首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor (FGF)-10, a homologue of FGF-7, is expressed significantly in normal rat prostate tissue, well differentiated rat prostate tumors with an epithelial and stromal compartment and only in derived prostate stromal cells in culture. Similar to FGF-7, recombinant rat FGF-10 was a specific mitogen for prostate epithelial cells. In contrast to FGF-7 which is widely expressed among stromal cells in tissues, the expression of FGF-10 correlated with the presence of stromal cells of muscle origin. Radioreceptor binding assays and covalent cross-linking analysis revealed that FGF-10 binds with an affinity equal to FGF-7 to resident epithelial cell receptor, FGFR2IIIb, but unlike FGF-7 also binds the IIIb splice variant of FGFR1. Analysis of mRNA expression by RNase protection revealed that, similar to FGF-7, the expression of FGF-10 was responsive to androgen in stromal cells from normal prostate and non-malignant differentiated tumors. Although FGF-10 cDNA exhibits a signal sequence for secretion, cultured stromal cells exhibit strictly a cell-associated FGF-10 antigen that correlates with an alternately translated intracellular isoform. FGF-10 requires 1.4 times higher NaCl for elution from immobilized heparin than does FGF-7 and binds to four times the number of sites on the pericellular matrix of epithelial cells. The results show that prostate stromal cell-derived FGF-10, like FGF-7, exhibits the properties of an andromedin which may indirectly mediate control of epithelial cell growth and function by androgen. Although FGF-10 and FGF-7 bind and activate the same resident epithelial cell receptor (FGFR2IIIb), differences in cell type of origin, compartmentation by alternate translation, the affinity for FGFR1IIIb, and access to FGFR by differential interaction with pericellular matrix heparan sulfate suggest they may play both independent and compensatory roles in prostate homeostasis.  相似文献   

2.
Fibroblast growth factor-10 is a mitogen for urothelial cells   总被引:5,自引:0,他引:5  
Fibroblast growth factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.  相似文献   

3.
The degree of fetal lung expansion is a critical determinant of fetal lung growth and alveolar epithelial cell (AEC) differentiation, although the mechanisms involved are unknown. As VDUP1 (vitamin D3-upregulated protein 1) can modulate cell proliferation, can induce cell differentiation, and is highly expressed in the lung, we have investigated the effects of fetal lung expansion on VDUP1 expression and its relationship to expansion-induced fetal lung growth and AEC differentiation in fetal sheep. Alterations in fetal lung expansion caused profound changes in VDUP1 mRNA levels in lung tissue. Increased fetal lung expansion significantly reduced VDUP1 mRNA levels from 100+/-8% in control fetuses to 37+/-4, 46+/-4, and 45+/-9% of control values at 2, 4, and 10 days of increased fetal lung expansion, respectively. Reduced fetal lung expansion increased VDUP1 mRNA levels from 100+/-16% in control fetuses to 162+/-16% of control values after 7 days. VDUP1 was localized to airway epithelium in small bronchioles, AECs, and some mesenchymal cells. Its expression was inversely correlated with cell proliferation during normal lung development (R2=0.972, P<0.002) as well as in response to alterations in fetal lung expansion (R2=0.956, P<0.001) and was positively correlated with SP-B expression during normal lung development (R2=0.803, P<0.0001) and following altered lung expansion (R2=0.817, P<0.001). We suggest that VDUP1 may be an important mediator of expansion-induced lung cell proliferation and AEC differentiation in the developing lung.  相似文献   

4.
To determine the efficacy of cytochrome P450 2C9 metabolites of arachidonic acid, viz. 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), in inducing angiogenesis, we have studied their effects on human dermal microvascular endothelial cell (HDMVEC) tube formation and migration. All four EETs stimulated HDMVEC tube formation and migration in a dose-dependent manner. Because 14,15-EET was found to be slightly more efficacious than 5,6-, 8,9-, and 11,12-EETs in stimulating HDMVEC tube formation and migration, we next focused on elucidation of the signaling mechanisms underlying its angiogenic activity. 14,15-EET stimulated Akt and S6K1 phosphorylation in Src- and phosphatidylinositol 3-kinase (PI3K)-dependent manner in HDMVECs. Inhibition of Src and PI3K-Akt-mTOR signaling by both pharmacological and dominant-negative mutant approaches suppressed 14,15-EET-induced HDMVEC tube formation and migration in vitro and Matrigel plug angiogenesis in vivo. In addition, 14,15-EET induced the expression of fibroblast growth factor-2 (FGF-2) in Src- and PI3K-Akt-dependent and mTOR-independent manner in HDMVECs. Neutralizing anti-FGF-2 antibodies completely suppressed 14,15-EET-induced HDMVEC tube formation and migration in vitro and Matrigel plug angiogenesis in vivo. Together, these results show for the first time that Src and PI3K-Akt signaling via targeting in parallel with FGF-2 expression and mTOR-S6K1 activation plays an indispensable role in 14,15-EET-induced angiogenesis.  相似文献   

