined as 79.7% (59/74). When we considered histological type, we observed that p16 promoter methylation was significantly higher in squamous cell carcinomas (30/33, 91%) compared with adenocarcinomas (21/30, 70%) (p=0.029). In addition, no association between p16 promoter methylation and gender, age or smoking habit was found (p=0.202, 0.202 and 0.147 respectively). Our results suggest that p16 promoter hypermethylation is a very frequent event in non-small cell lung carcinomas from Chile and could be smoking habit-independent.  相似文献   

12.
目的:探讨MGMT甲基化如何影响替莫唑胺对胶质母细胞瘤的治疗效果。方法:选取41个胶质母细胞瘤患者(根据相同替莫唑胺化疗方案治疗下临床结局的不同分为两组)的肿瘤组织,采用甲基化特异性聚合酶链反应分析胶质瘤组织中MGMT基因启动子区过甲基化状态,同时采用免疫组织化学法分析胶质瘤组织中MGMT蛋白表达情况。结果:临床结局不佳组中,以MGMT蛋白表达阳性的肿瘤为主(72.2%),而在结局相对良好组中,MGMT蛋白表达的阳性率仅为39.1%;在MGMT蛋白表达阳性的22例胶质母细胞瘤组织中,7例MGMT启动子甲基化,阳性率为31.8%,在MGMGT蛋白表达阴性的19例中,14例MGMT启动子甲基化,阳性率为73.7%(P<0.05)。结论:MGMT基因启动子区的甲基化状态与MGMT蛋白的表达相关。MGMT基因启动子过甲基化,MGMT蛋白表达较低;MGMT基因启动子去甲基化,MGMT蛋白表达较高。MGMT启动子过甲基化通过抑制MGMT基因的表达而增加替莫唑胺的疗效。  相似文献   

13.
Epigenetic mechanisms involved in primary hyperparathyroidism are poorly understood as studies are limited. In order to understand the role of aberrant DNA promoter methylation in the pathogenesis of parathyroid tumors, we have quantified the CpG island promoter methylation density of several candidate genes including APC (promoter 1A and 1B), β-catenin (CTNNB1), CASR, CDC73/HRPT2, MEN1, P16 (CDKN2A), PAX1, RASSF1A, SFRP1 and VDR in 72 parathyroid tumors and 3 normal parathyroid references using bisulfite pyrosequencing. Global methylation levels were assessed for LINE-1. We also compared methylation levels with gene expression levels measured by qRT-PCR for genes showing frequent hypermethylation. The adenomas displayed frequent hypermethylation of APC 1A (37/66; 56%), RASSF1A (34/66; 52%) and β-catenin (19/66; 29%). One of the three atypical adenomas was hypermethylated for APC 1A. The three carcinomas were hypermethylated for RASSF1A and SFRP1, and the latter was only observed in this subtype. The global methylation density was similar in tumors (mean 70%) and parathyroid reference samples (mean 70%). In general, hypermethylated genes had reduced expression in the parathyroid adenomas using qRT-PCR. Among the adenomas, methylation of APC 1A correlated with adenoma weight (r = 0.306, p < 0.05). Furthermore, the methylation status of RASSF1A correlated with each of APC 1A (r = 0.289, p < 0.05) and β-catenin (r = 0.315, p < 0.01). Our findings suggest a role for aberrant DNA promoter methylation of APC 1A, β-catenin and RASSF1A in a subset of parathyroid tumors.  相似文献   

14.
Ras proteins play a direct causal role in human cancer with activating mutations in Ras occurring in approximately 30% of tumours. Ras effectors also contribute to cancer, as mutations occur in Ras effectors, notably B-Raf and PI3-K, and drugs blocking elements of these pathways are in clinical development. In 2000, a new Ras effector was identified, RAS-association domain family 1 (RASSF1), and expression of the RASSF1A isoform of this gene is silenced in tumours by methylation of its promoter. Since methylation is reversible and demethylating agents are currently being used in clinical trials, detection of RASSF1A silencing by promoter hypermethylation has potential clinical uses in cancer diagnosis, prognosis and treatment. RASSF1A belongs to a new family of RAS effectors, of which there are currently 8 members (RASSF1-8). RASSF1-6 each contain a variable N-terminal segment followed by a Ras-association (RA) domain of the Ral-GDS/AF6 type, and a specialised coiled-coil structure known as a SARAH domain extending to the C-terminus. RASSF7-8 contain an N-terminal RA domain and a variable C-terminus. Members of the RASSF family are thought to function as tumour suppressors by regulating the cell cycle and apoptosis. This review will summarise our current knowledge of each member of the RASSF family and in particular what role they play in tumourigenesis, with a special focus on RASSF1A, whose promoter methylation is one of the most frequent alterations found in human tumours.  相似文献   

