首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ISOLATION OF PLASMA MEMBRANE FRAGMENTS FROM HELA CELLS   总被引:13,自引:7,他引:6       下载免费PDF全文
A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells.  相似文献   

2.
A rapid method of preparing plasma membranes from isolated fat cells is described. After homogenization of the cells, various fractions were isolated by differential centrifugation and linear gradients. Ficoll gradients were preferred because total preparation time was under 3 hr. The density of the plasma membranes was 1.14 in sucrose. The plasma membrane fraction was virtually uncontaminated by nuclei but contained 10% of the mitochondrial succinic dehydrogenase activity and 25–30% of the RNA and reduced nicotinamide adenine dinucleotide cytochrome c reductase activity of the microsomal fraction. Part of the RNA and NADH-cytochrome c reductase activity was believed to be native to the plasma membrane or to the attached endoplasmic reticulum membranes demonstrated by electron microscopy. The adenyl cyclase activity of the plasma membrane fraction was five times that of Rodbell's "ghost" preparation and retained sensitivity to epinephrine. The plasma membrane ATPase activity was five times that of the homogenate and microsomal fractions. Electron microscopic evidence suggested contamination of the plasma membrane fraction by other subcellular components to be less than the biochemical data indicated.  相似文献   

3.
Enzymatic activities associated with Golgi apparatus-, endoplasmic reticulum-, plasma membrane-, mitochondria-, and microbody-rich cell fractions isolated from rat liver were determined and used as a basis for estimating fraction purity. Succinic dehydrogenase and cytochrome oxidase (mitochondria) activities were low in the Golgi apparatus-rich fraction. On the basis of glucose-6-phosphatase (endoplasmic reticulum) and 5'-nucleotidase (plasma membrane) activities, the Golgi apparatus-rich fraction obtained directly from sucrose gradients was estimated to contain no more than 10% endoplasmic reticulum- and 11% plasma membrane-derived material. Total protein contribution of endoplasmic reticulum, mitochondria, plasma membrane, microbodies (uric acid oxidase), and lysosomes (acid phosphatase) to the Golgi apparatus-rich fraction was estimated to be no more than 20–30% and decreased to less than 10% with further washing. The results show that purified Golgi apparatus fractions isolated routinely may exceed 80% Golgi apparatus-derived material. Nucleoside di- and triphosphatase activities were enriched 2–3-fold in the Golgi apparatus fraction relative to the total homogenate, and of a total of more than 25 enzyme-substrate combinations reported, only thiamine pyrophosphatase showed a significantly greater enrichment.  相似文献   

4.
Plasma membranes from liver parenchymal cells were isolated by rate-isopycnic zonal centrifugation. A method is described for the Beckman size 15 zonal rotor. It involved preparation from a perfused liver of a parenchymal cell-enriched homogenate in isoosmotic sucrose. The nuclear fraction containing membranes was recovered by centrifugation. The resuspended pellet was applied on the gradient of the zonal rotor. The isolated membranes had the same isopycnic banding density as 37% sucrose (w/w). The specific activity of 5′-nucleotidase, a widely used plasma membrane marker, was 105 μmoles·(mg protein)?1·h?1 being enriched by a factor of 50 as compared with parenchymal cell homogenate. The plasma membrane fraction was free of the mitochondrial and lysosomal enzymes, succinate dehydrogenase and acid phosphatase. No DNA and 10 μg RNA per mg plasma membrane protein were found. The purity of the membranes and their morphological appearance were controlled by electron microscopy. The preparation consisting of large membrane sheets showed a considerable purification away from other cellular components. A comparison with similar methods indicates that plasma membranes of a higher degree of purity can be obtained from parenchymal cells.  相似文献   