5.
Fibroblast growth factor-10 upregulates Na,K-ATPase via the MAPK pathway   总被引:5,自引:0,他引:5  
We studied the effects of fibroblast growth factor (FGF-10) on alveolar epithelial cell (AEC) Na,K-ATPase regulation. Within 30 min FGF-10 increased Na,K-ATPase activity and alpha1 protein abundance by 2.5-fold at the AEC plasma membrane. Pretreatment of AEC with the mitogen-activated protein kinase (MAPK) inhibitor U0126, a Grb2-SOS inhibitor (SH3-b-p peptide), or a Ras inhibitor (farnesyl transferase inhibitor (FTI 277)), as well as N17-AEC that express a Ras dominant negative protein each prevented FGF-10-mediated Na,K-ATPase recruitment to the AEC plasma membrane. Accordingly, we provide first evidence that FGF-10 upregulates (short-term) the Na,K-ATPase activity in AEC via the Grb2-SOS/Ras/MAPK pathway.  相似文献   

6.
In rat embryos, fibroblast growth factor (FGF)-16 is predominantly expressed in brown adipose tissue. To elucidate the role of FGF-16, we examined the expression of FGF-16 mRNA in rat embryonic brown adipose tissue at different developmental stages by Northern blotting analysis and in situ hybridization. FGF-16 mRNA was expressed abundantly in brown adipose tissue during embryonic day 17. 5, embryonic days 17.5-19.5, and thereafter at lower levels into the neonatal period. The expression profile of FGF-16 mRNA well corresponds to the proliferative profile of embryonic brown adipose tissue reported. We also examined the mitogenic activity of recombinant rat FGF-16 for primary brown adipocytes prepared from rat embryonic brown adipose tissue. FGF-16 showed significant mitogenic activity for primary brown adipocytes. The mitogenic activity was found to be exerted by binding and activating FGF receptor-4 in the brown adipose tissue. As a great induction of proliferation of rat brown adipose tissue during cold acclimation was reported, we also examined the expression of FGF-16 mRNA in the brown adipose tissue during cold acclimation by Northern blotting analysis. The expression of FGF-16 mRNA was not increased, but rather decreased. The expression profile of FGF-16 mRNA and the mitogenic activity of FGF-16 reported here indicate that FGF-16 is a unique growth factor involved in proliferation of embryonic brown adipose tissue.  相似文献   

7.
Chan SS  Li HJ  Hsueh YC  Lee DS  Chen JH  Hwang SM  Chen CY  Shih E  Hsieh PC 《PloS one》2010,5(12):e14414

Background

The fibroblast growth factor (FGF) family is essential to normal heart development. Yet, its contribution to cardiomyocyte differentiation from stem cells has not been systemically studied. In this study, we examined the mechanisms and characters of cardiomyocyte differentiation from FGF family protein treated embryonic stem (ES) cells and induced pluripotent stem (iPS) cells.

Methodology/Principal Findings

We used mouse ES cells stably transfected with a cardiac-specific α-myosin heavy chain (αMHC) promoter-driven enhanced green fluorescent protein (EGFP) and mouse iPS cells to investigate cardiomyocyte differentiation. During cardiomyocyte differentiation from mouse ES cells, FGF-3, -8, -10, -11, -13 and -15 showed an expression pattern similar to the mesodermal marker Brachyury and the cardiovascular progenitor marker Flk-1. Among them, FGF-10 induced cardiomyocyte differentiation in a time- and concentration-dependent manner. FGF-10 neutralizing antibody, small molecule FGF receptor antagonist PD173074 and FGF-10 and FGF receptor-2 short hairpin RNAs inhibited cardiomyocyte differentiation. FGF-10 also increased mouse iPS cell differentiation into cardiomyocyte lineage, and this effect was abolished by FGF-10 neutralizing antibody or PD173074. Following Gene Ontology analysis, microarray data indicated that genes involved in cardiac development were upregulated after FGF-10 treatment. In vivo, intramyocardial co-administration of FGF-10 and ES cells demonstrated that FGF-10 also promoted cardiomyocyte differentiation.

