首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homocarnosine (HCarn) content varied over a 6-fold range in different regions of autopsied human brain, being highest in the dentate nucleus and the inferior olive, and lowest in the caudate nucleus and mesolimbic system. HCarn content was similar in biopsied and autopsied frontal cortex. Very little if any carnosine (Carn) was present in human brain, except for the olfactory bulb, where Carn may have comprised 20% of the imidazole dipeptides present. Only HCarn was present in human CSF. HCarn-Carn synthetase enzyme activity in biopsy specimens of human frontal and temporal cortex was approx 10 times greater than has been reported for rat cerebral cortex. The enzyme synthesized Carn 3–5 times as rapidly as HCarn, when β-alanine (β-Ala) or GABA substrate concentrations were 10 MM. The synthetase was found to have an apparent Km of 1.8 mM for β-Ala, and 8.8 mM for GABA. HCarn-Carn synthetase activity decreases rapidly after brain death, and was not detectable in autopsied brain specimens frozen more than 6 h after patients’deaths. Homocarnosinase activity was determined in brain, using L-[γaminobutyryl-1-14C]HCarn as substrate, and measuring radioactive GABA produced by hydrolysis of HCarn at pH 7.2 in the presence of Co2+ ions. Homocarnosinase activity was similar in biopsied and autopsied human cerebral cortex, and appeared to be stable for at least 10 h after death in unfrozen brain. Differences in the regional distribution of HCarn-Carn synthetase and homocarnosinase activities, as well as regional differences in GABA content in human brain, do not readily account for regional differences in HCarn content, nor do they suggest a physiological role for HCarn.  相似文献   

2.
Rats were given γ-vinyl GABA (4-amino-hex-5-enoic acid), a new irreversible inhibitor of GABA aminotransferase (GABA-T), by daily subcutaneous injection (100mgkg) for 11 days. Amino acids were quantitated in the brains of the γ-vinyl GABA-treated and control animals 24 h after the last injection, and enzyme activities of GABA-T and glutamic acid decarboxylase (GAD) were measured. Chronic administration of γ-vinyl GABA produced a 150% increase in brain GABA content, along with marked increases in the contents of B-alanine and homocarnosine. Brain GABA-T activity was reduced by 26%, and GAD activity was reduced by 22%. In addition, γ-vinyl GABA caused a marked increase in hypotaurine content in rat brain, suggesting that it acts as an inhibitor of hypotaurine dehydrogenase, and it produced significant decreases in brain contents of glutamine and threonine. Although it is an effective GABA-T inhibitor, γ-vinyl GABA apparently affects several other brain enzymes as well, and it may not be an ideal drug for elevating brain GABA levels in man.  相似文献   

3.
Abstract: Samples of untreated human cerebrospinal fluid (CSF) were kept at room temperature (20±1°C) up to 72 h, and changes in γ-aminobutyric acid (GABA) and homocarnosine contents were measured. The concentration of free GABA increased with time, and concomitantly a similar decrease occurred in the concentration of homocarnosine. Total GABA after hydrolysis (present in human CSF at concentrations 40–100 times that of free GABA) did not change. After 2 h the increase in CSF GABA for seven subjects ranged from 42 to 244 pmol/ml. The rate of increase in CSF GABA was positively correlated with the initial homocarnosine concentration. Approximately 5% per h of the initial homocarnosine content was degraded during the first 7 h at room temperature; thereafter the rate gradually decreased. No free GABA was formed in CSF frozen at −70°C for 10 days. When this CSF was restored to room temperature, the formation of free GABA from homocarnosine occurred at essentially the same rate as that observed in fresh CSF. These results demonstrate that the well-known artifactual increase in GABA concentration of untreated human CSF depends on the concentration of homocarnosine. The rapidity of this increase (up to 2 pmollmlimin) could account for disparities among CSF free GABA concentrations previously reported from normal subjects. It is suggested that measurement of concentrations of total GABA in the CSF would provide a better index of human brain GABA concentration than determination of CSF free GABA.  相似文献   

