首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lin HK  Steckelbroeck S  Fung KM  Jones AN  Penning TM 《Steroids》2004,69(13-14):795-801
Human aldo-keto reductase AKR1C3 (type 2 3alpha-hydroxysteroid dehydrogenase/type 5 17beta-hydroxysteroid dehydrogenase) catalyzes the reduction of Delta(4)-androstene-3,17-dione to yield testosterone, the reduction of 5alpha-dihydrotestosterone to yield 3alpha- and 3beta-androstanediol, and the reduction of estrone to yield 17beta-estradiol. Relatively, high mRNA expression of AKR1C3 was found in human prostate and mammary gland where it is implicated in regulating ligand access to the androgen and estrogen receptor, respectively. AKR1C3 shares high sequence identity >86% with related plastic human 20alpha-hydroxysteroid dehydrogenases (AKR1C1), type 3 3alpha-hydroxysteroid dehydrogenase (AKR1C2) and type 1 3alpha-hydroxysteroid dehydrogenase (AKR1C4), and reagents are urgently needed to discriminate between these enzymes at the mRNA, protein and functional level. We describe the characterization of a high-titer isoform specific monoclonal antibody (Ab) for AKR1C3. It does not cross react with human AKR1C1, AKR1C2 or AKR1C4, human aldehyde reductase AKR1A1 or rat 3alpha-hydroxysteroid dehydrogenase (AKR1C9) on immunoblot analysis. The monoclonal Ab can be used to detect AKR1C3 expression by immunohistochemistry in sections of paraffin-embedded mammary gland and prostate. In the breast enzyme staining was detected in ductal carcinoma in situ where the cancerous cells were strongly immunoreactive. In normal prostate immunoreactivity was limited to stromal cells with only faint staining in the epithelial cells. In adenocarcinoma of the prostate elevated staining was observed in the endothelial cells and carcinoma cells. The reagent thus has utility to access the localized expression of AKR1C3 in hormonal dependent malignancies of the breast and prostate.  相似文献   

2.
3.
Androgen-dependent prostate diseases initially require 5alpha-dihydrotestosterone (DHT) for growth. The DHT product 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), is inactive at the androgen receptor (AR), but induces prostate growth, suggesting that an oxidative 3alpha-hydroxysteroid dehydrogenase (HSD) exists. Candidate enzymes that posses 3alpha-HSD activity are type 3 3alpha-HSD (AKR1C2), 11-cis retinol dehydrogenase (RODH 5), L-3-hydroxyacyl coenzyme A dehydrogenase , RODH like 3alpha-HSD (RL-HSD), novel type of human microsomal 3alpha-HSD, and retinol dehydrogenase 4 (RODH 4). In mammalian transfection studies all enzymes except AKR1C2 oxidized 3alpha-diol back to DHT where RODH 5, RODH 4, and RL-HSD were the most efficient. AKR1C2 catalyzed the reduction of DHT to 3alpha-diol, suggesting that its role is to eliminate DHT. Steady-state kinetic parameters indicated that RODH 4 and RL-HSD were high-affinity, low-capacity enzymes whereas RODH 5 was a low-affinity, high-capacity enzyme. AR-dependent reporter gene assays showed that RL-HSD, RODH 5, and RODH 4 shifted the dose-response curve for 3alpha-diol a 100-fold, yielding EC(50) values of 2.5 x 10(-9) M, 1.5 x 10(-9) M, and 1.0 x 10(-9) M, respectively, when compared with the empty vector (EC(50) = 1.9 x 10(-7) M). Real-time RT-PCR indicated that L-3-hydroxyacyl coenzyme A dehydrogenase and RL-HSD were expressed more than 15-fold higher compared with the other candidate oxidative enzymes in human prostate and that RL-HSD and AR were colocalized in primary prostate stromal cells. The data show that the major oxidative 3alpha-HSD in normal human prostate is RL-HSD and may be a new therapeutic target for treating prostate diseases.  相似文献   

