首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulation of epidermal growth involves a number of ions, growth factors and cytokines and possibly additional but as yet unknown factors. Here we report on the potential role of the secretory N-terminal domain (sAPP) of the Alzheimer amyloid precursor protein (APP) in the regulation of keratinocyte proliferation. In human skin APP was detectable predominantly in the basal cell layer of the epidermis whereas the immunocytochemical signal in the underlying mesenchymal tissue was very low. Cultured normal human keratinocytes expressed the three APP isoforms 695, 751 and 770 with highest values for the isoforms 751 and 770. HaCaT cells, a spontaneously immortalized human keratinocyte cell line, exhibited almost identical patterns in the expression of the APP isoforms and in the release of endogenous sAPP. In HaCaT cells, recombinant sAPP (sAPPrec) was found to compete with endogenous sAPP for the same binding sites. Binding of sAPPrec was specific and occurred in microdomains of approximately 0.1 to approximately 0.3 microm in diameter. At 10 nM, sAPPrec binding induced a 2- to 4-fold increase in the rate of cell growth. sAPP concentrations in the conditioned media were found to reach 5-20 nM which is in the mitogenic range of sAPPrec. The proliferative effect of sAPP was inhibited by approximately 50% when antisense oligonucleotides directed against the APP mRNA were applied. The predominant expression of  相似文献   

2.
β-淀粉样肽前体蛋白的结构及生物活性   总被引:2,自引:0,他引:2  
Sheng JW  Hu YE  Xia ZQ 《生理科学进展》2000,31(2):166-168
β-淀粉样肽前体蛋白是AD患者脑内神经炎斑的主要成分--β-淀粉样肽的代谢前体。其基因定位于人第21号染色体,经可变剪接可产生10种转录物。β-淀粉样肽前体蛋折广泛表达于几乎所有的神经元和非神经元组织,具有一个较长的细胞外肽链、单一跨膜区及一个短的胞内区域。研究表明,它具有神经营养、调节细胞粘附及抑制丝氨酸蛋白酶等多种生物活性。现有资料还提示β-淀粉样肽前体蛋白可能是细胞因子(或其类似物)的受体。  相似文献   

3.
Fibroblasts that harbor an antisense construct of amyloid beta protein precursor (ABPP) cDNA, A-1, produced less ABPP mRNA and ABPP and grew poorly. Normal growth was restored when either parent cell conditioned medium (CM) or purified ABPP was provided. The capacity of the CM to restore cell growth was abolished by passage through an anti-ABPP immunoaffinity column; the activity was in the bound fraction. A Mr 90,000 protein recognized by the anti-ABPP antibody was diminished in the CM of A-1. CM from ABPP cDNA-transfected cells expressing high levels of ABPP was more potent than that from non-transfected parent cells in restoring A-1 growth. These results indicate that ABPP is released from cells into the medium and has an autocrine function in growth regulation.  相似文献   

4.
12/15 Lipoxygenase (12/15LO) protein levels and activity are increased in pathologically affected regions of Alzheimer's disease (AD) brains, compared with controls. Its metabolic products are elevated in cerebrospinal fluid of patients with AD and individuals with mild cognitive impairment, suggesting that this enzyme may be involved early in AD pathogenesis. Herein, we investigate the effect of pharmacologic inhibition of 12/15LO on the amyloid beta precursor protein (APP) metabolism. To this end, we used CHO and N2A cells stably expressing human APP with the Swedish mutant, and two structurally distinct and selective 12/15LO inhibitors, PD146176 and CDC. Our results demonstrated that both drugs dose-dependently reduced Abeta formation without affecting total APP levels. Interestingly, in the same cells we observed a significant reduction in secreted (s)APPbeta and beta-secretase (BACE), but not sAPPalpha and ADAM10 protein levels. Together, these data show for the first time that this enzymatic pathway influences Abeta formation whereby modulating the BACE proteolytic cascade. We conclude that specific pharmacologic inhibition of 12/15LO could represent a novel therapeutic target for treating or preventing AD pathology in humans.  相似文献   

5.
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein better known for its participation in the physiopathology of Alzheimer disease as the source of the beta amyloid fragment. However, the physiological functions of the full length protein and its proteolytic fragments have remained elusive. APP was first described as a cell‐surface receptor; nevertheless, increasing evidence highlighted APP as a cell adhesion molecule. In this review, we will focus on the current knowledge of the physiological role of APP as a cell adhesion molecule and its involvement in key events of neuronal development, such as migration, neurite outgrowth, growth cone pathfinding, and synaptogenesis. Finally, since APP is over‐expressed in Down syndrome individuals because of the extra copy of chromosome 21, in the last section of the review, we discuss the potential contribution of APP to the neuronal and synaptic defects described in this genetic condition.

