首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Studies of “gelatinous” zooplankton are rather rare, and little is known about the biology and ecology of Antarctic Cnidaria, especially for siphonophores. More investigations are necessary for complementing the current information on the “gelatinous” zooplankton inhabiting this important but little know biogeographical region, especially because siphonophores very likely play a significant role in the Antarctic food chains. The species composition, abundance and vertical distribution of planktonic cnidarians in the Croker Passage were evaluated using the data obtained from three expeditions. Zooplankton were sampled with a double plankton net between 0 and 1,200 m water depth in both summer and winter seasons. In total, ten species of siphonophores and four species of medusae were identified. Siphonophore assemblages were dominated by Dimophyes arctica, Pyrostephos vanhoeffeni, and Diphyes dispar. D. arctica and D. dispar occurred in greatest numbers in summer, mainly in the upper mesopelagic zone. P. vanhoeffeni, a cryophilic species, occurred most abundantly in winter (in the lower mesopelagic zone), when they probably reproduce. Restricted circulation from the Bellingshausen Sea over the continental shelf into Croker Passage may exclude the deeper-living oceanic fauna from the area of investigation, as indicated by the low abundances of Crystallophyes amygdalina, Muggiaea sp., and Heteropyramis spp. Four species of medusae were identified. The highest abundance was noted for Solmundella bitentaculata and Arctapodema sp. These occurred most abundantly in the middle (January) and end (April) of summer.  相似文献   

2.
Anthropogenic inputs of CO2 are altering ocean chemistry and may alter the role of marine calcifiers in ocean ecosystems. Laboratory research and ocean models suggest calcifiers in polar waters are especially at risk, particularly pteropods: pelagic aragonite-shelled molluscs. However, baseline data for natural populations of pteropods are limited, especially for polar and sub-polar waters. In order to establish baseline data on diversity, preservation state and shell flux of in situ populations of Sub-Antarctic Southern Ocean pteropods, we deployed sediment traps above (1,000 m) and below (2,000 m) the aragonite saturation horizon (ASH) (currently at 1,200 m) from 1997 to 2006 at 47°S, 142°E. We identified seven pteropod taxa. We applied a shell opacity index to each shell collected and found 50% of shells collected above the ASH to be in pristine condition but only 3% of the shells collected below the ASH showed such a high degree of preservation. We estimated pteropod shell mass fluxes for the region (0.17–4.99 mg m−2 day−1), and we identified significant reductions in shell flux for Limacina helicina antarctica forma rangi and Clio recurva to the trap series above the ASH and for Limacina helicina antarctica forma rangi and Limacina helicina antarctica forma antarctica to the trap series below the ASH over the interval 1997–2006. Our data establish a temporal and vertical snapshot of the current Sub-Antarctic pelagic pteropod community and provide a baseline against which to monitor Southern Ocean pteropods responses, if any, to changing ocean conditions projected for the region in the coming decades.  相似文献   

3.
In the Ross Sea and Amundsen Sea, four representatives of the genus Paralepidapedon—Paralepidapedon cf. dubium Prudhoe et Bray 1973 sensu Sokolov et Gordeev 2013, P. lepidum (Gaevskaya et Rodyuk 1988), Paralepidapedon sp., and P. variabile sp. n.—were found in demersal fishes Muraenolepis marmorata and Macrourus whitsoni. Paralepidapedon variabile sp. n. is described from Muraenolepis marmorata in the Amundsen Sea. Paralepidapedon variabile sp. n. differs from other species of the genus Paralepidapedon by the position of the anterior border of the vitellarium at the level of the anterior edge of the ventral sucker or genital pore and by the highly variable shape of the testes: from roundish with a smooth edge to sinuate–lobate. Paralepidapedon lepidum was found for the first time in the Antarctic.  相似文献   

4.
5.
The impact of ocean acidification on key ocean calcifiers is predicted to be imminent, particularly in high-latitude ecosystems. Long-term field observations are essential to ground truth predictions of change in regional ecosystems. Here, we report on aragonitic pteropods collected to sediment traps at 800 m depth at 54°S, 140°E in the Polar Frontal Zone (PFZ) of the Southern Ocean from 1997 to 2007. Statistically significant trends were not identified in either mass or number flux from 1997 to 2007; however, differences emerged in decadal trends seen in shell weight for each of the three common taxa collected: Limacina helicina antarctica forma antarctica shells became significantly lighter (P < 0.05), L. retroversa australis shells became significantly heavier (P < 0.05) and L. helicina antarctica forma rangi shells did not change significantly. These results suggest that factors other than ocean acidification affect pteropod population variations on decadal timescales, with the potential to either amplify or counter the impact of decreasing aragonite saturation state, at least in the short term. Comparison to sea surface temperature and chlorophyll biomass did not identify these as significant drivers of the observed changes, and attribution across these multiple variables requires better understanding of pteropod physiology and ecology. Our PFZ pelagic pteropod observations provide a reference for evaluation of southern polar pteropod responses to changing ocean conditions in coming decades. Importantly, these data also raise the issue of taxonomic care when monitoring the region for impacts of ocean acidification on calcifiers.  相似文献   