5.
A technique for obtaining glial plasma membrane has been developed, starting with a bulk-prepared glial cell-enriched fraction from rabbit cerebral cortex. The astrocytic-enriched fraction was hand-homogenized in isotonic sucrose media, and the crude membrane fraction sedimented at 3,000g. The isolation of a membrane-enriched fraction was accomplished with sucrose density gradient centrifugation. The plasma membrane fraction was collected at the interphase between 31.5% and 25.5% sucrose. Enzymatic and electron-microscopical analyses indicated a 4–7-fold enrichment in plasma membrane, and a 15–20% contamination with microsomal and mitochondrial material. Some multilaminar membrane structures were also seen in the fraction.  相似文献   

6.
ISOLATION AND PROPERTIES OF THE PLASMA MEMBRANE OF KB CELLS   总被引:3,自引:2,他引:1       下载免费PDF全文
Plasma membranes from KB cells were isolated by the method of latex bead ingestion and were compared with those obtained by the ZnCl2 method. Optimal conditions for bead uptake and the isolation procedure employing discontinuous sucrose gradient centrifugation are described. All steps of preparative procedure were monitored by electron microscopy and specific enzyme activities. The plasma membrane fraction obtained by both methods is characterized by the presence of the Na+ + K+-activated ATPase and 5'-nucleotidase, and contains NADPH-cytochrome c reductase and cytochrome b5. The latter two enzymes are also present in lower concentrations in the microsomal fraction. Unlike microsomes which are devoid of the Na+ + K+-activated ATPase and which contain only traces of 5'-nucleotidase activity, the plasma membrane fraction contains only trace amounts of the rotenone-insensitive NADH-cytochrome c reductase but no cytochrome P-450, both of which are mainly microsomal components. Morphologically the plasma membrane fraction isolated by the latex bead method is composed of vesicles of 0.1–0.3 µm in diameter. On the basis of the biochemical and morphological criteria presented, it is concluded that the plasma membrane fraction isolated by the above methods are of high degree of purity.  相似文献   

7.
To assess the subcellular distribution of oestrogen-binding components in their native state, plasma membrane and other cell fractions were prepared from hepatocytes in the absence of [3H]oestradiol-17β. Cells from livers of ovariectomized rats were disrupted, with submaximal homogenization in buffered isotonic sucrose with CaCl2 and proteinase inhibitor, and fractionated by using isotonic media. Fractions were characterized by determinations of enzyme activities, biochemical constituents and ligand binding. Specific binding of 2nm-[3H]oestradiol-17β to intact cells and their fractions was detemined after equilibration for 1.5h at 4°C. More than 92% of the radioactivity from representative preparations was verified as authentic oestradiol by thin-layer chromatography. Activities of plasma-membrane marker enzymes as well as binding sites for oestrogen and for wheat germ agglutinin were present principally in particulate fractions, rather than in 105000g-supernatant fractions. However, by using alternative homogenization procedures (i.e. hypotonic media), known to fragment and strip structural components, oestradiol-binding sites and activities of plasma-membrane marker enzymes were distributed predominantly into cytosol. By using the more conservative procedures, plasma membranes of low (ρ=1.13–1.16) and high (ρ=1.16–1.18) density were purified from crude nuclear fractions. A second low-density subfraction of plasma membrane was prepared from microsome-rich fractions. Activities of plasma-membrane marker enzymes were enriched to about 28 and four times that of the homogenate in plasma membranes of low and high density respectively. Binding sites for wheat germ agglutinin and oestradiol were concentrated in low-density plasma membranes to 46–63 times that of the homogenate. Specific binding of oestrogen in low-density plasma membranes purified from crude nuclei was saturable, with an apparent association constant of 3.5nm. At saturation, such oestradiol receptors corresponded to 526fmol/mg of membrane protein. A Hill plot showed a moderate degree of positive co-operativity in the interaction of hormone with plasma membranes. Specific binding of [3H]oestradiol-17β was reduced by a 200-fold molar excess of unlabelled oestradiol-17β, oestriol or diethylstilbestrol, but not by oestradiol-17α, cortisol, testosterone or progesterone. Binding was also blocked by prior exposure of membranes to trypsin or to 60°C, but remained essentially undiminished by extraction of membranes with either hypotonic or high-salt buffers. Extraction with 0.1% (v/v) Triton X-100 partially solubilized the oestrogen-binding component(s) of plasma membranes. Particle-free extracts were resolved on 5–20% (w/v) sucrose density gradients with either 0.01m- or 0.4m-KCl, and the fractions were analysed by adsorption to hydroxyapatite. In low-salt gradients macromolecule-bound oestrogen sedimented at predominantly 7.4S and binding was 1560 times that of the homogenate. Under high-salt conditions oestradiol-binding activity occurred at both 3.6S and 4.9S.  相似文献   

