首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gluco-oligosaccharides produced by Gluconobacter oxydans NCIMB 4943 from maltodextrin as the source, were evaluated for their fermentability by the human colonic microflora. The selectivity of growth of desirable bacteria in the human colon was studied in a three-stage continuous model of the human large intestine. Populations of bacteria, and their fluctuations as a response to the fermentation, were enumerated using fluorescent in situ hybridization (FISH). The gluco-oligosaccharides resulted in increases in numbers of bifidobacteria and the Lactobacillus/Enterococcus group in all 3 vessels of the system, representing the proximal, transverse and distal colonic areas. The prebiotic indices of the gluco-oligosaccharides were 2.29, 4.23 and 2.74 in V1, V2 and V3 respectively.  相似文献   

2.
AIMS: To investigate the fermentation properties of gentio-oligosaccharides (GOS), as compared to fructo-oligosaccharides (FOS) and maltodextrin in mixed faecal culture. METHODS AND RESULTS: The substrates were incubated in 24 h batch culture fermentations of human faecal bacteria. Fluorescent in situ hybridization was used to determine changes in populations of bifidobacteria, lactobacilli, clostridia, bacteroides, streptococci and Escherichia coli. Gas and short-chain fatty acid (SCFA) production was also measured. GOS gave the largest significant increases in bifidobacteria, lactobacilli and total bacterial numbers during the incubations. However, FOS appeared to be a more selective prebiotic as it did not significantly stimulate growth of bacterial groups which were not probiotic in nature. GOS and maltodextrin produced the highest levels of SCFA. Lowest gas production was seen with GOS and highest with FOS. CONCLUSIONS: GOS possessed bifidogenic activity in vitro. Although fermentation of GOS was not as selective as FOS, gas production was lower. Gas production is often seen as an undesirable side effect of prebiotic consumption. SIGNIFICANCE AND IMPACT OF THE STUDY: The study has provided the first data on fermentation of GOS in mixed faecal culture. The study has also used molecular microbiology methods (FISH) to quantify bacterial groups. The data extend our knowledge of the selectivity of fermentation of oligosaccharides by the gut microflora.  相似文献   

3.
Aims: This study was carried out to evaluate in vitro the fermentation properties and the potential prebiotic activity of Agave‐fructans extracted from Agave tequilana (Predilife). Methods and Results: Five different commercial prebiotics were compared using 24‐h pH‐controlled anaerobic batch cultures inoculated with human faecal slurries. Measurement of prebiotic efficacy was obtained by comparing bacterial changes, and the production of short‐chain fatty acids (SCFA) was also determined. Effects upon major groups of the microbiota were monitored over 24 h incubations by fluorescence in situ hybridization. SCFA were measured by HPLC. Fermentation of the Agave fructans (Predilife) resulted in a large increase in numbers of bifidobacteria and lactobacilli. Conclusions: Under the in vitro conditions used, this study has shown the differential impact of Predilife on the microbial ecology of the human gut. Significance and Impact of the Study: This is the first study reporting of a potential prebiotic mode of activity for Agave fructans investigated which significantly increased populations of bifidobacteria and lactobacilli compared to cellulose used as a control.  相似文献   

4.
AIMS: Comparison of in vitro fermentation properties of commercial prebiotic oligosaccharides. METHODS AND RESULTS: Populations of predominant gut bacterial groups were monitored over 24 h of batch culture through fluorescent in-situ hybridization. Short-chain fatty acid and gas production were also measured. All prebiotics increased the numbers of bifidobacteria and most decreased clostridia. Xylo-oligosaccharides and lactulose produced the highest increases in numbers of bifidobacteria whilst fructo-oligosaccharides produced the highest populations of lactobacilli. Galacto-oligosaccharides (GOS) resulted in the largest decreases in numbers of clostridia. Short-chain fatty acid generation was highest on lactulose and GOS. Gas production was lowest on isomalto-oligosaccharides and highest on inulin. CONCLUSIONS: The oligosaccharides differed in their fermentation characteristics. Isomalto-oligosaccharides and GOS were effective at increasing numbers of bifidobacteria and lactate whilst generating the least gas. SIGNIFICANCE AND IMPACT OF THE STUDY: The study provides comparative data on the properties of commercial prebiotics, allowing targeting of dietary intervention for particular applications and blending of oligosaccharides to enhance overall functionality.  相似文献   

