首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cultures of dissociated chick sympathetic ganglia, retrograde (somatopetal) movement of concanavalin A receptors in the axolemma can be observed directly. Such movement was visualized by using concanavalin A coated red blood cells (ConA-RBCs) as membrane markers. Forty-eight percent of all ConA-RBCs which bound to sympathetic nerve fibers moved somatopetally at rates ranging from 11-84 μ/hr with a mean and standard error of 49 ± 6 μ/hr (n = 18). On nongrowing nerve fibers, the ConA- RBCs within 60 μ of the cell body showed retrograde movement, while on elongating neurites only those markers within 30 μ showed such movement. The rate of retrograde ConA-RBC movement appeared to increase with distance from the cell soma. The binding of ConA-RBCs to sympathetic neurites was specific for concanavalin A receptors since pretreatment with either concanavalin A or α-methylglucopyranoside prevented this binding. Untreated polystyrene beads (1.1 μ) which bound nonspecifically to the neurite membrane also showed retrograde movement. These beads moved somatopetally at rates similar to those of the ConA-RBCs but did so regardless of their initial distance from the soma. These data suggest that retrograde movement of surface elements might be a general property of cultured sympathetic nerve fibers.  相似文献   

2.
The movements of spherical particles in the range of 0.3 to 0.8 mum diameter within neurities of cultured embryonic mouse spinal cord fragments were observed and recorded by means of Nomarski optics and time-lapse photocinematography at high power. Particulate movements were measured by projecting the motion pictures onto a calibrated screen and recording the distances moved with time of linearly moving particles and making note of the direction (toward or away from the neuron soma) of movement. In all, 128 particles were measured in six cultures. These measurements were taken away from the neuron soma near the periphery of the neurites. Eight-three particles were noted to be moving toward the neuron at a mean velocity of 1.03 +/- 0.38 (SD) mum/sec while 45 anterograde moving particles were noted to move at 1.07 +/- 0.62 (SD) mum/sec. Statistical analysis of these veolcities revealed no significant difference between them. Particles which were elongated and probably represented mitochondria moved more sluggishly and could not be measured accurately by the techniques employed. It appeared the spherical particles moving in a retrograde direction originated at the neurite tip apparently by pinocytosis. There was a suggestion that anterograde flow and retrograde flow may have been affected unequally by factors which develop in the observation chamber over a period of 2 hr or more. The most likely factor responsible was probably hypoxia.  相似文献   

3.
The motion of particles in the axopodia of Echinosphaerium nucleofilum is saltatory. In the present study, photokymograph records of 123 motions from six axopodia have been analyzed. Particles followed rectilinear paths of from 1 to 15 mum while in continuous motion at an average velocity of 0.66 plus or minus 0.32 mum/s. The velocity of the particles was variable in 36% of the cases measured. Some motions were punctuated by pauses either before continuing in the same direction or reversing. Frequently, several particles were moving at the same velocity, but neighboring particles showed no motion or moved in the opposite direction. Two particles occasionally contacted one another and travelled as a unit for varying lengths of time but subsequently moved independently. These motions reflect the underlying mechanism of motive force production. Furthermore, a glass microneedle can be substituted for the microtubular axoneme in the axopodia. In these artificial axopodia, bidirectional particle motions occurred which were similar to those in normal axopodia. Colchicine, at the threshold dose for axonemal dissolution, had no affect on these particel motions. It is concluded that the microtubular axoneme is not responsible for particle motions and also that individual microtubules are unlikely candidates for motive force production in this system.  相似文献   

4.
Natural electrical activity in the left greater splanchnic nerve during feeding was studied in chronic experiments on dogs. The method of separation of coherent components in pulsed form was used to analyze the discharges: Recording from the nerve was carried out at two points; activity was delayed by the time for its conduction along the nerve between the channels, in the channel which received it first, and it was then led from both channels to the coincidence unit. Spontaneous afferent impulsation was shown to spread among a group of nerve fibers with conduction velocities of between 3.7 and 20 m/sec, and with a mean velocity for the maximum of activity of 9.2±1.0 m/sec. Efferent spontaneous activity was not detected. During feeding with meat, besides spontaneous activity, activity of a group of afferent fibers with conduction velocities within the range 3.7–9.2 m/sec also was found (the mean velocity for the maximum of activity was 5.8±0.7 m/sec), and also activity of a group of efferent fibers with conduction velocities within the range 2.5–9.8 m/sec (mean value for maximum 3.5±0.5 m/sec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 636–642, November–December, 1981.  相似文献   