Conclusion/Significance

FGF-10 induced cardiomyocyte differentiation from ES cells and iPS cells, which may have potential for translation into clinical applications.  相似文献   

8.
Fibroblast growth factors in epithelial repair and cytoprotection   总被引:3,自引:0,他引:3  
Growth factors are polypeptides that stimulate the division of certain cell types at low concentrations. Fibroblast growth factor (FGF) 7 (FGF-7) and its homologue FGF-10 act specifically on various types of epithelial cells including keratinocytes of the skin, intestinal epithelial cells and hepatocytes. In addition, FGF-7 and FGF-10 have been shown to be more than growth factors: they can protect epithelial cells from damaging effects induced, for example, by radiation and oxidative stress. Therefore, they are currently in clinical trials for the treatment of oral mucositis, a severe side-effect of cancer therapy characterized by painful inflammation and ulceration of the oral epithelium. To gain insight into the mechanisms of FGF-7/FGF-10 action in epithelial cells, we searched for genes that are regulated by these growth factors. Indeed, we identified genes that help us to explain the mechanisms that underlie the effects of FGF-7. Most interestingly, several genes were identified that are likely to mediate the cytoprotective effect of FGF-7 for epithelial cells in vitro and possibly also in injured and diseased tissues in vivo.  相似文献   

9.
Stromal cell-derived growth factor-1alpha (SDF-1alpha) is a member of the CXC chemokines and interacts with the G protein, seven-transmembrane CXCR4 receptor. SDF-1alpha acts as a chemoattractant for immune and hemopoietic cells. The Tac1 gene encodes peptides belonging to the tachykinin family with substance P being the predominant member. Both SDF-1alpha and Tac1 peptides are relevant hemopoietic regulators. This study investigated the effects of SDF-1alpha on Tac1 expression in the major hemopoietic supporting cells, the bone marrow stroma, and addresses the consequence to hemopoiesis. Reporter gene assays with the 5' flanking region of Tac1 showed a bell-shaped effect of SDF-1alpha on luciferase activity with 20 ng/ml SDF-1alpha acting as stimulator, whereas 50 and 100 ng/ml SDF-1alpha acted as inhibitors. Gel shift assays and transfection with wild-type and mutant IkappaB indicate NF-kappaB as a mediator in the repressive effects at 50 and 100 ng/ml SDF-1alpha. Northern analyses and ELISA showed correlations among reporter gene activities, mRNA (beta-preprotachykinin I), and protein levels for substance P. Of relevance is the novel finding by long-term culture-initiating cell assays that showed an indirect effect of SDF-1alpha on hemopoiesis through substance P production. The results also showed neurokinin 1 and not neurokinin 2 as the relevant receptor. Another crucial finding is that substance P does not regulate the production of SDF-1alpha in stroma. The studies indicate that SDF-1alpha levels above baseline production in bone marrow stroma induce the production of substance P to stimulate hemopoiesis. Substance P, however, does not act as autocrine stimulator to induce the production of SDF-1alpha. This study adds SDF-1alpha as a mediator within the neural-immune-hemopoietic axis.  相似文献   

10.
Although fibroblast growth factor-2 (FGF-2) plays an important role in cardioprotection and growth, little is known about the signals triggered by it in the adult heart. We therefore examined FGF-2-induced effects on phosphoinositide-specific phospholipase C (PI-PLC) isozymes, which produce second messengers linked to the inotropic and hypertrophic response of the myocardium. FGF-2, administered by retrograde perfusion to the isolated heart, induced an increase in inositol-1,4,5-trisphosphate levels in the cytosol, as well as an increase in total PI-PLC activity associated with sarcolemmal and cytosolic fractions. Furthermore FGF-2 induced a time-dependent elevation in cardiomyocyte membrane-associated PLC gamma1 and PLC beta1 activities, assayed in immunoprecipitated fractions, and moreover, increased the membrane levels of PLC beta1 and PLC beta3. Activation of PLC beta is suggestive of FGF-2-induced cross-talk between FGF-receptor tyrosine kinase and G-protein-coupled signaling in adult cardiomyocytes and underscores the importance of FGF-2 in cardiac physiology.  相似文献   

11.
Influenza A virus (IAV) preferentially infects conducting airway and alveolar epithelial cells in the lung. The outcome of these infections is impacted by the host response, including the production of various cytokines, chemokines, and growth factors. Fibroblast growth factor-9 (FGF9) is required for lung development, can display antiviral activity in vitro, and is upregulated in asymptomatic patients during early IAV infection. We therefore hypothesized that FGF9 would protect the lungs from respiratory virus infection and evaluated IAV pathogenesis in mice that overexpress FGF9 in club cells in the conducting airway epithelium (FGF9-OE mice). However, we found that FGF9-OE mice were highly susceptible to IAV and Sendai virus infection compared to control mice. FGF9-OE mice displayed elevated and persistent viral loads, increased expression of cytokines and chemokines, and increased numbers of infiltrating immune cells as early as 1 day post-infection (dpi). Gene expression analysis showed an elevated type I interferon (IFN) signature in the conducting airway epithelium and analysis of IAV tropism uncovered a dramatic shift in infection from the conducting airway epithelium to the alveolar epithelium in FGF9-OE lungs. These results demonstrate that FGF9 signaling primes the conducting airway epithelium to rapidly induce a localized IFN and proinflammatory cytokine response during viral infection. Although this response protects the airway epithelial cells from IAV infection, it allows for early and enhanced infection of the alveolar epithelium, ultimately leading to increased morbidity and mortality. Our study illuminates a novel role for FGF9 in regulating respiratory virus infection and pathogenesis.  相似文献   