5.
AIMS: The metabolism by bifidobacteria of exopolysaccharide (EPS) produced by Lactobacillus sanfranciscensis was investigated. To evaluate the significance of the EPS produced by Lact. sanfranciscensis during dough fermentation on the overall prebiotic properties of bread, metabolism by bifidobacteria of water-soluble polysaccharides (WSP) from wheat and rye was investigated. METHODS AND RESULTS: Polyglucose and polyfructan contained in WSP from wheat and rye were metabolized by bifidobacteria. In contrast, WSP isolated from fermented doughs were not metabolized by bifidobacteria. The arabioxylan fraction of WSP was metabolized neither by bifidobacteria nor by lactobacilli. All the bifidobacteria tested were able to metabolize fructan from Lact. sanfranciscensis. The kinetics of EPS metabolism by various bifidobacteria were characterized by diauxic utilization of fructose and EPS. CONCLUSIONS: Bifidobacteria metabolize fructan from Lact. sanfranciscensis. Polyfructan and the starch fractions from wheat and rye, which possess a bifidogenic effect, were degraded by cereal enzymes during dough fermentation, while the EPS were retained. SIGNIFICANCE AND IMPACT OF THE STUDY: EPS produced by sourdough lactic acid bacteria will improve the nutritional properties of sourdough fermented products.  相似文献   

6.
The prebiotic effect of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel was studied using pure and mixed cultures of human faecal bacteria. This was compared to the prebiotic effect of fructo-oligosaccharides (FOS). Individual species of bifidobacteria and lactobacilli responded positively to the addition of the bergamot extract, which contained oligosaccharides in the range of three to seven. Fermentation studies were also carried out in controlled pH batch mixed human faecal cultures and changes in gut bacterial groups were monitored over 24 h by fluorescent in situ hybridisation, a culture-independent microbial assessment. Addition of the bergamot oligosaccharides (BOS) resulted in a high increase in the number of bifidobacteria and lactobacilli, whereas the clostridial population decreased. A prebiotic index (PI) was calculated for both FOS and BOS after 10 and 24 h incubation. Generally, higher PI scores were obtained after 10 h incubation, with BOS showing a greater value (6.90) than FOS (6.12).  相似文献   

7.
AIMS: To determine the fermentation profiles by human gut bacteria of arabino-oligosaccharides of varying degree of polymerization. MATERIALS AND METHODS: Sugar beet arabinan was hydrolyzed with a commercial pectinase and eight fractions, of varying molecular weight, were isolated by gel-filtration chromatography. Hydrolysis fractions, arabinose, arabinan and fructo-oligosaccharides were fermented anaerobically by gut bacteria. Total bacteria, bifidobacteria, bacteroides, lactobacilli and the Clostridium perfringens/histolyticum sub. grp. were enumerated using fluorescent in situ hybridization. RESULTS: Bifidobacteria were stimulated to different extents depending on molecular weight, i.e. maximum increase in bifidobacteria after 48 h was seen on the lower molecular weight fractions. Lactobacilli fluctuated depending on the initial inoculum levels. Bacteroides numbers varied according to fraction; arabinan, arabinose and higher oligosaccharides (degree of polymerization, dp > 8) resulted in significant increases at 24 h. Only carbohydrate mixtures with dp of 1-2 resulted in significant increases at 48 h (log 8.77 +/- 0.23). Clostridia decreased on all substrates. CONCLUSIONS: Arabino-oligosaccharides can be considered as potential prebiotics. Significance and Impact of the Study: Arabinan is widely available as it is a component of sugar beet pulp, a co-product from the sugar beet industry. Generation of prebiotic functionality from arabinan would represent significant added value to a renewable resource.  相似文献   