5.
Three micronization techniques, based on the use of supercritical carbon dioxide, were investigated to produce microspheres of a natural biocompatible polysaccharide. Particles smaller than 20 mum were obtained by means of the rapid expansion of a supercritical solution method (RESS), both with and without cosolvents. The mean diameter of the particles was reduced to about 0.5 mum when a solution of the polymer in an organic solvent was expanded by using carbon dioxide as a supercritical antisolvent (SAS). The SAS process was operated both in a continuous and in a batch mode. The former leads to aggregated structures and fibers, and the latter to the formation of micronic spherical particles. It was found that the experimental temperature did not substantially affect the shape and dimension of the particles. A stronger dependence is shown with respect to the solute concentration in the starting solution. The proposed method is attractive as the basis of a new process for the preparation of drug delivery systems. (c) 1997 John Wiley & Sons, Inc.  相似文献   

6.
A combined electron microscopic and electrophysiological study of the superior laryngeal nerve (SLN) was undertaken in postnatal kittens ranging in age from 1–63 days. The superior laryngeal nerve is predominantly a sensory nerve innervating the upper respiratory tract, and could play a potential role in the modulation of respiration, particularly in the infant animal. Distribution of fibers in the developing SLN indicates that within the first postnatal month, 75% of the fibers are unmyelinated, and by 42 days, the myelinated fibers increase in number to approximately 50%. Of the myelinated fibers present in the one day old kitten, 3–4% of those exceeded 4 μm in total diameter, which is the minimum diameter for normal conduction velocity of action potentials. The distribution of the diameter sizes of the myelinated fibers is bell-shaped within the first 45 days after which the curve becomes skewed to the right (43–61 days; mean 2.6 μm, range 0.5–8.0 μm) to resemble the adult distribution of myelinated fibers (mean 4.2 μm, range 1.6–13.0 μm). Two variable plots of myelin width to axon diameter suggest a steeper slope for developing fibers as compared to that of the adult fibers. Electrical stimulation of the sectioned SLN indicates that evoked potentials could be recorded from the recurrent laryngeal nerve innervating the laryngeal intrinsic muscles and from the hypoglossal nerve to the tongue musculature in the youngest kittens tested (i.e., age 9 days). Stimulation at selected frequencies of 3 and 30/sec readily evoked apnea in the youngest kitten studied (i.e., age 5 days), while swallowing was more readily evoked at 28–30 days when using electrical stimulation.  相似文献   

7.
Laser light scattered from particles in the streaming protoplasm of a living cell is shifted in frequency by the Doppler effect. The spectrum of the scattered light can be measured and interpreted to infer details of the velocity distribution in the protoplasm. We have developed this approach to study the protoplasmic streaming in the fresh-water alga Nitella. Our results indicate a characteristic flow pattern to which diffusion makes a negligible contribution. No difference in the velocity of particles of different size is indicated. The streaming velocity linearly with temperature with a supraoptimal temperature of 34 degrees C, and the velocity distribution becomes narrower at high temperatures. The protoplasmic streaming can be inhibited by laser light, and this effect has been used to study the photoresponse of the algae. Using beam diameters of about 50 mum, we have shown that the inhibition is very local, becoming minimal at a displacement of about 200 mum in the upstream direction and 400 mum in the downstream direction. Prolonged exposure produces a bleached area free of chloroplasts, which is three orders of magnitude less sensitive to photoinhibition.  相似文献   