15.
Our aim was to comprehensively analyze promoter hypermethylation of a panel of novel and known methylation markers for thyroid neoplasms and to establish their relationship with BRAF mutation and clinicopathologic parameters of thyroid cancer. A cohort of thyroid tumors, consisting of 44 cancers and 44 benign thyroid lesions, as well as 15 samples of adjacent normal thyroid tissue, was evaluated for BRAF mutation and promoter hypermethylation. Genes for quantitative methylation specific PCR (QMSP) were selected by a candidate gene approach. Twenty-two genes were tested: TSHR, RASSF1A, RARβ2, DAPK, hMLH1, ATM, S100, p16, CTNNB1, GSTP1, CALCA, TIMP3, TGFßR2, THBS1, MINT1, CTNNB1, MT1G, PAK3, NISCH, DCC, AIM1 and KIF1A. The PCR-based “mutector assay” was used to detect BRAF mutation. All p values reported are two sided. Considerable overlap was seen in the methylation markers among the different tissue groups. Significantly higher methylation frequency and level were observed for KIF1A and RARß2 in cancer samples compared with benign tumors. A negative correlation between BRAF mutation and RASSF1A methylation, and a positive correlation with RARß2 methylation were observed in accordance with previous results. In addition, positive correlation with TIMP3 and a marginal correlation with DCC methylation were observed. The present study constitutes a comprehensive promoter methylation profile of thyroid neoplasia and shows that results must be analyzed in a tissue-specific manner to identify clinically useful methylation markers. Integration of genetic and epigenetic changes in thyroid cancer will help identify relevant biologic pathways that drive its development.  相似文献   

16.
Head and neck squamous cell carcinoma (HNSCC) accounts for a bulk of the oral and laryngeal cancers, the majority (70%) of which are associated with smoking and excessive drinking, major known risk factors for the development of HNSCC. In contrast to reports that suggest an inverse relationship between smoking and global DNA CpG methylation, hypermethylation of promoters of a number of genes was detected in saliva collected from patients with HNSCC. Using a sensitive methylation-specific polymerase chain reaction (MSP) assay to determine specific methylation events in the promoters of RASSF1A, DAPK1, and p16 genes, we demonstrate that we can detect tumor presence with an overall accuracy of 81% in the DNA isolated from saliva of patients with HNSCC (n = 143) when compared with the DNA isolated from the saliva of healthy nonsmoker controls (n = 31). The specificity for this MSP panel was 87% and the sensitivity was 80% (with a Fisher exact test P < .0001). In addition, the test panel performed extremely well in the detection of the early stages of HNSCCs, with a sensitivity of 94% and a specificity of 87%, and a high κ concordance value of 0.8, indicating an excellent overall agreement between the presence of HNSCC and a positive MSP panel result. In conclusion, we demonstrate that the promoter methylation of RASSF1A, DAPK1, and p16 MSP panel is useful in detecting hypermethylation events in a noninvasive manner in patients with HNSCC.  相似文献   

17.

Objective

Colorectal cancer (CRC) development involves underlying modifications at genetic/epigenetic level. This study evaluated the role of Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation together/independently in sporadic CRC in Indian population and correlation with clinicopathological variables of the disease.

Methods

One hundred and twenty four consecutive surgically resected tissues (62 tumor and equal number of normal adjacent controls) of primary sporadic CRC were included and patient details including demographic characteristics, lifestyle/food or drinking habits, clinical and histopathological profiles were recorded. Polymerase chain reaction - Restriction fragment length polymorphism and direct sequencing for Kras gene mutation and Methylation Specific-PCR for RASSF1A, FHIT and MGMT genes was performed.