  相似文献   


6.
Comorbid depression of Alzheimer's disease (AD) is a common mood disorder in the elderly and a broad spectrum of antidepressants have been used for its treatment. Abeta peptides and other derivatives of the amyloid precursor protein (APP) have been implicated as central to the pathogenesis of AD. However, the functional relationship of APP and its proteolytic derivatives to antidepressant therapy is not known. In this study, Western blotting was used to test the ability of the tricyclic antidepressant (TCA) imipramine or the selective serotonin reuptake inhibitor (SSRI) citalopram to change the release of APP and the protein kinase C (PKC) content. Both antidepressants increased APP secretion in primary rat neuronal cultures. Imipramine or citalopram enhanced the level of secreted APP by 3.2- or 3.4-fold, respectively. Increases in PKC level were observed only after imipramine treatment. These in vitro data suggest that both TCA and SSRI are able to interfere with the APP metabolism. Imipramine promotes the non-amyloidogenic route of APP processing via stimulatory effects on PKC. We propose that PKC is not involved in the mechanism underlying the effects of citalopram on the APP metabolism. Since the secreted APP is not further available for the pathological cleavage of beta- and gamma-secretases, antidepressant medication might be beneficial in AD therapy.  相似文献   

7.
The female sex hormone estrogen (17beta-estradiol; E2) may function as a neurohormone and has multiple neuromodulatory functions in the brain. Its potent neuroprotective activities can be dependent and independent of estrogen receptors (ERs). In addition, E2 influences the processing of the amyloid beta precursor protein (APP), one central step in the pathogenesis of Alzheimer's disease. Here, we show: (a) that physiological concentrations of E2 very rapidly cause an increased release of secreted nonamyloidogenic APP (sAPPalpha) in mouse hippocampal HT22 and human neuroblastoma SK-N-MC cells; and (b) that this effect is mediated through E2 via the phosphorylation of extracellular-regulated kinase 1 and 2 (ERK1/2), prominent members of the mitogen-activated protein kinase (MAPK) pathway. Furthermore, we show that the activation of MAPK-signaling pathway and the enhancement of the sAPP release is independent of ERs and could be induced by E2 to a similar extent in neuronal cells either lacking or overexpressing a functional ER.  相似文献   

8.
9.
Mutations in PSEN1 and PSEN2 genes account for the majority of cases of early-onset familial Alzheimer disease. Since the first prediction of a genetic link between PSEN1 and PSEN2 with Alzheimer's disease, many research groups from both academia and pharmaceutical industry have sought to unravel how pathogenic mutations in PSEN cause presenile dementia. PSEN genes encode polytopic membrane proteins termed presenilins (PS1 and PS2), which function as the catalytic subunit of γ-secretase, an intramembrane protease that has a wide spectrum of type I membrane protein substrates. Sequential cleavage of amyloid precursor protein by BACE and γ-secretase releases highly fibrillogenic β-amyloid peptides, which accumulate in the brains of aged individuals and patients with Alzheimer's disease. Familial Alzheimer's disease-associated presenilin variants are thought to exert their pathogenic function by selectively elevating the levels of highly amyloidogenic Aβ42 peptides. In addition to Alzheimer's disease, several recent studies have linked PSEN1 to familiar frontotemporal dementia. Here, we review the biology of PS1, its role in γ-secretase activity, and discuss recent developments in the cell biology of PS1 with respect to Alzheimer's disease pathogenesis.  相似文献   

10.
BACKGROUND INFORMATION: Functional adaptation of skeletal muscle is a requirement for different muscle groups (e.g. craniofacial, ocular and limb) to undergo site-specific changes. Such tissue remodelling depends on dynamic interactions between muscle cells and their extracellular matrix, via participation of multifunctional molecules such as integrins. In view of data suggesting a role in fundamental muscle biology and muscle development in other systems, the present study has focused on expression and function of alpha v integrins, in cultured adult human craniofacial muscle (masseter) precursor cells and myotubes, and the predominantly fibroblastic IC (interstitial cells) population. RESULTS AND CONCLUSIONS: Flow-cytometric phenotyping and immunofluorescence phenotyping show that alpha v, alpha v beta 3 and alpha v beta 5 are expressed in all mononuclear cells (muscle precursors and IC) seeded on muscle extracellular molecules such as gelatin, VN (vitronectin) and FN (fibronectin). In this system, blockade of alpha v activity using a function-perturbing antibody abrogates cell migration on VN and FN. alpha v integrins act predominantly as VN receptors as cell-substrate attachment is diminished when alpha v neutralizing agents are introduced into cultures seeded on VN, and this inhibition is reversible; these integrins also appear to be minor FN receptors. These results demonstrate that the alpha v subset of integrins present on both myogenic precursors and IC is an essential cohort of VN and, to a lesser extent, FN receptors mediating cell adhesion and, either directly or indirectly, arbiters of cell motility.  相似文献   