8.
The optic nerve of the tortoise Agrionemys horsfieldi contains about 400,000 fibers (90% unmyelinated and 10% myelinated ones). the diameter of unmyelinated fibers varies from 0.3 to 1.1 mu, mean value being equal to 0.5 mu; fibers with a diameter 0.4-0.7 comprise 77%. The diameter of myelinated fibers varies within 0.3-3.0 mu, average value being 0.5-0.8 nu; fibers with a diameter 0.5-0.9 mu amount to 62%. Electrogram of the optic nerve consists of two components which are equal in their amplitudes. These components presumably reflect summary firings of modal groups of unmyelinated and myelinated fibers. The velocity of propagation of excitation along the fibers producing the first component is equal to 1.3 m/sec, wheras that in fibers producing the second component - to 0.5 m/sec. The data obtained are compared with those related for the other tortoise - Emys orbicularis.  相似文献   

9.
Immunocytochemical studies have shown that the rat uterus is well innervated by nerve fibers containing vasoactive intestinal polypeptide (VIP). The fibers were associated with both vascular and nonvascular smooth muscle cells, and they were somewhat more numerous in the cervix compared to the uterine horns. This was confirmed in radioimmunologic determinations. Pregnancy induced a marked, almost 50% reduction in the total content of VIP in the uterine horns, which was associated with an almost complete disappearance of immunocytochemically visible nerve fibers in this part of the uterus. The innervation normalized within 25 days following delivery. Less marked changes occurred in the VIP innervation of the cervical region, where the concentration of the peptide was reduced mainly as a result of the increased tissue weight during pregnancy.  相似文献   

10.
The movements of spherical particles in the range of 0.3 to 0.8 μm diameter within neurities of cultured embryonic mouse spinal cord fragments were observed and recorded by means of Nomarski optics and time-lapse photocinematography at high power. Particulate movements were measured by projecting the motion pictures onto a calibrated screen and recording the distances moved with time of linearly moving particles and making note of the direction (toward or away from the neuron soma) of movement. In all, 128 particles were measured in six cultures. These measurements were taken away from the neuron soma near the periphery of the neurites. Eighty-three particles were noted to be moving toward the neuron at a mean velocity of 1.03 ± 0.38 (SD) μm/sec while 45 anterograde moving particles were noted to move at 1.07 ± 0.62 (SD) μm/sec. Statistical analysis of these velocities revealed no significant difference between them. Particles which were elongated and probably represented mitochondria moved more sluggishly and could not be measured accurately by the techniques employed. It appeared the spherical particles moving in a retrograde direction originated at the neurite tip apparently by pinocytosis. There was a suggestion that anterograde flow and retrograde flow may have been affected unequally by factors which develop in the observation chamber over a period of 2 hr or more. The most likely factor responsible was probably hypoxia.  相似文献   

11.
A computational procedure is described for obtaining reproducible, low noise estimates of the instantaneous velocity of axonally transported organelles. Axonally transported organelles were detected in myelinated nerve fibers from Xenopus laevis by dark-field microscopy. The motion of the organelles was recorded on motion picture film at 3 frames/s, and the position of organelles travelling in the retrograde direction was obtained as a pair of x (axial) and y (transverse) coordinates at each 0.33-s interval. THe trend in organelle movement with time was calculated for each of the series of x and y coordinates by linear regression. This trend was removed from the measurements of x and y to yield sets of trend-free displacements. The trend yielded a measure of the mean velocity of the organelle in each of the two orthogonal directions. Power spectra of the deviations in x and y about the trend were calculated. For 133 particles studied, 99% of the power in the trend-free deviations occurred at frequencies below 0.3 Hz. The peak power in the x and y deviations occurred at a frequency of 0.1 Hz or less. Positional deviations about the trend were treated with a discrete 21-term differentiating filter that attenuated frequencies above 0.3 Hz. Instantaneous velocities for the organelles were obtained by adding the result of the band-limited differentiation to the appropriate estimates of mean velocity. The 21-term method was compared with a commonly used 2-term approximation to a differentiator and was shown to produce velocity estimates with about one order of magnitude less error. Estimates of organelle velocity obtained with the 21-term method indicate that saltatory particle motion may be viewed either as a smooth variation of particle velocity with respect to time or as an irregular, or discontinuous, variation of velocity with respect to particle position.  相似文献   