4.
Mouse hybridomas were prepared by fusing myelomas and spleen cells from mice immunized with purified rat 3 alpha-hydroxysteroid dehydrogenase. Hybridomas secreting monoclonal antibodies against 3 alpha-hydroxysteroid dehydrogenase were selected by indirect enzyme-linked immunoassay and then subcloned by limiting dilution. From two mice we have obtained four positive hybridomas, three secreting high affinity immunoglobulin (Ig) G1 and one secreting IgM. Only two of these monoclonal antibodies (MAbs 3G6 and 7D3, both IgG1) recognized denatured enzyme and, therefore, were used for further immunoblotting experiments. MAb 7D3 recognized a structurally related mouse enzyme, but not the human enzyme, whereas monoclonal antibody 3G6 recognized a human enzyme, but not the mouse enzyme. When these two monoclonal antibodies were used in immunoblotting to survey the expression of 3 alpha-hydroxysteroid dehydrogenase in rat liver and a number of other tissues, striking differences were found in the protein band patterns in kidney, lung, and testis. Both MAbs 7D3 and 3G6 recognized 3 alpha-hydroxysteroid dehydrogenase, a 34-kDa 7D3 recognized a protein of the same size as the liver protein, whereas MAb 3G6 recognized a 34-kDa protein plus another protein of 36 kDa. In kidney only MAb 3G6, but not MAb 7D3, recognized a 34-kDa protein. Conversely, the 34-kDa protein in testis was recognized by MAb 7D3, but not by MAb 3G6. These findings suggest the existence of multiple antigenically related proteins in different tissues.  相似文献   

5.
6.
Prostate cancer is dependent on circulating testosterone in its early stages and is treatable with radiation and surgery. However, recurrent prostate tumors advance to an androgen-independent state in which they progress in the absence of circulating testosterone, leading to metastasis and death. During the development of androgen independence, prostate cancer cells are known to increase intracellular testosterone synthesis, which maintains cancer cell growth in the absence of significant amounts of circulating testosterone. Overexpression of the androgen receptor (AR) occurs in androgen-independent prostate cancer and has been proposed as another mechanism promoting the development of androgen independence. The LNCaP-AR cell line is engineered to overexpress AR but is otherwise similar to the widely studied LNCaP cell line. We have previously shown that pomegranate extracts inhibit both androgen-dependent and androgen-independent prostate cancer cell growth. In this study, we examined the effects of pomegranate polyphenols, ellagitannin-rich extract and whole juice extract on the expression of genes for key androgen-synthesizing enzymes and the AR. We measured expression of the HSD3B2 (3beta-hydroxysteroid dehydrogenase type 2), AKR1C3 (aldo-keto reductase family 1 member C3) and SRD5A1 (steroid 5alpha reductase type 1) genes for the respective androgen-synthesizing enzymes in LNCaP, LNCaP-AR and DU-145 human prostate cancer cells. A twofold suppression of gene expression was considered statistically significant. Pomegranate polyphenols inhibited gene expression and AR most consistently in the LNCaP-AR cell line (P=.05). Therefore, inhibition by pomegranate polyphenols of gene expression involved in androgen-synthesizing enzymes and the AR may be of particular importance in androgen-independent prostate cancer cells and the subset of human prostate cancers where AR is up-regulated.  相似文献   

7.
3alpha-Hydroxysteroid dehydrogenases (3alpha-HSDs) inactivate steroid hormones in the liver, regulate 5alpha-dihydrotestosterone (5alpha-DHT) levels in the prostate, and form the neurosteroid, allopregnanolone in the CNS. Four human 3alpha-HSD isoforms exist and correspond to AKR1C1-AKR1C4 of the aldo-keto reductase (AKR) superfamily. Unlike the related rat 3alpha-HSD (AKR1C9) which is positional and stereospecific, the human enzymes display varying ratios of 3-, 17-, and 20-ketosteroid reductase activity as well as 3alpha-, 17beta-, and 20alpha-hydroxysteroid oxidase activity. Their k(cat) values are 50-100-fold lower than that observed for AKR1C9. Based on their product profiles and discrete tissue localization, the human enzymes may regulate the levels of active androgens, estrogens, and progestins in target tissues. The X-ray crystal structures of AKR1C9 and AKR1C2 (human type 3 3alpha-HSD, bile acid binding protein and peripheral 3alpha-HSD) reveal that the AKR1C2 structure can bind steroids backwards (D-ring in the A-ring position) and upside down (beta-face inverted) relative to the position of a 3-ketosteroid in AKR1C9 and this may account for its functional plasticity. Stopped-flow studies on both enzymes indicate that the conformational changes associated with binding cofactor (the first ligand) are slow; they are similar in both enzymes but are not rate-determining. Instead the low k(cat) seen in AKR1C2 (50-fold less than AKR1C9) may be due to substrate "wobble" at the plastic active site.  相似文献   