6.
7.
The extensive buildup of phytoplankton biomass in the Ross Sea conflicts with the view that high rates of herbivory occur in all regions of the Southern Ocean. Nano and microplanktonic consumers comprise a significant fraction of total plankton biomass; however, the importance of grazing remains uncertain in the Ross Sea. Microzooplankton ingestion of solitary and colonial cells of Phaeocystis antarctica were calculated using a novel live-staining fluorescently-labeled algae method. Different morphotypes of P. antarctica were stained different colors, mixed, and observed inside Euplotes to determine their feeding preference. The blue (7-aminocoumarin) (CMAC) stain was used on the colonies and the green (CMFDA) CellTracker Probe was used on solitary cells. Both morphotypes can be seen inside the food vacuoles of the ciliate, supporting the idea that microzooplankton are capable of ingesting cells within the colonial matrix. This suggests that P. antarctica colonies enter the microbial loop in the Ross Sea before sedimentation.  相似文献   

8.
9.
Ascarophis sp., including sexually mature adult worms, was commonly recorded in the amphipodGammarus oceanicus Segerstrle in the northern Baltic Sea and also inGammarus sp. in estuarine localities in the New Brunswick region of the north-western Atlantic. Species of the genusAscarophis van Beneden (Nematoda: Cystidicolidae) are known as parasites of marine and brackish water fishes, whereas generally only larval forms have been reported from crustaceans. Adults as well as larval stages are described (LM and SEM) and the infection dynamics is analysed in relation to the amphipod population. The results suggest a direct transmission of embryonated eggs to new amphipods, although this remains to be verified experimentally.  相似文献   

10.
In the Ross Sea, the prymnesiophyte Phaeocystis antarctica G. Karst. dominates deeply mixed water columns, while diatoms dominate shallower mixed layers. Understanding what controls the dynamics of these two phytoplankton taxa is essential because they dominate virtually all coastal polar waters, have different nutrient utilization characteristics, and support dissimilar food webs. We cultured two strains of P. antarctica and one strain of the diatom Fragilariopsis cylindrus (Grunow) Willi Krieg under three dynamic irradiance regimes that simulated different mixed‐layer depths and measured their photosynthetic characteristics, cellular pigment concentrations, and cellular carbon and nitrogen content. In both species, chl a–normalized maximum carbon uptake rate (Pm* ) and specific growth rate were highest in the deeply mixed treatment that had a dark period. In all irradiance treatments, both (Pm* ) and photosynthetic efficiency (α*) were greater for the two P. antarctica strains than for the F. cylindrus strain. In contrast, P. antarctica strains were more susceptible to photoinhibition (β*) than the F. cylindrus strain. When photosynthetic rates of each phytoplankton taxon were normalized by cellular particulate organic carbon (POC), the difference in the maximal photosynthetic rate () was generally reduced. In the dynamic irradiance treatment that simulated the shallowest mixed‐layer irradiance, all three phytoplankton had similar ; however, the diatom had a 2‐fold higher POC‐normalized photosynthetic efficiency (αC). Finally, we performed calculations using the measured POC‐normalized photosynthetic parameters to show that αC and can play a greater role than βC in determining the competitive outcome between P. antarctica and F. cylindrus in both shallow and deep mixed‐layer environments of the Ross Sea.  相似文献   

11.
The distribution, behavior and metabolism of the mesopelagic jellyfish, Periphylla periphylla (Péron & Lesueur), were investigated in Lurefjorden, Norway. Field studies, conducted in 1998–1999 with plankton nets and a remotely operated vehicle, indicated that 80-90% of the dense (up to 2.5 m–3) population migrated 200–400 m vertically each day throughout the year. In situ observations with red light revealed that swimming rates and feeding activity varied with age and time of day. Detection of turbulence and contact with surfaces caused this medusa to conceal one or all of its tentacles in the stomach or to shed nematocyst-laden tissue from the tentacles. Stomachs of medusae collected with nets were often full of prey entangled with the sloughed tissue. Stomachs of medusae captured individually with ROV samplers were empty or contained only a few prey in their stomachs (typically, 1–4 copepods Calanus spp. or chaetognaths Eukrohnia hamata Möbius per medusa). Low rates (0.4–5.6 l O2 mg C–1 h–1) of oxygen consumption of P. periphylla suggested that this species was sustained by relatively few (1–34) prey d–1.  相似文献   