12.
The compound action potential arising in response to supramaximal stimulation of Aδ- or C-fibers of a cat cutaneous nerve (the saphenous nerve) was investigated by methods improving the signal/noise ratio in the record of the unit evoked response. By the use of optical and computer (BÉSM-3M) methods of coherent signal accumulation followed by averaging, potentials of nerve fibers ranging in amplitude from 20 to 0.05 µV and in duration from 10 to 0.4 msec were distinguished from the apparatus noise. A continuous distribution of nerve fibers by conduction velocity was found over the range from 80 to 0.15 m/sec. The conditions of appearance of low-amplitude action potentials of nerve fibers with a low conduction velocity are discussed.  相似文献   

13.
Analysis of the trajectories of small particles at high spatial and temporal resolution using video enhanced contrast microscopy provides a powerful approach to characterizing the mechanisms of particle motion in living cells and in other systems. We present here the theoretical basis for the analysis of these trajectories for particles undergoing random diffusion and/or systematic transport at uniform velocity in two-dimensional systems. The single particle tracking method, based on observations of the trajectories of individual particles, is compared with methods that characterize the motions of a large collection of particles such as fluorescence photobleaching recovery. Determination of diffusion coefficients or transport velocities either from correlation of positions or of velocities of the particles is discussed. A result of practical importance is an analysis of the dependence of the expected statistical uncertainty of these determinations on the number of position measurements. This provides a way of judging the accuracy of the diffusion coefficients and transport velocities obtained using this approach.  相似文献   

14.
It is shown that, in resonant high-energy electron linear accelerators, undulator radiation should be observed, which is emitted by off-axis beam particles interacting with the transverse field of nonsynchronous spatial harmonics of the fundamental axisymmetric mode of a periodic accelerating structure. The mean power emitted by an individual electron is proportional to the squared distance between the electron and the accelerator axis and to the squared electron energy. This circumstance may limit the maximum energy to which offaxis beam electrons can be accelerated.  相似文献   

15.
A theoretical model of intra-axonal transport is proposed that presupposes a carrier system moving down the axon in a distal direction. Protein and particle transport is achieved by their reversible association with the distally moving carriers. Mathematical equations representing the concentrations of moving carriers and proteins and/or particles within the axon at any position and time are proposed. Analysis of the equations demonstrates that a traveling wave solution for the particle concentration (an experimental fact) is possible provided the chemical interaction between particles and carriers exhibits positive cooperativity. The phase velocity of the wave solution is interpreted as the observed velocity of the intra-axonal transport, known to be independent of position of observation. In addition, the theory predicts a spectrum of transport velocities for different proteins, in agreement with observations. The velocity of a given protein is dependent on its affinity to the carrier.  相似文献   

16.
Summary Apart from cholinergic nerve fibers, which make up the main part of efferent fibers to the avian adrenal gland (Unsicker, 1973b), adrenergic, purinergic and afferent nerve fibers occur. Adrenergic nerve fibers are much more rare than cholinergic fibers. With the Falck-Hillarp fluorescence method they can be demonstrated in the capsule of the gland, in the pericapsular tissue and near blood vessels. By their green fluorescent varicosities they may be distinguished characteristically from undulating yellow fluorescent ramifications of small nerve cells which are found in the ganglia of the adrenal gland and below the capsule. The varicosities of adrenergic axons exhibit small (450 to 700 Å in diameter) and large (900 to 1300 Å in diameter) granular vesicles with a dense core which is usually situated excentrically. After the application of 6-hydroxydopamine degenerative changes appear in the varicosities. Adrenergic axons are not confined to blood vessels but can be found as well in close proximity of chromaffin cells. Probably adrenergic fibers are the axons of large ganglion cells which are situated mainly within the ganglia of the adrenal gland and in the periphery of the organ and whose dendritic endings show small granular vesicles after treatment with 6-OHDA.A third type of nerve fiber is characterized by varicosities containing dense-cored vesicles with a thin light halo, the mean diameter (1250 Å) of which exceeds that of the morphologically similar granular vesicles in cholinergic synapses. Those fibers resemble neurosecretory and purinergic axons and are therefore called p-type fibers. They cannot be stained with chromalum-hematoxyline-phloxine. Axon dilations showing aggregates of mitochondria, myelin bodies and dense-cored vesicles of different shape and diameter are considered to be afferent nerve endings. Blood vessels in the capsule of the gland are innervated by both cholinergic and adrenergic fibers.Supported by a grant from the Deutsche Forschungsgemeinschaft (Un 34/1).  相似文献   