8.
Summary A highly enriched fraction of plasma membranes from the bovine adrenal medulla has been isolated by differential and sucrose gradient centrifugation. The membranes were found to occur as 0.1–0.5 diameter vesicles and to equilibrate at a density of 1.13–1.14 g/ml. This fraction was characterized by 4-fold elevated levels of adenylate cyclase and 20-fold elevated levels of 5-nucleotidase. Secretory vesicle membranes, isolated by repeated hypotonie and hypertonic shocks of whole vesicles, were found to equilibrate between d = 1.08 and d = 1.12 on a sucrose density step gradient. These membranes were highly enriched in cytochrome b562 and dopamine--hydroxylase. Proteins in the two membranes were compared by SDS gel electrophoresis. All protein size classes found in the vesicle membrane fraction were also represented in the plasma membrane fraction, though in different proportions on the basis of staining intensity. The plasma membrane fraction contained prominent bands co-migrating with the - and -bands of tubulin, as well as a component co-migrating with actin. These bands were absent from the vesicle membranes. Fingerprint analysis of stained bands from the membrane fraction demonstrated that the components were indeed tubulin and actin. The plasma membranes contained twice as much sialic acid residues as did the chromaffin granule membranes, but had only half the cholesterol content on a weight basis. The cholesterolphospholipid ratio in the plasma membranes was 0.63, while in the secretory vesicle membranes it was 1.04. These results show that plasma membranes and secretory vesicle membranes are functionally and structurally different.Supported, in part, by a stipend to O.Z. from The Grant Foundation, New York  相似文献   

9.
1. Antiserum was prepared in rabbits against a purified mouse liver plasma-membrane fraction. 2. The antiserum was made to react with an 125I-labelled alkaline-EDTA extract of the plasma membranes, and the immunoprecipitate analysed by polyacrylamide-gel electrophoresis. Seven proteins were immunoprecipitated and a single glycoprotein present in the alkaline-EDTA-soluble fraction was found to be a major component. 3. The alkaline-EDTA-soluble fraction was analysed by two-dimensional immunoelectrophoresis and this procedure indicated the presence of six antigenic components. 4. The plasma membranes were also extracted with 1% deoxycholate–1% Triton X-100; 50% of the protein, 80% of the alkaline phosphodiesterase activity and 30% of the 5′-nucleotidase activity were solubilized. 5. Two-dimensional immunoelectrophoresis of the deoxycholate–Triton X-100 extract indicated the presence of six antigens. 6. The relative distribution of the six antigens among the fractions obtained during the extraction procedure was examined immunoelectrophoretically to provide information on their disposition within the membrane.  相似文献   

10.
The membranes of sporophore cap tissue from the cultivated mushroom, Agaricus bisporus (Lange) Sing., were isolated using discontinuous sucrose gradient ultracentrifugation of a tissue homogenate. A membrane-rich fraction was concentrated at the 1.16/1.18 g/cc interface and a mitochondria-rich fraction at the 1.18/1.20 g/cc interface. The membrane fraction was judged to be greater than 90% membrane vesicles by electron microscopy. The protein to lipid ratio of the membrane fraction was 1.1; the molar ratio of sterol to phospholipid was 0.77. The specific radioactivity of a Mg-activated ATPase was 2.5 times greater in the membrane fraction than in the homogenate. No 5′-nucleotidase or Na-K-Mg-activated ATPase activity was observed.  相似文献   