4.
FREE AMINO ACIDS AND RELATED COMPOUNDS IN BIOPSIES OF HUMAN BRAIN   总被引:7,自引:2,他引:5  
Abstract— Contents (μmol/g wet wt.) of 35 free amino acids and related compounds were measured in biopsies of human brain from ten patients. Brain specimens were frozen in liquid nitrogen within 10 sec of their removal at neurosurgery; thus, the values found should approximate those which occur in living brain.
Levels in free pools of biopsied cerebral cortex of most of the amino acids that are constituents of proteins were only 20-50 per cent of those found in autopsied cortex. The content of cystine and ethanolamine was much lower in biopsied than in autopsied cortex. Concentrations of GABA in biopsied cortex were only 20 per cent as high as those found in autopsied cortex, and levels of γ-aminobutyryl dipeptides were also significantly lower in biopsied cortex. Amounts of cystathionine in biopsied cortex varied markedly, but averaged much higher than in autopsied cortex; a single biopsy specimen of cerebellar grey matter had a cystathionine content 36-fold greater than the mean found in autopsied cerebellum.
Appreciable variability in contents among cortical biopsies was found for glycerophosphoethanolamine, phosphoethanolamine, ethanolamine, taurine, aspartic acid, glutamic acid, glutamine, and GABA, as well as for cystathionine. Whether this variability occurred between different subjects, or between different cortical areas, was not clear, although the former possibility was suggested by findings in multiple cortical biopsies from one patient.  相似文献   

5.
Abstract— The contents of GABA, homocarnosine, and β-alanine can be raised in rat brain for long periods of time by the continued administration of phenelzine, aminooxyacetic acid (AOAA), or isonicotinic acid hydrazide (INH). These 3 compounds apparently act by preferential inhibition of the enzyme GABA aminotransferase (GABA-T). Oral administration of phenelzine (20 mg/kg per day) caused a 25–50 per cent increase in GABA levels in rat brain, but produced appreciable toxic side effects. A similar increase in GABA levels in brain resulted from oral administration to rats of INH in a dosage of 60 mg/kg per day, without production of any obvious toxic effects. Simultaneous administration of large doses of pyridoxine did not abolish the GABA-elevating effect of INH. Brain GABA levels in the rat were increased by approx. 50 per cent by daily injections of AOAA (2.5 mg/kg per day). At this low dosage, AOAA injections in rats could be continued for at least 6 weeks without producing evident toxic effects. Oral administration of large amounts of GABA, on the other hand, failed to increase the content of GABA in the brains of rats not treated with GABA-T inhibitors, and failed to produce any further increase of brain GABA levels in rats treated with AOAA.  相似文献   

6.
Abstract— Contents (μmol/g wet wt.) of 34 free amino acids and related compounds were measured in grey matter from three areas of cerebral cortex, from the cerebellum, and from the caudate nucleus in unanaesthetized cats with classical cerveau isolé preparations. Brain specimens were frozen in liquid nitrogen within 10 s of removal; thus, the values found were expected to approximate those which occur in living cat brain. Levels of most of the compounds measured were lower than those previously reported for the cat. In the case of GABA, alanine, and ethanolamine, the lower values found seemed attributable to the rapid freezing of brain tissue, and may more closely approximate levels occurring in living cat brain. On the other hand, the relatively low levels of aspartic and glutamic acids found may have resulted from use of the cerveau isolé preparation. Little difference in levels of amino compounds was found among the three cerebral cortical areas examined. However, there were significant differences in the contents of a number of amino acids between cerebral cortex and the cerebellum or caudate nucleus. These differences resembled those previously observed in autopsied human brain. The content of GABA was two-fold higher in biopsied cat cortex than in biopsied human cortex, whereas the content of cystathionine was only 10 per cent of that in human cortex. Homocarnosine and α-(γ-aminobutyryl)-lysine, two GABA-containing dipeptides found in relatively large amounts in human brain, were not detectable in cat brain. Living cat brain contained two amino acids not previously reported for this species:putreanine and ɛ- N -methyllysine.  相似文献   