11.
12.
Ubiquilin 1 (UBQLN1) is a ubiquitin-like protein, which has been shown to play a central role in regulating the proteasomal degradation of various proteins, including the presenilins. We recently reported that DNA variants in UBQLN1 increase the risk for Alzheimer disease, by influencing expression of this gene in brain. Here we present the first assessment of the effects of UBQLN1 on the metabolism of the amyloid precursor protein (APP). For this purpose, we employed RNA interference to down-regulate UBQLN1 in a variety of neuronal and non-neuronal cell lines. We demonstrate that down-regulation of UBQLN1 accelerates the maturation and intracellular trafficking of APP, while not interfering with alpha-, beta-, or gamma-secretase levels or activity. UBQLN1 knockdown increased the ratio of APP mature/immature, increased levels of full-length APP on the cell surface, and enhanced the secretion of sAPP (alpha- and beta-forms). Moreover, UBQLN1 knockdown increased levels of secreted Abeta40 and Abeta42. Finally, employing a fluorescence resonance energy transfer-based assay, we show that UBQLN1 and APP come into close proximity in intact cells, independently of the presence of the presenilins. Collectively, our findings suggest that UBQLN1 may normally serve as a cytoplasmic "gatekeeper" that may control APP trafficking from intracellular compartments to the cell surface. These findings suggest that changes in UBQLN1 steady-state levels affect APP trafficking and processing, thereby influencing the generation of Abeta.  相似文献   

13.
The Abeta (amyloid‐beta) peptide is derived from the sequential cleavage of AbetaPP (amyloid‐beta precursor protein) by two enzymes, the β‐ and γ‐secretases. The major β‐secretase, identified as the novel transmembrane aspartic protease BACE1 (beta site APP‐cleaving enzyme 1), mediates the primary amyloidogenic cleavage of AbetaPP and initiates the production of Abeta. It has been implicated in the proteolytic processing of another substrate, namely ST6Gal1 (β galactoside α2,6‐sialyltransferase 1), which is the major α2,6‐sialyltransferase responsible for the broad synthesis of glycoproteins and glycolipids. The present study investigated the effect of overexpression of AbetaPP on expression and secretion of ST6Gal1 in skeletal muscle cells by inducing overexpression of wild‐type full‐length 751‐AbetaPP in the mouse myogenic cell line C2C12. Expression and secretion of the ST6Gal1 enzyme were analysed by Western blot and/or immunofluorescence staining. The results of our study demonstrated that AbetaPP overexpression in C2C12 cells increased the expression and the secretion of ST6Gal1 enzyme in vitro.  相似文献   

14.
Here we show that prolyl isomerase Pin1 is involved in the Abeta production central to the pathogenesis of Alzheimer's disease. Enzyme immunoassay of brains of the Pin1-deficient mice revealed that production of Abeta40 and Abeta42 was lower than that of the wild-type mice, indicating that Pin1 promotes Abeta production in the brain. GST-Pin1 pull-down and immunoprecipitation assay revealed that Pin1 binds phosphorylated Thr668-Pro of C99. In the Pin1-/- MEF transfected with C99, Pin1 co-transfection enhanced the levels of Abeta40 and Abeta42 compared to that without Pin1 co-transfection. In COS7 cells transfected with C99, Pin1 co-transfection enhanced the generation of Abeta40 and Abeta42, and reduced the expression level of C99, facilitating the C99 turnover. Thus, Pin1 interacts with C99 and promotes its gamma-cleavage, generating Abeta40 and Abeta42. Further, GSK3 inhibitor lithium blocked Pin1 binding to C99 by decreasing Thr668 phosphorylation and attenuated Abeta generation, explaining the inhibitory effect of lithium on Abeta generation.  相似文献   

15.
Proteolytic processing of the Alzheimer amyloid precursor protein (APP) results in the generation of at least two distinct classes of biologically relevant peptides: (1) the amyloid beta peptides which are believed to be involved in the pathogenesis of Alzheimer's disease and (2) the soluble N-terminal ectodomain (sAPP) which exhibits a protective but as yet ill-defined effect on neurons and epithelial cells. In this report we present an overview on the functions of sAPP as an epithelial growth factor. This function involves specific binding of sAPP to membrane rafts and results in signal transduction and various physiological effects in epithelial cells as different as keratinocytes and thyrocytes. At nanomolar concentrations sAPP induces a two to fourfold increase in the rate of cell proliferation and cell migration. Specific inhibition of APP expression by antisense techniques results in decreased sAPP release and in reduced proliferative and motogenic activities. Proliferation and migration are known to be part of complex processes such as wound healing which, therefore, might be facilitated by the growth factor function of sAPP.  相似文献   