11.
A procedure for cellular fractionation and preparation of plasma membrane from a Burkitt's lymphoma cell line is described. This procedure involves homogenization with a Polytron in buffered isotonic sucrose, and separation of cellular fractions by differential and isopycnic centrifugation in sucrose. The isolated plasma membrane fraction contains 44% of the cellular cholesterol, 50% of the ouabain-sensitive (Na+ + K+)-ATPase activity, 43% of the γ-glutamyltranspeptidase activities and 16% of the phospholipid. This fraction contains only 3% of cellular protein and is contaminated with less than 4% of the total cellular activities of microsomal, lysosomal, mitochondrial, Golgi and soluble marker enzymes. The cholesterol : phospholipid molar ratio of the crude plasma membrane is 0.56. The membranes in this fraction are in the form of vesicles. Further purification of plasma membrane is achieved by sucrose density gradient centrifugation and results in a 25- to 30-fold enrichment of plasma membrane markers. Plasma membrane markers band in these gradients between 1.10 and 1.15 g/cm3.The distribution patterns in the cell fractions of 18 cellular constituents are quantitatively determined. Most constituents are found to distribute in a fashion consistent with the results obtained in other systems. Thymidine-5′-phosphodiesterase (phosphodiesterase I), esterase, nucleoside diphosphatase and glucose-6-phosphatase, however, are shown to be poor markers of membrane fractions in this system.Lactoperoxidase-catalyzed iodination was used to identify several plasma membrane proteins which are exposed at the surface. After separation of labeled polypeptides by sodium dodecyl sulfate gel electrophoresis, the predominant labeled protein was identified as the heavy chain of IgM. Several lesser labeled proteins were observed.  相似文献   

12.
Microsomal membranes isolated from red beet (Beta vulgaris L.) storage tissue were found to contain high levels of ionophore-stimulated ATPase activity. The distribution of this ATPase activity on a continuous sucrose gradient showed a low density peak (1.09 grams per cubic centimeter) that was stimulated over 400% by gramicidin and coincided with a peak of NO3-sensitive ATPase activity. At higher densities (1.16-1.18 grams per cubic centimeter) a shoulder of gramicidin-stimulated ATPase that coincided with a peak of vanadate-sensitive ATPase was apparent. A discontinuous sucrose gradient of 16/26/34/40% sucrose (w/w) was effective in routinely separating the NO3-sensitive ATPase (16/26% interface) from the vanadate-sensitive ATPase (34/40% interface). Both membrane fractions were shown to catalyze ATP-dependent H+ transport, with the transport process showing the same differential sensitivity to NO3 and vanadate as the ATPase activity.

Characterization of the lower density ATPase (16/26% interface) indicated that it was highly stimulated by gramicidin, inhibited by KNO3, stimulated by anions (Cl > Br > acetate > HCO3 > SO42−), and largely insensitive to monovalent cations. These characteristics are very similar to those reported for tonoplast ATPase activity and a tonoplast origin for the low density membrane vesicles was supported by comparison with isolated red beet vacuoles. The membranes isolated from the vacuole preparation were found to possess an ATPase with characteristics identical to those of the low density membrane vesicles, and were shown to have a peak density of 1.09 grams per cubic centimeter. Furthermore, following osmotic lysis the vacuolar membranes apparently resealed and ATP-dependent H+ transport could be demonstrated in these vacuole-derived membrane vesicles. This report, thus, strongly supports a tonoplast origin for the low density, anion-sensitive H+-ATPase and further indicates the presence of a higher density, vanadate-sensitive, H+-ATPase in the red beet microsomal membrane fraction, which is presumably of plasma membrane origin.