7.
Experimental and therapeutic use of islet cell preparations could benefit from assays that measure variations in the mass of living beta-cells. Because processes of cell death can be followed by depletion and/or discharge of cell-specific substances, we examined whether in vitro conditions of beta-cell death resulted in changes in tissue and medium content of insulin and of gamma-aminobutyric acid (GABA), two beta-cell-specific compounds with different cellular localization and turnover. Exposure of rat purified beta-cells to streptozotocin (5 mM, 120 min) or to the nitric oxide donor GEA-3162 (GEA; 50 microM, 120 min) caused 80% necrosis within 24 h; at the end of this period, cellular insulin content was not significantly decreased, but cellular GABA content was reduced by 70%; when cultured at basal glucose (6 mM), the toxin-exposed cells did not discharge less insulin but released 80% less GABA in the period 8-24 h. As in rat beta-cell purification, GABA comigrated with insulin during human islet cell isolation. Twenty-four hours after GEA (500 microM, 120 min), human islet cell preparations exhibited 90% dead cells and a 45 and 90% reduction, respectively, in tissue insulin and GABA content; in the period 9-24 h, insulin discharge in the medium was not reduced, but GABA release was decreased by 90%. When rat beta-cells were cultured for 24 h with nontoxic interleukin (IL)-1beta concentrations that suppressed glucose-induced insulin release, cellular GABA content was not decreased and GABA release increased by 90% in the period 8-24 h. These data indicate that a reduction in cellular and medium GABA levels is more sensitive than insulin as a marker for the presence of dead beta-cells in isolated preparations. Pancreatic GABA content also rapidly decreased after streptozotocin injection and remained unaffected by 12 h of hyperglycemia. At further variance with insulin, GABA release from living beta-cells depends little on its cellular content but increases with IL-1beta-induced alterations in beta-cell phenotype.  相似文献   

8.
Putrescine is the major source of gamma-aminobutyric acid (GABA) in the rat adrenal gland. Diamine oxidase, and not monoamine oxidase, is essential for GABA formation from putrescine in the adrenal gland. Aminoguanidine, a diamine oxidase inhibitor, decreases the GABA concentration in the adrenal gland by more than 70% after 4 h, and almost to zero in 24 h. Studies using [14C]putrescine confirm that [14C]GABA is the major metabolite of putrescine in the adrenal gland. Inhibition of GABA transaminase by amino-oxyacetic acid does not change the GABA concentration in the adrenal gland, as compared with the brain, where the GABA concentration rises. With aminoguanidine, the turnover time of GABA originating from putrescine in the adrenal gland is 5.6 h, reflecting a slower rate of GABA metabolism compared with the brain. Since GABA in the adrenal gland is almost exclusively derived from putrescine, the role of GABA may relate to the role of putrescine as a growth factor and regulator of cell metabolism.  相似文献   

9.
Ammonia contents in the brain stem and prosencephalon markedly increased in a rat model of acute hepatic failure induced by partial hepatectomy following CCl4 intoxication. In hepatic failure rats, synaptosomal glutamic acid (excitatory amino acid neurotransmitter) contents decreased significantly in the prosencephalon, and GABA (inhibitory amino acid neurotransmitter) contents decreased significantly in the brain stem. The molar ratio of glutamic acid to glutamine significantly diminished in the brain stem. Glutamic acid decarboxylase activity in the synaptosomes and the binding of [3H]glutamic acid and [3H]GABA to synaptosomal membrane preparations were unchanged in acute hepatic failure rats. These results indicate than an insufficiency of both excitatory and inhibitory neurotransmitter amino acids is induced by high ammonia contents in the synaptosomes of the brain stem during acute hepatic failure.  相似文献   

10.
—GABA contents are significantly decreased in the caudate nucleus, putamen-globus pallidus, substantia nigra, and occipital cortex in autopsied brain from Huntington's chorea patients, as compared to values in the same regions from control subjects who have died without neurological disease. Homocarnosine levels are lower in choreic than in control brain, but only in the putamen-globus pallidus and the cerebellar cortex are the differences significant. Activity of the enzyme which synthesizes GABA, glutamic acid decarboxylase, is reduced in the brains of some choreic patients, but may be equally low in brain of control subjects, even though the latter exhibit normal brain GABA content. Low glutamic acid decarboxylase activity in autopsied human brain is not uniquely characteristic of Huntington's chorea. No evidence was found in this study for an inhibitor of glutamic acid decarboxylase in choreic brain, nor for the presence of an isoenzyme with decreased affinity for glutamate. GABA aminotransferase, the enzyme which degrades GABA, was equally active in control and choreic brain; therefore, increased activity of this enzyme cannot account for the low brain GABA levels in Huntington's chorea.  相似文献   