8.
The prebiotic effects of water extracts of two blueberry (BBE) cultivars (‘Centurion’ and ‘Maru’) were studied using pure and mixed cultures of human faecal bacteria. The results demonstrated for the first time that addition of BBE from both cultivars to broth media containing pure cultures of Lactobacillus rhamnosus and Bifidobacterium breve resulted in a significant increase (P < 0.05–0.0001) in the population size of these strains. Batch fermentation system was used to monitor the effect of BBE addition on the mixed faecal bacterial populations (obtained from healthy human donors). Addition of BBE from both cultivars to batch cultures inoculated with mixed human faecal cultures resulted in a significant increase in the number of lactobacilli (P < 0.01–0.0001) and bifidobacteria (P < 0.05–0.0001). Furthermore, a significant influence on the population size of lactobacilli and bifidobacteria was observed after administration of extracts from both cultivars to rats daily for 6 days in comparison with the control group. In rats gavaged orally with 4 ml kg−1 day−1 of BBE for 6 days, the population size of lactobacilli (P < 0.05) and bifidobacteria (P < 0.05–0.01) was increased significantly. We hypothesize that BBE could modify the bacterial profile by increasing the numbers of beneficial bacteria and thereby improving gut health.  相似文献   

9.
The potential prebiotic effect of the fructo-trisaccharide, neokestose, on intestinal bacteria was investigated. Bifidobacterium sp. utilized neokestose to a greater extend and produced more biomass from neokestose than facultative anaerobes under anaerobic conditions in batch culture. Lactobacillus salivarius utilized glucose but negligible amounts of neokestose. L. salivarius and the facultative anaerobes produced significantly more biomass from glucose than from neokestose, whereas the biomass yields obtained with bifidobacteria on neokestose and glucose, respectively, were not significantly different. Static batch cultures inoculated with faeces supported the prebiotic effect of neokestose, which had been observed in the pure culture investigations. Bifidobacteria and lactobacilli were increased while potentially detrimental coliforms, clostridia and bacteroides, decreased after 24 h fermentation with neokestose. In addition, this effect was more pronounced with neokestose than with a commercial prebiotic fructo-oligosaccharide. It was concluded that neokestose has potential as a novel bifidogenic substance and that it might have advantages over the commercially available sources currently used.  相似文献   

10.
《Anaerobe》2001,7(3):113-118
An in vivo study was carried to determine the effect of HP-inulin, a high-molecular-weight fraction of chicory-derived inulin, on the human gut microflora composition. Ten healthy volunteers were allowed a free-living diet whereby they also ingested 8 g/d of maltodextrin for 14 days and this was followed by 8 g/d HP-inulin for 14 days. Nine of the ten volunteers completed the trial. The trial was conducted in a double blind manner and faeces were collected periodically such that predominant groups of gut bacteria i.e. total bacterial populations, Bacteroides spp., Bifidobacterium spp., Clostridium perfringens/histolyticum sub-group and lactobacilli/enterococci could be enumerated. To overcome difficulties with culture-based techniques, the bacteria were enumerated using fluorescent in situ hybridisation (FISH). A small but statistically significant increase in bifidobacteria was observed when data from the volunteers were pooled. Similarly, a statistically significant increase was observed in clostridial numbers, although the magnitude of change in this bacterial group was about ten times less than that seen with bifidobacteria. HP-inulin intake had little or no effect on numbers of total bacteria,Bacteroides spp., or lactobacilli and enterococci present in the gut microflora of the volunteers. This study has confirmed the prebiotic nature of HP-inulin. However, in this trial the effects were most marked in those volunteers with low starting levels of bifidobacteria—indicating that there may be a relationship between prebiotic effect and initial bifidobacterial numbers.  相似文献   

11.
Faecal cultures were used to compare the prebiotic effects of a new fructan containing high solubility inulin (HSI) and of a well-established prebiotic containing oligofructose (OF) with a negative control (CT). Changes in the intestinal microbiota, pH, ammonia, volatile organic acids and lactic acid were monitored during incubation. Molecular techniques for microbial enumeration indicated that both HSI and OF led to a significant increase in bifidobacteria (P< or =0.05) and lactobacilli (P< or =0.05) compared to the control. Significant changes in the pH and levels of ammonia with both inulin-type fructans were observed, as well as higher levels of acetic, lactic and formic acids (P< or =0.05). The fermentative metabolism appeared to be faster on OF than on HSI. Both OF and HSI showed clear prebiotic effects, but had differences in fermentation kinetics because of to the different degree of polymerization (DP). This study provides proof for the prebiotic effectiveness of HSI, and shows that inulin-type fructans with higher DP might have a prolonged bifidogenic effect, thus could extend the saccharolytic metabolism and low pH to the distal parts of the colon.  相似文献   