12.
Anthropogenic inputs of CO2 are changing ocean chemistry and will likely affect calcifying marine organisms, particularly aragonite producers such as pteropods. This work seeks to set a benchmark analysis of pteropod shell properties and variability using nanoindentation and electron microscopy to measure the structural and mechanical properties of Subantarctic pteropod shells (Limacina helicina antarctica) collected in 1998 and 2007. The 1998 shells were collected by a sediment trap deployed at 2000 m, 47°S, 142°E, and the 2007 shells were collected using nets from mixed-layer waters in the region (44°–54°S, 140°–155°E). Transmission electron microscopy revealed that the shells are composed of a polycrystalline structure, and no obvious porosity was visible. The hardness and modulus of the shells were measured using shell cross-section nanoindentation, across various regions of the shell from the inner to outer whorl. No change in mechanical properties was found with respect to the region of the shell cross-section probed. There was no statistically significant difference in the mean modulus or hardness of the shells between the 1998 and 2007 data sets. No major changes in the mechanical properties of these pteropod shells were detected between the 1998 and 2007 data sets, and we discuss the possible biases in the sampling techniques in complicating our analysis. However, quantifying the mechanical properties and microstructure of calcified may still provide insights into the responses of calcification to environmental changes, such as ocean acidification.  相似文献   

13.
We have carried out field and laboratory experiments to examine the iron requirements of colonial Phaeocystis antarctica in the Ross Sea. In December 2003, we performed an iron/light-manipulation bioassay experiment in the Ross Sea polynya, using an algal assemblage dominated by colonial Phaeocystis antarctica, collected from surface waters with an ambient dissolved Fe concentration of ∼0.4 nM. Results from this experiment suggest that P. antarctica growth rates were enhanced at high irradiance (∼50% of incident surface irradiance) but were unaffected by iron addition, and that elevated irradiance mediated a significant decrease in cellular chlorophyll a content. We also conducted a laboratory iron dose–response bioassay experiment using a unialgal, non-axenic strain of colonial P. antarctica and low-iron (<0.2 nM) filtered seawater, both collected from the Ross Sea polynya in December 2003. By using rigorous trace-metal clean techniques, we performed this dose–response iron-addition experiment at ∼0°C without using organic chelating reagents to control dissolved iron levels. At the relatively low irradiance of this experiment (∼20 μE m−2 s−1), estimated nitrate-specific growth rate as a function of dissolved iron concentration can be described by a Monod relationship, yielding a half-saturation constant with respect to growth of 0.45 nM dissolved iron. This value is relatively high compared to reported estimates for other Antarctic phytoplankton. Our results suggest that seasonal changes in the availability of both iron and light play critical roles in limiting the growth and biomass of colonial Phaeocystis antarctica in the Ross Sea polynya.  相似文献   

14.
A new fish leech Ambulobdella shandikovi n. g., n. sp. (Hirudinida: Piscicolidae), a parasite of Whitson’s grenadier Macrourus whitsoni (Regan) (Macrouridae: Gadiformes) collected in the Ross Sea at depths from 1,221 to 1,433 m, is described and compared with related taxa based on morphological and molecular characters. Ambulobdella shandikovi n. sp. is characterised by prominent segmental tubercles on the venter and dorsal segmental tubercles, an uncommon appearance of its anterior sucker with ear-like edges and an inner membrane around the mouth-pore, well-developed musculature and a unique combination of features of the reproductive and digestive systems. The presence of uncommon tubercles can be attributed, in part, to temporary associations of A. shandikovi n. sp. with its fish hosts and a need for well-developed sensory and locomotory organs. A certain locomotory function of ventrolateral tubercles of A. shandikovi n. sp. is hypothesised and discussed. Further deep-sea surveys are obviously needed to shed light on the behaviour and mode of locomotion of this species.  相似文献   

15.
16.
Photosynthetic characteristics of the red macroalgae Phyllophora antarctica and Phymatolithon foecundum collected from under sea ice at Cape Evans, McMurdo Sound (Ross Sea) were determined using in situ fluorometric and lab-based oxygen exchange techniques. Only 0.16% of incident irradiance penetrated the 2.5 m thick ice cover and photosynthetic parameters for both taxa were characteristic of highly shade-adapted plants. Saturation onset parameter (E k) did not exceed 13 mol photons m-2 s-1 in either taxon. For Phyllophora antarctica the light saturated photosynthetic rate at –1°C was 10 mol O2 g-1 FW h-1 and respiration averaged 3.3 mol O2 g-1 FW h-1 between sampled depths of 10 and 25 m. A light meter deployed at 15 m depth for a year recorded a marked increase in underwater irradiance on the last day of January 2002 coinciding with ice-breakout, and a maximum value for irradiance of 120 mol photons m-2 s-1 on 9 February 2002. The 2-month ice-free period was the only time when irradiance consistently exceeded compensation (photosynthesis=respiration) and enabled Phyllophora antarctica to accumulate sufficient carbon to result in a measurable increase in thallus area equivalent to a biomass increment of 1.87 mg (DW) per frond. Near the southern global limit for marine macroalgae, conditions that dictate the availability of underwater irradiance are extremely variable from year to year. Low respiration rates enhance longevity of the Phyllophora antarctica thallus, enabling it to not only survive the winter darkness, but also to retain photosynthetic capacity and thus take advantage of windows of higher irradiance.  相似文献   