12.
Osteopontin is a protein found in the bone-related matrix and plays multiple regulatory roles in mineralizing and non-mineralizing tissue. In osteogenic cell-lines, the expression of osteopontin increases with the progression of differentiation, but both the expression and function of osteopontin vary with the cell type and its activation state. In this study, we examined the expression of osteopontin by clones established from mouse periodontal ligament, in response to inorganic phosphate and fibroblast growth factor (FGF)-2, which can induce periodontal tissue regeneration. The involvement of inorganic phosphate in the expression of osteopontin during the course of cell differentiation of a clone MPDL22 was confirmed by addition of foscarnet, an inorganic phosphate transport inhibitor. Although FGF-2 decreased the mRNA expression of almost every bone-related protein in MPDL22, FGF-2 upregulated the expression of osteopontin in MPDL22 at both mRNA and protein levels. Interestingly, FGF-2 enhanced the concentration of osteopontin in the culture supernatant of MPDL22, whereas inorganic phosphate did not. The FGF-2-induced osteopontin in the culture supernatant seems to be involved in cell survival activity. An immunohistochemical study showed that the FGF-2-induced osteopontin was mainly present in perinuclear matrices while the inorganic phosphate-induced osteopontin was associated with extracellular matrices in addition to perinuclear matrices. The present results indicated that FGF-2 induces unique expression of osteopontin, which may play a role different from the other bone-related proteins during the process of periodontal tissue regeneration by FGF-2.  相似文献   

13.
14.
15.
Thickening of the basement membrane zone (BMZ) is a characteristic of several airway diseases; however, very little is known about how this process occurs. The purpose of this study was to define development of the BMZ in the trachea of growing rhesus monkeys at 1, 2, 3, and 6 mo of age. We measured immunoreactivity of collagen types I, III, and V to detect structural changes in the developing BMZ. To detect more dynamic, functional components of the epithelial-mesenchymal trophic unit, we evaluated the distribution of perlecan, fibroblast growth factor-2 (FGF-2), and fibroblast growth factor receptor-1 (FGFR-1). One-month-old monkeys had a mean collagen BMZ width of 1.5 +/- 0.7 microm that increased to 4.4 +/- 0.4 microm in 6-mo-old monkeys. Perlecan was localized in the BMZ of the epithelium at all ages. FGF-2 was strongly expressed in basal cells at 1-3 mo. At 6 mo, FGF-2 was expressed throughout the BMZ and weakly in basal cells. FGFR-1 immunoreactivity was expressed by basal cells and cilia and weakly in the nuclei of columnar cells at all time points. These data indicate that development of the BMZ is a postnatal event in the rhesus monkey that involves FGF-2.  相似文献   

16.
Studies were conducted to determine effects of intrauterine administration of recombinant ovine interferon tau (IFNtau), placental lactogen (PL), and growth hormone (GH) on endometrial function. In the first study, administration of IFNtau to cyclic ewes for one period (Days 11-15) resulted in an interestrous interval (IEI) of approximately 30 days, whereas administration for two periods (Days 11-15 and Days 21-25) extended the IEI to greater than 50 days. Administration of IFNtau from Days 11 to 15 and of PL or GH from Days 21 to 25 failed to extend the IEI more than for IFNtau alone. In the second study, effects of IFNtau, PL, and GH on endometrial differentiation and function were determined in ovariectomized ewes receiving ovarian steroid replacement therapy. Endometrial expression of mRNAs for estrogen receptor (ER), progesterone receptor (PR), and oxytocin receptor (OTR) were not affected by PL or GH treatment; however, uterine milk protein mRNA levels and stratum spongiosum gland density were increased by both PL and GH treatments. Collectively, results indicated that 1) PL and GH do not regulate endometrial PR, ER, and OTR expression or affect corpus luteum life span; 2) down-regulation of epithelial PR expression is requisite for progesterone induction of secretory gene expression in uterine glandular epithelium; 3) effects of PL and GH on endometrial function require IFNtau; and 4) PL and GH regulate endometrial gland proliferation and perhaps differentiated function.  相似文献   

17.
Fibroblast growth factors (FGFs) regulate early development and organogenesis. In particular, a subfamily of FGFs is essential for the formation and differentiation of epithelial tissues and organs. Recent studies revealed a crucial role for these FGFs in repair of the skin, intestine and liver. In addition, the cytoprotective potential of FGFs suggests their use for the protection of epithelial cells under conditions of stress in vivo. Indeed, the first successful clinical trials using FGFs for the treatment of radiation- and chemotherapy-induced mucosal epithelial damage have been announced.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号