Results

Kras gene mutation at codon 12 & 13 and methylated RASSF1A, FHIT and MGMT gene was observed in 47%, 19%, 47%, 37% and 47% cases, respectively. Alcohol intake and smoking were significantly associated with presence of Kras mutation (codon 12) and MGMT methylation (p-value <0.049). Tumor stage and metastasis correlated with presence of mutant Kras codon 12 (p-values 0.018, 0.044) and methylated RASSF1A (p-values 0.034, 0.044), FHIT (p-values 0.001, 0.047) and MGMT (p-values 0.018, 0.044) genes. Combinatorial effect of gene mutation/methylation was also observed (p-value <0.025). Overall, tumor stage 3, moderately differentiated tumors, presence of lymphatic invasion and absence of metastasis was more frequently observed in tumors with mutated Kras and/or methylated RASSF1A, FHIT and MGMT genes.

Conclusion

Synergistic interrelationship between these genes in sporadic CRC may be used as diagnostic/prognostic markers in assessing the overall pathological status of CRC.  相似文献   

18.
Our aim was to comprehensively analyze promoter hypermethylation of a panel of novel and known methylation markers for thyroid neoplasms and to establish their relationship with BRAF mutation and clinicopathologic parameters of thyroid cancer. A cohort of thyroid tumors, consisting of 44 cancers and 44 benign thyroid lesions, as well as 15 samples of adjacent normal thyroid tissue, was evaluated for BRAF mutation and promoter hypermethylation. Genes for quantitative methylation specific PCR (QMSP) were selected by a candidate gene approach. Twenty-two genes were tested: TSHR, RASSF1A, RARβ2, DAPK, hMLH1, ATM, S100, p16, CTNNB1, GSTP1, CALCA, TIMP3, TGFßR2, THBS1, MINT1, CTNNB1, MT1G, PAK3, NISCH, DCC, AIM1 and KIF1A. The PCR-based “mutector assay” was used to detect BRAF mutation. All p values reported are two sided. Considerable overlap was seen in the methylation markers among the different tissue groups. Significantly higher methylation frequency and level were observed for KIF1A and RARß2 in cancer samples compared with benign tumors. A negative correlation between BRAF mutation and RASSF1A methylation, and a positive correlation with RARß2 methylation were observed in accordance with previous results. In addition, positive correlation with TIMP3 and a marginal correlation with DCC methylation were observed. The present study constitutes a comprehensive promoter methylation profile of thyroid neoplasia and shows that results must be analyzed in a tissue-specific manner to identify clinically useful methylation markers. Integration of genetic and epigenetic changes in thyroid cancer will help identify relevant biologic pathways that drive its development.  相似文献   

19.
目的 检测膀胱尿路上皮癌组织中O^6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)基因启动子甲基化状态,探讨MGMT甲基化与其蛋白表达水平以及肿瘤生物学行为之间的关系.方法 应用免疫组织化学SP法和甲基化特异性PCR(MSP)分别检测60例膀胱尿路上皮癌及15例正常膀胱黏膜组织中MGMT蛋白表达情况和MGMT基因启动子甲基化状态.结果 膀胱癌组织中MGMT蛋白阳性表达率为35.0 %(21/60),低于正常膀胱组织(86.7 %,13/15,P〈0.01).膀胱癌组织中MGMT甲基化阳性率为45.0 %(27/60),明显高于正常膀胱组织(0.0 %,0/15,P〈0.01);MGMT启动子甲基化与其蛋白表达呈负相关(r = -0.453,P〈0.01);并且高级别膀胱癌中MGMT甲基化阳性率(70.6 %,12/17)要比低级别膀胱癌高(34.9 %,15/43),(P〈0.05),而MGMT甲基化与膀胱癌临床分期无明显关系.结论 MGMT启动子甲基化可能参与了膀胱尿路上皮癌的发生和肿瘤分化,MGMT启动子甲基化有望成为预判膀胱癌预后的重要标记.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号