16.
J. Neurochem. (2012) 122, 1010-1022. ABSTRACT: Amyloid precursor protein (APP) is involved in the pathogenesis of Alzheimer's disease. It is axonally transported, endocytosed and sorted to different cellular compartments where amyloid beta (Aβ) is produced. However, the mechanism of APP trafficking remains unclear. We present evidence that huntingtin associated protein 1 (HAP1) may reduce Aβ production by regulating APP trafficking to the non-amyloidogenic pathway. HAP1 and APP are highly colocalized in a number of brain regions, with similar distribution patterns in both mouse and human brains. They are associated with each other, the interacting site is the 371-599 of HAP1. APP is more retained in cis-Golgi, trans-Golgi complex, early endosome and ER-Golgi intermediate compartment in HAP1-/- neurons. HAP1 deletion significantly alters APP endocytosis and reduces the re-insertion of APP into the cytoplasmic membrane. Amyloid precursor protein-YFP(APP-YFP) vesicles in HAP1-/- neurons reveal a decreased trafficking rate and an increased number of motionless vesicles. Knock-down of HAP1 protein in cultured cortical neurons of Alzheimer's disease mouse model increases Aβ levels. Our data suggest that HAP1 regulates APP subcellular trafficking to the non-amyloidogenic pathway and may negatively regulate Aβ production in neurons.  相似文献   

17.
The familial Alzheimer's disease gene product amyloid beta protein precursor (A beta PP) is sequentially processed by beta- and gamma-secretases to generate the A beta peptide. Although much is known about the biochemical pathway leading to A beta formation, because extracellular aggregates of A beta peptides are considered the cause of Alzheimer's disease, the biological role of A beta PP processing is only recently being investigated. Cleavage of A beta PP by gamma-secretase releases, together with A beta, a COOH-terminal A beta PP intracellular domain, termed AID. Hoping to gain clues about proteins that regulates A beta PP processing and function, we used the yeast two-hybrid system to identify proteins that interact with the AID region of A beta PP. One of the interactors isolated is the autosomal recessive hypercholesterolemia (ARH) adapter protein. This molecular interaction is confirmed in vitro and in vivo by fluorescence resonance energy transfer and in cell lysates. Moreover, we show that reduction of ARH expression by RNA interference results in increased levels of cell membrane A beta PP. These data assert a physiological role for ARH in A beta PP internalization, transport, and/or processing.  相似文献   

18.
The amyloid deposited in Alzheimer's disease (AD) is composed primarily of a 39-42 residue polypeptide (beta AP) that is derived from a larger beta amyloid protein precursor (beta APP). In previous studies, we and others identified full-length, membrane-associated forms of the beta APP and showed that these forms are processed into soluble derivatives that lack the carboxyl-terminus of the full-length forms. In this report, we demonstrate that the soluble approximately 125 and approximately 105 kDa forms of the beta APP found in human cerebrospinal fluid are specifically labeled by several different antisera to the beta AP. This finding indicates that both soluble derivatives contain all or part of the beta AP sequence, and it suggests that one or both of these forms may be the immediate precursor of the amyloid deposited in AD.  相似文献   

19.
The main proteins associated with Alzheimer's and prion diseases (amyloid precursor protein (APP) and prion protein (PrP(C)), respectively, have binding sites for copper and it has therefore been suggested that they play a role in copper metabolism. Here, we review evidence indicating that the copper binding domains (CuBD) of APP and PrP(C) are able to modulate the oxidation state of copper, and prevent neurotoxic effects and memory impairments induced by copper. Results with transgenic and other animal models have established the relation between these pathogenic proteins and copper. In particular, APP transgenic models, suggest a beneficial effect for copper in AD.  相似文献   

20.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major component of the plaques, amyloid beta peptide (Abeta), is generated from amyloid precursor protein (APP) by beta- and gamma-secretase-mediated cleavage. Because beta-secretase/beta-site APP cleaving enzyme 1 (BACE1) knockout mice produce much less Abeta and grow normally, a beta-secretase inhibitor is thought to be one of the most attractive targets for the development of therapeutic interventions for AD without apparent side-effects. Here, we report the in vivo inhibitory effects of a novel beta-secretase inhibitor, KMI-429, a transition-state mimic, which effectively inhibits beta-secretase activity in cultured cells in a dose-dependent manner. We injected KMI-429 into the hippocampus of APP transgenic mice. KMI-429 significantly reduced Abeta production in vivo in the soluble fraction compared with vehicle, but the level of Abeta in the insoluble fraction was unaffected. In contrast, an intrahippocampal injection of KMI-429 in wild-type mice remarkably reduced Abeta production in both the soluble and insoluble fractions. Our results indicate that the beta-secretase inhibitor KMI-429 is a promising candidate for the treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号