8.
The crystal structure of human type III 3alpha-hydroxysteroid dehydrogenase (HSD)/bile acid binding protein (AKR1C2) complexed with NADP(+) and 3alpha,7beta-dihydroxy-5beta-cholanic acid (ursodeoxycholate) at 3.0 A resolution is presented. Thus, the three-dimensional structure has now been solved for a human HSD member of the aldo-keto reductase superfamily. AKR1C2 is implicated in the prostatic production of the potent androgen 5alpha-dihydrotestosterone and the hepatic transport of bile acids. It also catalyzes the formation of the neurosteroid 3alpha-hydroxy-5alpha-pregnan-20-one in the central nervous system, and its allosteric modulation by fluoxetine has been linked to the use of this drug for premenstrual dsyphoria. Like other members of the superfamily, AKR1C2 folds into an alpha/beta-barrel and binds NADP(+) in an extended conformation. The carboxylate of ursodeoxycholate binds to AKR1C2 in the oxyanion hole at the active site. More interestingly, the orientation of ursodeoxycholate is essentially "backwards" and "upside-down" from that observed for testosterone in the related rat 3alpha-HSD.NADP(+).testosterone ternary complex, where testosterone assumes the position of a 3-ketosteroid substrate. The orientation of ursodeoxycholate is thus similar to that expected of a 17beta-HSD substrate. The ternary structure explains the ability of AKR1C2 to catalyze 3alpha-, 17beta-, and 20alpha-HSD reactions. Comparison of the steroid binding pocket of AKR1C2 with that of rat 3alpha-HSD reveals significant differences in the positions of conserved and nonconserved loop residues, providing insights into the structural basis for the functional flexibility that is observed in all the human 3alpha-HSD isoforms but not in the rat isoform.  相似文献   

9.
10.
11.
Mouse 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21) is a member of the aldo-keto reductase superfamily that catalyses the oxido-reduction of steroid hormones such as estrogens, androgens and neurosteroids. Inhibitors of aldose reductase (AR), a member of the same superfamily, were evaluated against AKR1C21. Models of the enzyme-inhibitor complexes suggest that Tyr118 and Phe311 are important residues for inhibitor recognition and orientation in the active site of AKR1C21.  相似文献   

12.
Tetrahydrobiopterin (BH(4)) is a cofactor for aromatic amino acid hydroxylases and nitric oxide synthase. The biosynthesis includes two reduction steps catalyzed by sepiapterin reductase. An intermediate, 6-pyruvoyltetrahydropterin (PPH(4)) is reduced to 1(')-oxo-2(')-hydroxypropyl-tetrahydropterin (1(')-OXPH(4)) or 1(')-hydroxy-2(')-oxopropyl-tetrahydropterin (2(')-OXPH(4)), which is further converted to BH(4). However, patients with sepiapterin reductase deficiency show normal urinary excretion of pterins without hyperphenylalaninemia, suggesting that other enzymes catalyze the two reduction steps. In this study, the reductase activities for the tetrahydropterin intermediates were examined using several human recombinant enzymes belonging to the aldo-keto reductase (AKR) family and short-chain dehydrogenase/reductase (SDR) family. In the reduction of PPH(4) by AKR family enzymes, 2(')-OXPH(4) was formed by 3 alpha-hydroxysteroid dehydrogenase type 2, whereas 1(')-OXPH(4) was produced by aldose reductase, aldehyde reductase, and 20 alpha-hydroxysteroid dehydrogenase, and both 1(')-OXPH(4) and 2(')-OXPH(4) were detected as the major and minor products by 3 alpha-hydroxysteroid dehydrogenases (types 1 and 3). The activities of aldose reductase and 3 alpha-hydroxysteroid dehydrogenase type 2 (106 and 35 nmol/mg/min, respectively) were higher than those of the other enzymes (0.2-4.0 nmol/mg/min). Among the SDR family enzymes, monomeric carbonyl reductase exhibited low 1(')-OXPH(4)-forming activity of 5.0 nmol/mg/min, but L-xylulose reductase and peroxisomal tetrameric carbonyl reductase did not form any reduced product from PPH(4). Aldose reductase reduced 2(')-OXPH(4) to BH(4), but the other enzymes were inactive towards both 2(')-OXPH(4) and 1(')-OXPH(4). These results indicate that the tetrahydropterin intermediates are natural substrates of the human AKR family enzymes and suggest a novel alternative pathway from PPH(4) to BH(4), in which 3 alpha-hydroxysteroid dehydrogenase type 2 and aldose reductase work in concert.  相似文献   