  相似文献   

13.
Chlorophyll-free plasma membranes of the unicellular green alga Chlamydomonas reinhardtii Dangeard were purified from a microsomal fraction using an aqueous polymer two-phase system of 6.5% (w/w) dextran T500, 6·5% (w/w) polyethylene glycol 3350, 60 mM NaCI, 0 33 M sucrose and 5 mM potassium phosphate (pH 7·8). The plasma membrane fraction contained only 2·4% of the microsomal membrane protein. Specific activity of the plasma membrane marker enzyme, K*, Mg2+-ATPase (EC 3.6.1.3). was enriched 9-fold over the microsomal fraction, and 22% of total activity was recovered in the upper, polyethylene glycol-rich phase. Contamination from intracellular membranes was minimal. K*, Mg2+-ATPase showed a pH optimum at about 6·5, and addition of 0·05% (w/v) Triton X-100 stimulated the activity 3-fold. [3H]-Nimodipinc was employed to characterize 1,4-dihydropyridine-specific membrane receptors. Two apparent binding sites with different affinities to nimodipine were found in the crude microsomal fraction. The separation of plasma membranes from intracellular membranes revealed that one binding site with higher affinity (KD= 9 nM) was located on the plasma membrane and a second binding site with lower affinity (KD= 36 nM) on an intracellular membrane The apparent dissociation constants determined from the association and dissociation rate constants in kinetic experiments were comparable to those determined by equilibrium experiments. The maximum number of binding sites of the plasma membrane fraction and the intracellular membrane fraction was Bmax= 440 and 470 fmol (mg protein)-1, respectively. [3H]-Nimodipinc binding was inhibited by (±) verapamil and stimulated by D-cis-diltiazem in both fractions. Moreover, ethyle-neglycol-bis(2-aminoethylcther)-N, N'-tetraacctic acid (EGTA) inhibited [3H]-nimo-dipinc binding in the plasma membrane fraction but not in the intracellular membrane fraction This effect was cancelled by the addition of CaCl2.  相似文献   

14.
An investigation was conducted into the isolation of plasma membrane vesicles from primary roots of corn (Zea mays L., WF9 × M14) by sucrose density gradient centrifugation. Identification of plasma membranes in cell fractions was by specific staining with the periodic-chromic-phosphotungstic acid procedure. Plasma membrane vesicles were rich in K+-stimulated ATPase activity at pH 6.5, and equilibrated in linear gradients of sucrose at a peak density of about 1.165 g/cc. It was necessary to remove mitochondria (equilibrium density of 1.18 g/cc) from the homogenate before density gradient centrifugation to minimize mitochondrial contamination of the plasma membrane fraction. Endoplasmic reticulum (NADH-cytochrome c reductase) and Golgi apparatus (latent IDPase) had equilibrium densities in sucrose of about 1.10 g/cc and 1.12 to 1.15 g/cc, respectively. A correlation (r = 0.975) was observed between K+-stimulated ATPase activity at pH 6.5 and the content of plasma membranes in various cell fractions. ATPase activity at pH 9 and cytochrome c oxidase activity were also correlated.  相似文献   

15.
Subjecting brain homogenates to differential speed and sucrose density gradient centrifugation resulted in the isolation of a membrane fraction from the post-mitochondrial supernatant with properties and marker enzyme profiles typical of plasma membranes. This membrane fraction is compared with the microsomes and the synaptic plasma membranes isolated from synaptosomes. Like the synaptic plasma membranes, membranes obtained from the post-mitochondrial supernatant were enriched five-fold in 5′-nucleotidase activity. However, the latter membranes were lower in (Na+, K+)-ATPase activity and higher in NADPH-cytochrome C reductase activity as compared to the synaptic plasma membranes. The post-mitochondrial plasma membranes were also different from the microsomes in their respective marker enzyme activities. Electron microscopic examination indicated largely membranous vesicles for both plasma membrane fractions with little contamination by myelin, mitochondra and intact synaptosomes. The phospholipid and acyl group profiles of the two plasma membrane fractions were surprisingly similar, but they were different from the characteristic profiles of myelin and mitochondria. It is concluded that plasma membranes isolated from the post-mitochondrial supernatant fraction are derived largely from neuronal and glial soma and are thus designated the somal plasma membrane fraction.  相似文献   