11.
Acute administration of GABA transaminase inhibitors to rats results in a dose-dependent increase in both brain and blood GABA content and administration of isonicotinic acid hydrazide (INH), at a dose which decreases the amount of brain GABA, also lowers blood levels of this amino acid. Chronic treatment (10 days) with INH (20mg/kg), y-acetylenic-GABA (10 mg/kg) or aminooxyacetic acid (AOAA) (10 mg/kg) results in a significant elevation in both rat brain and blood GABA concentrations. At the doses studied, only AOAA caused a significant elevation in CSF GABA content. Co-administration of pyridoxal phosphate (2 mg/kg) blocks the chronic INH-induced rise in blood GABA but does not affect the increase in brain content of this amino acid. Chronic administration of di-n-propylacetate (20 mg/kg) did not significantly alter brain, blood or CSF GABA levels. The results suggest that, under the proper conditions, changes in blood GABA levels after administration of inhibitors of GABA synthesis or degradation may be an indirect indicator of changes in the brain content of this amino acid. Blood GABA determinations may be useful for studying the biochemical effectiveness of GABA transaminase inhibitors in man.  相似文献   

12.
Some neurochemical aspects of fluorocitrate intoxication   总被引:3,自引:3,他引:0  
Abstract— Some metabolic and biochemical effects of fluorocitrate were studied in vivo in rat brain and cat spinal cord. During the preconvulsant and convulsant phases of fluorocitrate poisoning the contents of free glutamate, glutamine and aspartate declined progressively, while that of alanine increased. Incorporation of 14C from [U-14C]glucose into these amino acids also decreased, although somewhat more gradually. GABA exhibited a biphasic change, its content rising after an initial decrease while its relative specific activity rose initially and subsequently diminished. Incorporation of 14C from [U-14C]glucose and [U-14C]lysine into neural protein declined sharply. The citric acid content rose markedly in rat brain and cat spinal cord. In rat brain the glycogen content declined but ATP and ammonia contents were unchanged. The significance of these results with respect to energy metabolism and the possible mechanism of the convulsions during fluorocitrate poisoning is discussed.  相似文献   

13.
Changes in content of selected neuroactive amino acids [glutamic acid, aspartic acid, glycine, gamma-aminobutyric acid (GABA) and taurine] and acetylcholine (ACh) in the rat hippocampus following transient forebrain ischemia were investigated using male Wistar rats. Rats were allowed to survive for 1 or 5 days following 10 or 20 min of 4-vessel occlusion, and killed by a focused microwave irradiation. A significant reduction in all neuroactive amino acids examined except GABA was noted in the hippocampus on the fifth day. One day after the 4-vessel occlusion for 10 min, no significant effect on the content of neuroactive amino acids in all brain areas was observed. gamma-Aminobutyric acid content in the hippocampus was only significantly reduced on the fifth day after the occlusion for 20 min. Similarly, a significant decrease in ACh content in the hippocampus was observed on the fifth day after the occlusion for 20 min. Considering the data that a significant loss of neuronal cells in the hippocampus (delayed neuronal death) was detected only 5 days after the 4-vessel occlusion, it can be said that the alterations in the hippocampus of neuroactive amino acids such as glutamic acid, aspartic acid, glycine and taurine are more sensitive than those in GABA and ACh against cerebral ischemia. A possible correlation of these changes of neuroactive amino acids in the occurrence of delayed neuronal death in the hippocampus is also suggested.  相似文献   

14.
The effect of in vivo inhibition of GABA transaminase by ethanolamine O-sulphate on the content of the free amino acids in rat brain has been studied. Intracisternal injection of 2.0 mg/kg resulted in a progressive increase in GABA levels with time, to reach after 8 h a 100 per cent increase over saline-injected control animals. The effect of injection of 0.5, 1.0 and 2.0 mg/kg was studied 24 h after injection and the results showed that the increased GABA levels were dependent on the dose of inhibitor employed. Apart from the substantial increase in the GABA concentration of the brain there were no significant changes in the content of the other amino acids except for a small but significant decrease in aspartic acid in one experiment. When the extent of inhibition of the transaminase was correlated with the rise in GABA concentration it was shown that no elevation occurred until more than half of the enzymic activity had been inhibited.  相似文献   