13.
There is considerable interest in the development of an inhibitor of aldo-keto reductase (AKR) 1C3 (type 5 17β-hydroxysteroid dehydrogenase and prostaglandin F synthase) as a potential therapeutic for both hormone-dependent and hormone-independent cancers. AKR1C3 catalyzes the reduction of 4-androstene-3,17-dione to testosterone and estrone to 17β-estradiol in target tissues, which will promote the proliferation of hormone dependent prostate and breast cancers, respectively. AKR1C3 also catalyzes the reduction of prostaglandin (PG) H(2) to PGF(2α) and PGD(2) to 9α,11β-PGF(2), which will limit the formation of anti-proliferative prostaglandins, including 15-deoxy-Δ(12,14)-PGJ(2), and contribute to proliferative signaling. AKR1C3 is overexpressed in a wide variety of cancers, including breast and prostate cancer. An inhibitor of AKR1C3 should not inhibit the closely related isoforms AKR1C1 and AKR1C2, as they are involved in other key steroid hormone biotransformations in target tissues. Several structural leads have been explored as inhibitors of AKR1C3, including non-steroidal anti-inflammatory drugs, steroid hormone analogues, flavonoids, cyclopentanes, and benzodiazepines. Inspection of the available crystal structures of AKR1C3 with multiple ligands bound, along with the crystal structures of the other AKR1C isoforms, provides a structural basis for the rational design of isoform specific inhibitors of AKR1C3. We find that there are subpockets involved in ligand binding that are considerably different in AKR1C3 relative to the closely related AKR1C1 or AKR1C2 isoforms. These pockets can be used to further improve the binding affinity and selectivity of the currently available AKR1C3 inhibitors. Article from the special issue on Targeted Inhibitors.  相似文献   

14.
Jin Y  Penning TM 《Biochemistry》2006,45(43):13054-13063
Human type 3 3alpha-hydroxysteroid dehydrogenase, or aldo-keto reductase (AKR) 1C2, eliminates the androgen signal in human prostate by reducing 5alpha-dihydrotestosterone (DHT, potent androgen) to form 3alpha-androstanediol (inactive androgen), thereby depriving the androgen receptor of its ligand. The k(cat) for the NADPH-dependent reduction of DHT catalyzed by AKR1C2 is 0.033 s(-1). We employed transient kinetics and kinetic isotope effects to dissect the contribution of discrete steps to this low k(cat) value. Stopped-flow experiments to measure the formation of the AKR1C2.NADP(H) binary complex indicated that two slow isomerization events occur to yield a tight complex. A small primary deuterium isotope effect on k(cat) (1.5) and a slightly larger effect on k(cat)/K(m) (2.1) were observed in the steady state. In the transient state, the maximum rate constant for the single turnover of DHT (k(trans)) was determined to be 0.11 s(-1) for the NADPH-dependent reaction, which was approximately 4-fold greater than the corresponding k(cat) x k(trans) was significantly reduced when NADPD was substituted for NADPH, resulting in an apparent (D)k(trans) of 3.5. Thus, the effects of isotopic substitution on the hydride transfer step were masked by slow events that follow or precede the chemical transformation. Transient multiple-turnover reactions generated curvilinear reaction traces, consistent with the product formation and release occurring at comparable rates. Global fitting analysis of the transient kinetic data enabled the estimate of the rate constants for the three-step cofactor binding/release model and for the minimal ordered bi-bi turnover mechanism. Results were consistent with a kinetic mechanism in which a series of slow events, including the chemical step (0.12 s(-1)), the release of the steroid product (0.081 s(-1)), and the release of the cofactor product (0.21 s(-1)), combine to yield the overall observed low turnover number.  相似文献   