16.
A difference in the organization of adenylate cyclase and 3′5′-cyclic phosphodiesterase in isolated plasma membranes was observed. Observation of this difference was made possible by the development of a new technique for the lysis of Dictyostelium discoideum using the polyene antibiotic amphotericin B. A particulate fraction prepared from the cell lysate contains adenylate cyclase, 3′5′-cyclic phosphodiesterase and 5′-nucleotidase. The yield of adenylate cyclase is 40% higher than in paniculate fractions prepared from cells lysed by sonication or with Triton X-100. Purification of the particulate fraction on discontinuous sucrose gradient completely separates membranes from mitochondria and other cellular material as shown by electron microscopic analysis of different fractions. Biochemical characterization of the purified membrane fraction shows it contains adenylate cyclase, 3′5′-cyclic phosphodiesterase and 5′-nucleotidase activities while electron microscopic analysis shows a vesicular morphology. Additional studies on the purified membranes used Triton X-100, trypsin and phospholipase C to probe the relationship between membrane structural elements and enzymatic activities. The results of these studies show distinct differences in the organization of each enzyme molecule within the membrane.  相似文献   

17.
1. About 4 and 23% of the homogenate adenylate cyclase activity was recovered in the microsomal and sarcolemmal fractions isolated from guinea-pig heart ventricles. 2. Cardiac microsomal adenylate cyclase activity [basal as well as p[NH]ppG (guanyl-5′-yl imidodiphosphate)- and NaF-stimulated] was increased over 2-fold in the presence of Lubrol-PX (0.01–0.1%). 3. The sarcolemmal enzyme, however, showed concentration-dependent inhibition caused by the detergent under all assay conditions, except when p[NH]ppG was included in the assay. In the latter case, the detergent (0.01–0.02%) caused a modest increase (30–45%) in enzyme activity. 4. Another non-ionic detergent, Triton X-100, also stimulated the microsomal cyclase and inhibited the sarcolemmal enzyme. 5. With either membrane fraction, Lubrol-PX solubilized the enzyme when the detergent/membrane protein ratio was 2.5 (μmol of detergent/mg of protein). 6. The findings with homogenate and a washed particulate fraction resembled those obtained with sarcolemma, and those with isolated sarcoplasmic reticulum resembled those with microsomal preparations. 7. p[NH]ppG, and to some extent NaF, protected the detergent-induced inactivation of the enzyme observed at higher detergent concentrations (0.5% Lubrol-PX and 0.05–0.5% Triton X-100). 8. In the absence of detergents, p[NH]ppG increased the basal enzyme activity about 2-fold in microsomal fractions, but did not appreciably stimulate the sarcolemmal enzyme. Isoproterenol, on the other hand, increased the sarcolemmal enzyme activity (>2-fold) in the presence of p[NH]ppG and caused only moderate stimulation (31%) of the microsomal enzyme under these conditions. 9. These findings support the view that, although the bulk of adenylate cyclase resides in heart sarcolemma (plasma membrane), the microsomal activity cannot be accounted for solely by contamination of the microsomal fraction with sarcolemma, as has been suggested by others [Besch, Jones & Watanabe (1976) Circ. Res. 39, 586–595; Engelhard, Plut & Storm (1976) Biochim. Biophys. Acta 451, 48–61]. Further, the results of this study show that cardiac sarcoplasmic-reticulum membranes possess this enzyme.  相似文献   