17.
During a survey of Guatemalan herpetofauna in the summers of 1998–2000, 29 presumed new species of Eimeria Schneider, 1875 were found, seven of which have a distinct elongate-ellipsoidal shape (L/W ratio ≥ 1.7) and are described herein. Six of the seven new species are similar in oöcyst length, width and L/W ratio and sporocyst length, width and L/W ratio, lack a micropyle, oöcyst residuum, Stieda body, sub- and parastieda bodies, have a polar granule and sporocyst residuum, and their sporocysts appear to have dehiscence sutures. The seventh is slightly smaller and has sporocysts with a Stieda body. The new species are: E. coniophanes n. sp – whose sporulated oöcysts from Coniophanes fissidens are 29.2×14.9 (27–31×13–16) m, with sporocysts m; E. coniophis n. sp. –from Conophis lineatus are 32.0×16.5 (30–34×14–18) m, with sporocysts m; E. dryomarchoni n. sp. – from Drymarchon corais are 32.2×17.7 (31–34×17–19) m, with sporocysts m; E. leptophis n. sp. – from Leptophis mexicanus are 29.5×17.0 (28–31×16–18) m, with sporocysts m; E. oxybelis n. sp. – from Oxybelis aeneus are 31.8×16.5 (29–33×15–18) m, with sporocysts m; and E. scaphiodontophis n. sp. – from Scaphiodontophis annulatus are 30.0×15.3 (28–33×14–16) m, with sporocysts m. Sporulated oöcysts of E. siboni n. sp. from Sibon nebulata are 24.3×14.2 (21–27×13–16) m, with sporocysts m and with a Stieda body. We conclude that until all aspects of each life-cycle are known, it is prudent at this time to name all tetrasporocystic dizoic coccidia from snakes as members of Eimeria rather than place some of them in Choleoeimeria Paperna & Landsberg, 1989.  相似文献   

18.
In order to better understand Late Quaternary pelagic aragonite preservation in the western Arabian Sea we have investigated a high-resolution sediment core 905 off Somalia. Pteropod preservation is enhanced in times of reduced monsoon-driven productivity, indicated by low amounts of Corg and low barium to aluminium (Ba/Al) ratios. All periods corresponding to Heinrich events in the North Atlantic are represented by maxima in shell preservation of the common pteropod Limacina inflata (LDX values < 2, except for H5-equivalent with a poorer shell preservation, LDX > 2.66). Good shell preservation is also found during stadials at 52.1–53.2, 36, 33.2, and 31.9 ka. Relative abundance of pteropods and their fragments in the coarse fraction reaches maxima during Marine Isotope Stage (MIS) 5.2, during time-equivalents of Heinrich events 4–6 and in stadials at  53,  42.5, and 41.4 ka.On longer time scales, the pteropod abundance corresponds to the ‘Indo-Pacific carbonate preservation type’ with poor preservation during interglacials and better preservation during glacials. Late MIS 5 to early MIS 4 sections (84.1–64.8 ka) and the Late Holocene interval (6.5–0 ka) of core 905 contain only traces of pteropods. The early Holocene (9.2–6.5 ka) part is characterized by low pteropod amounts. Between 64.8 and 43.4 ka strong fluctuations occur and an intermediate average relative pteropod abundance is revealed. Between 43.4 and 9.2 ka the highest amounts in relative pteropod abundance in core 905 are observed. Besides the regional monsoonal influence on deepwater chemistry, changes in deepwater circulation occurring on glacial/interglacial and stadial/interstadial time scales might have affected pteropod preservation. However, it remains elusive whether 1) deep water formation in the Arabian Sea, 2) inflow of Glacial North Atlantic Intermediate Water or 3) change in water mass properties of the Circumpolar Deep Water (which is the water mass currently bathing this site) contributed to the observed pteropod preservation pattern.  相似文献   

19.
Summary The chromosome complement and some karyological features were investigated in the pelagic amphipod Hyperiella dilatata Stebbing 1888 from the Ross Sea (Antarctica). The diploid karyotype consists of 48 metacentric and 10 submetacentric elements (2n = 58). The presence of secondary constrictions and supernumerary chromosomes is described. Available chromosome numbers of Hyperiidea exhibit a wide range of distribution, among which Hyperiella dilatata is the closest to the modal number of other amphipods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号