15.
16.
Aldo-keto reductase 1C3 (AKR1C3) also known as type 5 17β-hydroxysteroid dehydrogenase has been implicated as one of the key enzymes driving the elevated intratumoral androgen levels observed in castrate resistant prostate cancer (CRPC). AKR1C3 inhibition therefore presents a rational approach to managing CRPC. Inhibitors should be selective for AKR1C3 over other AKR1C enzymes involved in androgen metabolism. We have synthesized 2-, 3-, and 4-(phenylamino)benzoic acids and identified 3-(phenylamino)benzoic acids that have nanomolar affinity and exhibit over 200-fold selectivity for AKR1C3 versus other AKR1C isoforms. The AKR1C3 inhibitory potency of the 4′-substituted 3-(phenylamino)benzoic acids shows a linear correlation with both electronic effects of substituents and the pKa of the carboxylic acid and secondary amine groups, which are interdependent. These compounds may be useful in treatment and/or prevention of CRPC as well as understanding the role of AKR1C3 in endocrinology.  相似文献   

17.
Type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) is the major enzyme in the prostate that reduces 4-androstene-3,17-dione (Δ(4)-Adione) to the androgen receptor (AR) ligand testosterone. AKR1C3 is upregulated in prostate cancer (PCa) and castrate resistant prostate cancer (CRPC) that develops after androgen deprivation therapy. PCa and CRPC often depend on intratumoral androgen biosynthesis and upregulation of AKR1C3 could contribute to intracellular synthesis of AR ligands and stimulation of proliferation through AR signaling. To test this hypothesis, we developed an LNCaP prostate cancer cell line overexpressing AKR1C3 (LNCaP-AKR1C3) and compared its metabolic and proliferative responses to Δ(4)-Adione treatment with that of the parental, AKR1C3 negative LNCaP cells. In LNCaP and LNCaP-AKR1C3 cells, metabolism proceeded via 5α-reduction to form 5α-androstane-3,17-dione and then (epi)androsterone-3-glucuronide. LNCaP-AKR1C3 cells made significantly higher amounts of testosterone-17β-glucuronide. When 5α-reductase was inhibited by finasteride, the production of testosterone-17β-glucuronide was further elevated in LNCaP-AKR1C3 cells. When AKR1C3 activity was inhibited with indomethacin the production of testosterone-17β-glucuronide was significantly decreased. Δ(4)-Adione treatment stimulated cell proliferation in both cell lines. Finasteride inhibited LNCaP cell proliferation, consistent with 5α-androstane-3,17-dione acting as the major metabolite that stimulates growth by binding to the mutated AR. However, LNCaP-AKR1C3 cells were resistant to the growth inhibitory properties of finasteride, consistent with the diversion of Δ(4)-Adione metabolism from 5α-reduced androgens to increased formation of testosterone. Indomethacin did not result in differences in Δ(4)-Adione induced proliferation since this treatment led to the same metabolic profile in LNCaP and LNCaP-AKR1C3 cells. We conclude that AKR1C3 overexpression diverts androgen metabolism to testosterone that results in proliferation in androgen sensitive prostate cancer. This effect is seen despite high levels of uridine glucuronosyl transferases suggesting that AKR1C3 activity can surmount the effects of this elimination pathway. Treatment options in prostate cancer that target 5α-reductase where AKR1C3 co-exists may be less effective due to the diversion of Δ(4)-Adione to testosterone.  相似文献   

18.
Win 49596 is an orally active antiandrogen in the rat. This report describes a series of in vitro and in vivo studies which were performed to characterize the mechanism of action of this compound. In vitro competition and Lineweaver-Burk analyses indicate that Win 49596 binds competitively to the rat ventral prostate androgen receptor with a Ki of 2.2 +/- 0.4 microM. Similar to other androgen antagonists, the relative binding affinity (RBA) of Win 49596 was greater after 1 h of incubation with androgen receptor than after an 18 h incubation (RBA of 2.2 versus 0.05, respectively). Win 49596 did not bind to rat cytosolic uterine estrogen or progesterone receptors or thymus glucocorticoid receptors. Furthermore, Win 49596 did not inhibit rat ventral prostate 5 alpha-reductase or 3 alpha-oxidoreductase, rat adrenal 3 beta-hydroxysteroid dehydrogenase or human placental aromatase activity in vitro at concentrations as high as 10 microM. A series of in vivo studies demonstrated that Win 49596 inhibited the uptake of [3H]testosterone as well as testosterone-induced nuclear accumulation of androgen receptor in the rat ventral prostate. Collectively, these results support direct androgen receptor antagonism as the mechanism for the antiandrogenic effects of Win 49596.  相似文献   