12.
AIMS: To develop a quantitative equation [prebiotic index (PI)] to aid the analysis of prebiotic fermentation of commercially available and novel prebiotic carbohydrates in vitro, using previously published fermentation data. METHODS: The PI equation is based on the changes in key bacterial groups during fermentation. The bacterial groups incorporated into this PI equation were bifidobacteria, lactobacilli, clostridia and bacteroides. The changes in these bacterial groups from previous studies were entered into the PI equation in order to determine a quantitative PI score. PI scores were than compared with the qualitative conclusions made in these publications. In general the PI scores agreed with the qualitative conclusions drawn and provided a quantitative measure. CONCLUSIONS: The PI allows the magnitude of prebiotic effects to be quantified rather than evaluations being solely qualitative. SIGNIFICANCE AND IMPACT OF THE STUDY: The PI equation may be of great use in quantifying prebiotic effects in vitro. It is expected that this will facilitate more rational food product development and the development of more potent prebiotics with activity at lower doses.  相似文献   

13.
Potential prebiotic properties of almond (Amygdalus communis L.) seeds   总被引:1,自引:0,他引:1  
Almonds are known to have a number of nutritional benefits, including cholesterol-lowering effects and protection against diabetes. They are also a good source of minerals and vitamin E, associated with promoting health and reducing the risk for chronic disease. For this study we investigated the potential prebiotic effect of almond seeds in vitro by using mixed fecal bacterial cultures. Two almond products, finely ground almonds (FG) and defatted finely ground almonds (DG), were subjected to a combined model of the gastrointestinal tract which included in vitro gastric and duodenal digestion, and the resulting fractions were subsequently used as substrates for the colonic model to assess their influence on the composition and metabolic activity of gut bacteria populations. FG significantly increased the populations of bifidobacteria and Eubacterium rectale, resulting in a higher prebiotic index (4.43) than was found for the commercial prebiotic fructooligosaccharides (4.08) at 24 h of incubation. No significant differences in the proportions of gut bacteria groups were detected in response to DG. The increase in the numbers of Eubacterium rectale during fermentation of FG correlated with increased butyrate production. In conclusion, we have shown that the addition of FG altered the composition of gut bacteria by stimulating the growth of bifidobacteria and Eubacterium rectale.  相似文献   

14.
Stirred, pH-controlled anaerobic batch cultures were used to evaluate the in vitro utilisation by canine gut microflora of novel -galactooligosaccharides synthesised with an enzyme extract from a canine Lactobacillus reuteri strain. Fructooligosaccharides (FOS), melibiose and raffinose were used as reference carbohydrates for the prebiotic properties of the synthesised oligosaccharide (galactosyl melibiose mixture—GMM). Addition of Lactobacillus acidophilus was used as control for the evaluation of the synbiotic properties of the oligosaccharide with L. reuteri. Populations of predominant gut bacterial groups were monitored over 48 h of batch culture by fluorescent in situ hybridisation, and short-chain fatty acid (SCFA) production was measured. GMM showed a higher increase in bifidobacteria and lactobacilli population number and size as well as a higher decrease in clostridia population number and size compared to the commercial prebiotics (FOS, melibiose, raffinose). This prebiotic effect was further increased by the addition of L. reuteri followed by a change in the SCFA production pattern compared to GMM alone or GMM with L. acidophilus. The observed change in SCFA production was in accordance with the fermentation properties of L. reuteri, suggesting that the novel synbiotic had a significant effect on the canine gut microflora fermentation.  相似文献   