15.
REGIONAL DISTRIBUTION OF AMINO ACIDS IN HUMAN BRAIN OBTAINED AT AUTOPSY   总被引:17,自引:11,他引:6  
Abstract— Contents (μmol/g wet wt.) of 35 free amino acids and related compounds were measured in 12 different regions of each of five human brains. Specimens were obtained at autopsy from patients who died suddenly without previous brain disease. These data may serve for later comparison with contents of amino compounds in similar regions of the brains of patients dying with various neurological or psychiatric disorders.
There were marked and consistent differences in the regional distribution of the following eight compounds: γ-aminobutyric acid, homocarnosine, glutamic acid, aspartic acid, taurine, cystathionine, glycerophosphoethanolamine, and phosphoethanolamine. These differences suggest that some of these compounds may have special physiological roles, including the possible mediation of synaptic transmission.
Human brain contains two previously unreported compounds, the mixed disulphide of cysteine and glutathione and α-(γ-aminobutyryl)-lysine. The latter dipeptide occurs in much higher concentrations in human brain than in the brains of lower mammals.  相似文献   

16.
Abstract: When γ-aminobutyric acid aminotransferase (GABA-T) activity was measured in vitro in rat brain, neither isoniazid (INH) nor four of its known metabolites (isonicotinic acid, acetylisoniazid, acetylhydrazine, diacetylhydrazine) inhibited the enzyme in concentrations (5 mM) far higher than those likely to be achieved when INH is administered to man. In contrast, hydrazine (5 μM) caused a 50% inhibition of GABA-T without inhibiting glutamic acid decarboxylase (GAD). Rats were injected daily for 109 days with hydrazine (0.08 or 0.16 mmol/kg/day), after which amino acid contents and enzyme activities were measured in their brains. Both hydrazine doses caused significant elevations of whole brain GABA content and reductions of GABA-T activity, but did not affect GAD activity. Chronic administration of hydrazine at thee doses did not reduce weight gain or alter rat behavior, nor did it produce any irreversible pathologic changes in liver or alterations in hepatic aryl hydrocarbon hydroxylase activity. However, hydrazine treatment caused changes in the contents of many brain amino acids besides GABA, and markedly increased concentrations of ornithine, tyrosine, and α-aminoadipic acid in rat plasma. Inhibition of GABA-T activity and the other biochemical alterations observed in patients given high doses of INH probably result from hydrazine formed in the metabolic degradation of INH. Thus administration of hydrazine might be a more direct means of elevating brain GABA content in patients where this seems indicated, and might not entail a greater risk of adverse effects.  相似文献   

17.
Abstract— Brain amino acids were measured in rats given aminooxyacetic acid (AOAA) by mouth, and in rats given sodium dipropylacetate (DPA) both orally and by intraperitoneal injection. Brain GABA content was significantly elevated by AOAA doses of 10mg/kg/day, but not by 5mg/kg/day. Approximately 4 times as much AOAA is required by mouth as by parenteral injection to raise brain GABA content in the rat. DPA (400mg/kg) increased brain GABA and lowered brain aspartate content significantly 1 h after a single injection. However, DPA given orally (350 mg/kg/day) produced no alterations of any amino acids in rat brain.
Amino acids were measured in plasma and urine from patients treated orally with isonicotinic acid hydrazide (INH) or DPA, and from a volunteer who took AOAA. INH (10–21 mg/kg/day) increased concentrations of β -alanine and ornithine in plasma, as well as urinary excretion of β -alanine. DPA had no such effect. AOAA in oral doses ranging from 1.25 to 5.0 mg/kg/day increased plasma concentrations of β -alanine, ornithine, β -aminoisobutyric acid, proline and hydroxyproline, and produced massive urinary excretion of β -alanine, β -aminoisobutyric acid, and taurine.
Both INH and AOAA, given in doses practical for human use, inhibit the transamination of β -alanine and ornithine in liver, and may also inhibit the transamination of GABA in brain. In addition, AOAA interferes with the catabolism of β -aminoisobutyric acid, proline, and hydroxyproline. AOAA, in the lowest dose employed, appeared more effective than INH as an inhibitor of GABA aminotransferase in man, and might therefore be useful in the treatment of neurological diseases in which brain GABA is deficient.  相似文献   