19.
The source of NADPH-dependent cytosolic 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity is unknown to date. This important reaction leads e.g. to the reduction of the potent androgen 5alpha-dihydrotestosterone (DHT) into inactive 3beta-androstanediol (3beta-Diol). Four human cytosolic aldo-keto reductases (AKR1C1-AKR1C4) are known to act as non-positional-specific 3alpha-/17beta-/20alpha-HSDs. We now demonstrate that AKR1Cs catalyze the reduction of DHT into both 3alpha- and 3beta-Diol (established by (1)H NMR spectroscopy). The rates of 3alpha- versus 3beta-Diol formation varied significantly among the isoforms, but with each enzyme both activities were equally inhibited by the nonsteroidal anti-inflammatory drug flufenamic acid. In vitro, AKR1Cs also expressed substantial 3alpha[17beta]-hydroxysteroid oxidase activity with 3alpha-Diol as the substrate. However, in contrast to the 3-ketosteroid reductase activity of the enzymes, their hydroxysteroid oxidase activity was potently inhibited by low micromolar concentrations of the opposing cofactor (NADPH). This indicates that in vivo all AKR1Cs will preferentially work as reductases. Human hepatoma (HepG2) cells (which lack 3beta-HSD/Delta(5-4) ketosteroid isomerase mRNA expression, but express AKR1C1-AKR1C3) were able to convert DHT into 3alpha- and 3beta-Diol. This conversion was inhibited by flufenamic acid establishing the in vivo significance of the 3alpha/3beta-HSD activities of the AKR1C enzymes. Molecular docking simulations using available crystal structures of AKR1C1 and AKR1C2 demonstrated how 3alpha/3beta-HSD activities are achieved. The observation that AKR1Cs are a source of 3beta-tetrahydrosteroids is of physiological significance because: (i) the formation of 3beta-Diol (in contrast to 3alpha-Diol) is virtually irreversible, (ii) 3beta-Diol is a pro-apoptotic ligand for estrogen receptor beta, and (iii) 3beta-tetrahydrosteroids act as gamma-aminobutyric acid type A receptor antagonists.  相似文献   

20.
Castrate resistant prostate cancer (CRPC) is associated with increased androgen receptor (AR) signaling often brought about by elevated intratumoral androgen biosynthesis and AR amplification. Inhibition of androgen biosynthesis and/or AR antagonism should be efficacious in the treatment of CRPC. AKR1C3 catalyzes the formation of potent AR ligands from inactive precursors and is one of the most upregulated genes in CRPC. AKR1C3 inhibitors should not inhibit the related isoforms, AKR1C1 and AKR1C2 that are involved in 5α-dihydrotestosterone inactivation in the prostate. We have previously developed a series of flufenamic acid analogs as potent and selective AKR1C3 inhibitors [Adeniji, A. O. et al., J. Med. Chem.2012, 55, 2311]. Here we report the X-ray crystal structure of one lead compound 3-((4-(trifluoromethyl)phenyl) amino)benzoic acid (1) in complex with AKR1C3. Compound 1 adopts a similar binding orientation as flufenamic acid, however, its phenylamino ring projects deeper into a subpocket and confers selectivity over the other AKR1C isoforms. We exploited the observation that some flufenamic acid analogs also act as AR antagonists and synthesized a second generation inhibitor, 3-((4-nitronaphthalen-1-yl)amino)benzoic acid (2). Compound 2 retained nanomolar potency and selective inhibition of AKR1C3 but also acted as an AR antagonist. It inhibited 5α-dihydrotestosterone stimulated AR reporter gene activity with an IC(50)=4.7 μM and produced a concentration dependent reduction in androgen receptor levels in prostate cancer cells. The in vitro and cell-based effects of compound 2 make it a promising lead for development of dual acting agent for CRPC. To illuminate the structural basis of AKR1C3 inhibition, we also report the crystal structure of the AKR1C3·NADP(+)·2 complex, which shows that compound 2 forms a unique double-decker structure with AKR1C3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号