15.
Lactobacilli and bifidobacteria are the most common genera of probiotics with documented potentials on gut health. Recent studies have suggested that such potentials can be extended beyond gut well-being, such as that of dermal health. Our present study aimed to evaluate the production of bioactives that are essential for skin defense, such as lipoteichoic acid, peptidoglycan, hyaluronic acid, sphingomyelinase, lactic acid, acetic acid, and diacetyl, from lactobacilli and bifidobacteria grown in milk. All strains studied showed the presence of LTA in the cell wall fraction, with higher amounts from Lactobacillus rhamnosus FTDC 8313 and Bifidobacterium longum BL 8643 than other strains studied. Meanwhile, all strains studied showed equal concentrations of cell wall peptidoglycan. Our results showed that all strains studied were capable of producing hyaluronic acid, with higher production by lactobacilli than bifidobacteria. Production of diacetyl was more prevalent from strains of lactobacilli, while bifidobacteria produced higher amounts of acetic acid. Strains of lactobacilli and bifidobacteria studied also produced acid and neutral sphingomyelinase, an enzyme that generates ceramides and subsequent development of physical barriers in the stratum corneum. Our current findings show that bioactive and inhibitive extracts are produced from the fermentation of lactobacilli and bifidobacteria in milk, with potentials for dermal applications.  相似文献   

16.
Hu B  Gong Q  Wang Y  Ma Y  Li J  Yu W 《Anaerobe》2006,12(5-6):260-266
To investigate the prebiotic properties of neoagaro-oligosaccharides (NAOS), obtained from enzymatic hydrolysis of agarose, the in vitro and in vivo effects of NAOS on bacterial growth were studied. In vitro NAOS were found to be highly resistant to enzymes of the upper gastrointestinal tract, which remained intact after 24h incubation with different amylolytic enzymes. NAOS significantly stimulated the growth of bifidobacteria and lactobacilli in Man-Rogosa-Sharp (MRS) medium, anaerobically. Compared with fructo-oligosaccharides (FOS), 1% (w/v) NAOS promoted the specific growth rate of beneficial bacteria by about 100%. The decreases of media pH with NAOS were almost the same as that with FOS. In vivo, NAOS significantly increased the numbers of lactobacilli and bifidobacteria (P<0.05) in fresh feces or cecal content while reducing putrefactive microorganisms. Mice fed with 2.5% (w/v) NAOS for 7 days had larger increases in colonic beneficial bacteria population than those fed with even 5% (w/v) FOS for 14 days. No side effects, such as eructation and bloating, were found. Interestingly, NAOS with higher degrees of polymerization (DP) showed better prebiotic activity. These results indicated that NAOS had great prebiotic effect, which could be beneficial to the host.  相似文献   

17.
In vitro fermentations were carried out by using a model of the human colon to simulate microbial activities of lower gut bacteria. Bacterial populations (and their metabolic products) were evaluated under the effects of various fermentable substrates. Carbohydrates tested were polydextrose, lactitol, and fructo-oligosaccharide (FOS). Bacterial groups of interest were evaluated by fluorescence in situ hybridization as well as by species-specific PCR to determine bifidobacterial species and percent-G+C profiling of the bacterial communities present. Short-chain fatty acids (SCFA) produced during the fermentations were also evaluated. Polydextrose had a stimulatory effect upon colonic bifidobacteria at concentrations of 1 and 2% (using a single and pooled human fecal inoculum, respectively). The bifidogenic effect was sustained throughout all three vessels of the in vitro system (P = 0.01 seen in vessel 3), as corroborated by the bacterial community profile revealed by %G+C analysis. This substrate supported a wide variety of bifidobacteria and was the only substrate where Bifidobacterium infantis was detected. The fermentation of lactitol had a deleterious effect on both bifidobacterial and bacteroides populations (P = 0.01) and decreased total cell numbers. SCFA production was stimulated, however, particularly butyrate (beneficial for host colonocytes). FOS also had a stimulatory effect upon bifidobacterial and lactobacilli populations that used a single inoculum (P = 0.01 for all vessels) as well as a bifidogenic effect in vessels 2 and 3 (P = 0.01) when a pooled inoculum was used. A decrease in bifidobacteria throughout the model was reflected in the percent-G+C profiles.  相似文献   