18.
Rats were injected intracerebroventricularly (i.c.v.) or i.v. with [14C]homocarnosine (250 nmol). Distribution of the dipeptide in brain structures, transport from the brain to the blood, distribution in peripheral organs, and excretion in the urine were studied by measuring radioactivity in tissue, plasma, and urine samples by liquid scintillation counting 15–120 min after injection. After i.c.v. injection, [14C]homocarnosine was taken up into all parts of the brain investigated (highest uptake in structures close to the site of injection), it was transported to the blood, and radioactive substances were found in low concentration in muscle, spleen, and liver, in high concentration in the kidneys, and very high concentration in the urine. Investigations using high pressure liquid chromatography (HPLC) showed that no degradation took place in the brain, all radioactivity was found in the homocarnosine fraction. In the plasma 86% of the radioactivity was found in the GABA fraction presumed to be formed by cleavage of the peptide, while in the kidneys 35% and in the urine 40% was found in the GABA fraction. After i.v. injection of [14C]homocarnosine, no radioactivity was measured in hippocampus, striatum, cerebellum and cerebral cortex 15 min after injection, however, 60 min after injection a very low activity was detected in these structures (estimated intravascular radioactivity subtracted). A low activity was also measured in the spinal cord both 15 and 60 min after injection. When homocarnosine and GABA were separated on HPLC, all radioactivity in brain tissue was found in the GABA fraction, indicating either that [14C]homocarnosine did not cross the blood-brain barrier in amounts that could be measured with the method used, or that peptide entering the brain was rapidly transported back to the blood. [14C]Homocarnosine was not taken up either into crude synaptosomal preparations from hippocampus, striatum, cerebellum, cortex and spinal cord, or into slices prepared from the hippocampus and striatum. Transport from the brain to the kidneys and excretion in the urine seems to be a major route for disposal of this peptide in the rat.  相似文献   

19.
The effect of vigabatrin (gamma-vinyl-gamma-aminobutyric acid), a new anticonvulsant drug, on the transmitter amino acids in rat cisternal CSF was studied. CSF was collected through a permanently implanted polyethylene cannula from freely moving rats at 5, 24, 48, and 96 h after administration of 1,000 mg/kg of vigabatrin. The free gamma-aminobutyric acid (GABA) level was elevated maximally (13.5-fold; p less than 0.01) at 24 h after injection. The homocarnosine (GABA-histidine) level also was increased (123%; p less than 0.01) at 24 h after injection, and its concentration remained at the same level for the next 3 days. Glycine and taurine concentrations had increased [31% (p less than 0.05) and 63% (p less than 0.01), respectively] at 5 h after injection. It is interesting that the levels of glutamate and aspartate increased [330% (p less than 0.05) and 421% (p less than 0.01), respectively] at 96 h after injection, the time when the free GABA level had returned to the baseline concentration and the vigabatrin level was 3% of the maximal concentration. The present study indicates that a single dose of vigabatrin in rats elevates levels of both the inhibitory and excitatory amino acids in CSF. However, the temporal profile of observed changes in relation to vigabatrin injection shows that neither the long-lasting elevation of GABA content nor the increase in glutamate and aspartate levels correlates with the level of vigabatrin in CSF. These findings suggest that the excitatory mechanisms are also augmented following acute administration of vigabatrin, especially when the content of GABA had decreased to the baseline level and the level of vigabatrin was low.  相似文献   

20.
The intraventricular and intravenous administration of naloxone was studied for its effect on the homocarnosine amount in cerebral hemispheres, striatum, hippocamp, hypothalamus, thalamus, cerebellum, medulla oblongata as well as in the spinal cord of rabbits. The intracysternal administration of naloxone decreases the homocarnosine amount in the striatum, hypothalamus, cerebellum and medulla oblongata. The intravenous administration of peptide exerts no statistically reliable effect on the homocarnosine content in the rabbit brain. The intraperitoneal administration of delta-sleep-inducing peptide increases sharply the homocarnosine content in the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号