17.
A recently introduced approximation method is applied in order to obtain an expression for the amount of a substance remaining within a nerve at any time, the nerve having been soaked for a long time in a solution containing the substance until the time zero when it is bathed in the same solution but without the substance. The case of a uniform nerve without a sheath leads to substantially the same results as previously obtained by A. V. Hill (1928) for this case. A solution is given for the case of a nerve without sheath but having fibers which are permeable. In this case it is shown how an effective diffusion coefficient for the interstitial fluid can be obtained, as well as the effective inward and outward fiber permeabilities. A solution is given for the case of a nerve with a sheath in which the substance considered does not penetrate the fibers, and it is shown how the effective diffusion coefficients of the sheath and the interstitial fluid can be obtained.  相似文献   

18.
The regulation of vertebrate muscle contraction with respect to the role of the different subunits of myosin remains somewhat uncertain. One approach to gaining a better understanding of the molecular basis of contraction is to study developing muscle which undergoes changes in myosin isozyme composition and contractile properties during the normal course of maturation. The present study utilizes single fibers from psoas muscles of rabbits at several ages as a model system for fast-twitch muscle development. This approach eliminates the inherent problems of interpreting results from studies on whole muscles which usually contain heterogeneous fiber types with respect to contractile properties and isoenzyme composition. Maximum velocity of shortening and tension-generating ability of individual fibers were measured and the myosin heavy chain composition of the same fibers was examined using an ultrasensitive sodium dodecyl sulfate-polyacrylamide gel system. The results indicate that 1) with regard to contractile properties, there is a transitional period from slow to fast shortening velocities within the first postnatal month; 2) a strong, positive correlation exists between the speed of shortening and tension-generating ability of individual postnatal day 7 fibers, suggesting that as more myosin is incorporated in these developing fibers it is of the fast type; and 3) there is a wide variation in maximum velocity of shortening among postnatal day 7 psoas fibers which is also a time when a mixture of heavy chain isoforms characterizes the myosin composition of single muscle fibers.  相似文献   

19.
The abdominal nerve cord of Periplaneta americana was studied utilizing light and electron microscopes. In the nerve cells, delicate granules, similar to those probably responsible for cytoplasmic basophilia, are evenly distributed in "dark" cells and clumped in "light" cells. Neuroglial cells are stained metachromatically by cresyl violet. The neuroglial cells have many processes which ramify extensively and are enmeshed to form overlapping layers. These imbricated processes ensheath the nerve cells; the inner layer of the sheath penetrates into the neuron and is responsible for the appearance of the trophospongium of Holmgren. Nerve fibers are embedded within glial cells and surrounded by extensions of the plasma membrane similar to mesaxons. Depending on their size, two or several nerve fibers may share a single glial cell. Nerve fibers near their terminations on other nerve fibers contain particles and numerous, large mitochondria. The ganglion is ensheathed by a thick feltwork of connective tissue and perilemmal cells. The abdominal connective has a thinner connective tissue sheath which is without perilemmal cells. The nerve fibers and sheaths in the connective become thinner as they pass through ganglia.  相似文献   

20.
本文根据容积导体中有关动作电位的电生理理论,用三点源模型模拟单根纤维动作电位(SFAP),并假设神经束的复合动作电位(CAP)是由SFAP线性叠加而成,给出了神经束CAP的模型.通过运用上述模型,计算了正常人正中神经纤维传导速度分布,分析了刺激腕部正中神经引导的传感诱发电位(SEP)的N~-_9成分;另外,还得出一些描述此外周传导通路性质的其它参数,如平均传导速度、神经纤维活动最可几传速度分布范围等.此方法可用来研究其它各种外围诱发电位.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号