18.
Stirred, pH controlled batch cultures were carried out with faecal inocula and various chitosans to investigate the fermentation of chitosan derivatives by the human gut flora. Changes in bacterial levels and short chain fatty acids were measured over time. Low, medium and high molecular weight chitosan caused a decrease in bacteroides, bifidobacteria, clostridia and lactobacilli. A similar pattern was seen with chitosan oligosaccharide (COS). Butyrate levels also decreased. A three-stage fermentation model of the human colon was used for investigation of the metabolism of COS. In a region representing the proximal colon, clostridia decreased while lactobacilli increased. In the region representing the transverse colon, bacteroides and clostridia increased. Distally a small increase in bacteroides occurred. Butyrate levels increased. Under the highly competitive conditions of the human colon, many members of the microflora are unable to compete for chitosans of low, medium or high molecular weight. COS were more easily utilised and when added to an in vitro colonic model led to increased production of butyrate, but some populations of potentially detrimental bacteria also increased.  相似文献   

19.
Functional petit-suisse cheese: measure of the prebiotic effect   总被引:1,自引:0,他引:1  
Cardarelli HR  Saad SM  Gibson GR  Vulevic J 《Anaerobe》2007,13(5-6):200-207
Prebiotics and probiotics are increasingly being used to produce potentially synbiotic foods, particularly through dairy products as vehicles. It is well known that both ingredients may offer benefits to improve the host health. This research aimed to evaluate the prebiotic potential of novel petit-suisse cheeses using an in vitro fermentation model. Five petit-suisse cheese formulations combining candidate prebiotics (inulin, oligofructose, honey) and probiotics (Lactobacillus acidophilus, Bifidobacterium lactis) were tested in vitro using sterile, stirred, batch culture fermentations with human faecal slurry. Measurement of prebiotic effect (MPE) values were generated comparing bacterial changes through determination of maximum growth rates of groups, rate of substrate assimilation and production of lactate and short chain fatty acids. Fastest fermentation and high lactic acid production, promoting increased growth rates of bifidobacteria and lactobacilli, were achieved with addition of prebiotics to a probiotic cheese (made using starter+probiotics). Addition of probiotic strains to control cheese (made using just a starter culture) also resulted in high lactic acid production. Highest MPE values were obtained with addition of prebiotics to a probiotic cheese, followed by addition of prebiotics and/or probiotics to a control cheese. Under the in vitro conditions used, cheese made with the combination of different prebiotics and probiotics resulted in the most promising functional petit-suisse cheese. The study allowed comparison of potentially functional petit-suisse cheeses and screening of preferred synbiotic potential for future market use.  相似文献   

20.
Human milk contains prebiotic oligosaccharides, which stimulate the growth of intestinal bifidobacteria and lactobacilli. It is unclear whether the prebiotic capacity of human milk contributes to the larger bile salt pool size and the more efficient fat absorption in infants fed human milk compared with formula. We determined the effect of prebiotic oligosaccharides on bile salt metabolism in rats. Rats were fed a control diet or an isocaloric diet containing a mixture of galactooligosaccharides (GOS), long-chain fructooligosaccharides (lcFOS), and acidified oligosaccharides (AOS) for 3 wk. We determined synthesis rate, pool size, and fractional turnover rate (FTR) of the primary bile salt cholate by using stable isotope dilution methodology. We quantified bile flow and biliary bile salt secretion rates through bile cannulation. Prebiotic intervention resulted in significant changes in fecal and colonic flora: the proportion of lactobacilli increased 344% (P < 0.01) in colon content and 139% (P < 0.01) in feces compared with the control group. The number of bifidobacteria also increased 366% (P < 0.01) in colon content and 282% in feces after the prebiotic treatment. Furthermore, pH in both colon and feces decreased significantly with 1.0 and 0.5 pH point, respectively. However, despite this alteration of intestinal bacterial flora, no significant effect on relevant parameters of bile salt metabolism and cholate kinetics was found. The present data in rats do not support the hypothesis that prebiotics naturally present in human milk contribute to a larger bile salt pool size or altered bile salt pool kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号