18.
Nerve growth depends on the delivery of cell body–synthesized material to the growing neuronal processes. The cellular mechanisms that determine the topology of new membrane addition to the axon are not known. Here we describe a technique to visualize the transport and sites of exocytosis of cell body– derived vesicles in growing axons. We found that in Xenopus embryo neurons in culture, cell body–derived vesicles were rapidly transported all the way down to the growth cone region, where they fused with the plasma membrane. Suppression of microtubule (MT) dynamic instability did not interfere with the delivery of new membrane material to the growth cone region; however, the insertion of vesicles into the plasma membrane was dramatically inhibited. Local disassembly of MTs by focal application of nocodazole to the middle axonal segment resulted in the addition of new membrane at the site of drug application. Our results suggest that the local destabilization of axonal MTs is necessary and sufficient for the delivery of membrane material to specific neuronal sites.  相似文献   

19.
Sarcoplasmic vesicles and β-glycogen particles 30–40 mµ in diameter were isolated from perfused rabbit skeletal muscle by the differential precipitation-centrifugation method. This microsomal fraction was subjected to zonal centrifugation on buffered sucrose gradients, in a B XIV Anderson type rotor, for 15 hr at 45,000 rpm in order to separate the two cytoplasmic organelles. Zonal profiles of absorbance at 280 mµ, proteins, glycogen, and enzymatic activities (phosphorylase b kinase, phosphorylase b, and glycogen synthetase) were performed. Whereas the entire synthetase activity was found combined with the glycogen particles, 39% of phosphorylase and 53% of phosphorylase b kinase activities, present in the microsomal fraction, were recovered in the purified vesicular fraction (d = 1.175). This latter fraction consists of vesicles, derived from the sarcoplasmic reticulum, and of small particles 10–20 mµ in diameter attached to the outer surface of the membranes. These particles disappear after α-amylase treatment. Incubation of the sarcovesicular fraction with 14C-labeled glucose-1-phosphate confirms the localization of a polysaccharide synthesis at the level of the membranes. "Flash activation" of phosphorylase b, i.e. Ca "activation" of phosphorylase kinase followed by a conversion of phosphorylase b into a, was demonstrated in the purified sarcovesicular fraction. Moreover, the active enzymatic sites were detected on the membranes by electron microscopy. The presence of binding sites between the membranes of the sarcoplasmic vesicles and a glycogen-enzyme complex suggests that this association plays a role in the glycogenolysis during muscle contraction.  相似文献   

20.
Addition of cations (20 to 50 mM for Mg2+ or Ca2+ or 100 to 500 mM for Na+) to N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid buffer during preparation of membranes from smooth and rough strains of Salmonella typhimurium LT2, Salmonella minnesota, and Escherichia coli O8 had two effects on the composition of the membranes isolated. First, in rough strains of chemotypes Ra to Re the “total membranes” (pellets from high-speed centrifugation) were deficient in the proteins of the outer membrane. The missing proteins were found to have been sedimented in a prior low-speed centrifugation in a fraction we call “cation-aggregated membranes.” Since these membranes were enriched for lipopolysaccharide and for outer membrane proteins, deficient in succinic dehydrogenase, and contained primarily the dense peak after sucrose gradient centrifugation, it appears to be relatively pure outer membrane. About 10% of the membrane protein of smooth strains and up to 50% that of rough strains were cation-aggregated membranes, appearing to contain most of the outer membrane of rough strains. Thus, cation aggregation may be a useful means of preparation of outer membrane samples. The second effect was that with cation addition, several high-molecular-weight proteins not seen when membranes were prepared without cation addition were found in the total membranes of both smooth and rough strains after high-speed centrifugation. These proteins were bound by cations to the inner membranes, since they were soluble in Triton X-100 and separated into the less dense peak upon sucrose gradient centrifugation. They originated from the cytoplasm or the periplasm, since they corresponded to soluble proteins found in the supernatant after high-speed centrifugation and were depleted from this supernatant when preparation was done in the presence of cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号