首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we test the influence of temperature and interference competition by dominant species on the foraging of subordinate species in Mediterranean ant communities. We have analyzed the changes in resource use by subordinate species in plots with different abundances of dominant ants, and in different periods of the day and the year, i.e., at different temperatures. The expected effects of competition by dominant species on foraging of subordinates were only detected for two species in the number of baits occupied per day, and for one species in the number of foragers at pitfall traps. In all three cases, subordinate species were less represented at baits or in traps in plots with a high density of dominants than in plots with a medium or low density of dominants. The number of workers per bait, and the foraging efficiency of subordinate species did not differ in plots differing in dominant abundance. Daily activity rhythms and curves of temperature versus foraging activity of subordinate species were also similar in plots with different abundance of dominant species, indicating no effect of dominants on the foraging times of subordinates. Instead, temperature had a considerable effect on the foraging of subordinate species. A significant relationship was found between maximum daily temperature and several variables related to foraging (the number of foragers at pitfall traps, the number of baits occupied per day, and the number of workers per bait) of a number subordinate species, both in summer and autumn. These results suggest that the foraging of subordinate ant species in open Mediterranean habitats is influenced more by temperature than by competition of dominants, although an effect of dominants on subordinates has been shown in a few cases. In ant communities living in these severe and variable environments, thermal tolerance reduces the importance of competition, and the mutual exclusion usually found between dominant and subordinate species appears to be the result of physiological specialization to different temperature ranges. Received: 8 May 1998 / Accepted: 30 July 1998  相似文献   

2.

Direct interference interactions between species are often mediated by aggression and related to resource use. Interference interactions are frequently asymmetric, whereby one species wins the majority of interactions; however, the effect of this asymmetry on the diet of subordinate species has not received the same attention as the impact of interference on habitat use. Here we experimentally evaluated whether release from asymmetric interference led to increased use of a preferred dietary resource by subordinate species, using coral-feeding butterflyfishes as a model system. Following experimental removal of the behaviourally dominant species, we found no change in diet breadth or foraging on the preferred resource by subordinate species. Our results suggest that release from asymmetric interspecific interference does not necessarily result in changes to subordinate species’ diets, at least not over the course of our study. Rather, consistently asymmetric interactions may contribute to behavioural conditioning of subordinate species, meaning that even in the absence of dominants, subordinate individuals maintain established feeding patterns. Additionally, our results suggest that antagonistic interactions between butterflyfishes may have contributed to niche partitioning and conservatism over evolutionary time scales.

  相似文献   

3.
Variability in the size distributions of populations is usually studied in monocultures or in mixed plantings of two species. Variability of size distributions of populations in more complex communities has been neglected. The effects of seeding density (35 or 350 seeds/species/m2) and presence of small vertebrates on the variability of size distributions were studied for a total of 1,920 individuals of 4 species in replicated synthetic communities of 18 species in northern Illinois. End-of season height and above-ground biomass were measured for prairie perennials Dalea purpurea (purple prairie clover), Echinacea purpurea (purple coneflower), Desmanthus illinoensis (Illinois bundleflower) and Heliopsis helianthoides (early sunflower). Variability in biomass distribution of the four target species was twice as great at low than at high densities when small vertebrates were excluded. Our results suggest that inter- and intraspecific competition may affect all individuals more under high-density conditions, thereby reducing the variability in their biomass distributions within this community. This result, a consequence of plant-plant interaction, is obscured when small birds or mammals are present, presumably because either or both add variance that overwhelms the pattern.  相似文献   

4.
Unraveling the mechanisms facilitating species coexistence in communities is a central theme in ecology. Species‐rich tropical mammal communities provide excellent settings to explore such mechanisms as they often harbor numerous congeneric species with close phylogenetic relationships. Explicit tests for the mechanisms that allow syntopic occurrence in these assemblages, however, is often hampered because of the difficulty in obtaining detailed ecological data on the organisms making up the community. Using stable nitrogen and carbon ratios of hair samples, we examine whether trophic niche differentiation and microhabitat segregation explain the coexistence of 21 small mammal species at a montane humid forest site in eastern Madagascar. Overall, the community was trophically diverse and covered wide isotopic space. This diversity was based on: (1) a multi‐layered trophic community structure with mainly frugivorous‐granivorous rodents (subfamily Nesomyinae) as primary consumers and insectivorous tenrecs (family Tenrecidae) as secondary and tertiary consumers; (2) trophic segregation of rodents and tenrecs with the latter occupying different microhabitats; and (3) a dense and regular packing of species in the community. The 12 locally occurring Microgale shrew tenrecs (subfamily Oryzorictinae) showed high trophic redundancy, but were maximally spaced from each other within the trophic space covered by the genus. Results of stable isotope analysis suggest that in combination the differentiation of microhabitats and trophic niches explain the coexistence of small mammals in this community. Congeneric species appeared to be under more intense competition compared with non‐congeneric species and their coexistence can only partly be explained by trophic and microhabitat niche segregation.  相似文献   

5.
Arnan X  Gaucherel C  Andersen AN 《Oecologia》2011,166(3):783-794
The role of competitive exclusion is problematic in highly diverse ant communities where exceptional species richness occurs in the face of exceptionally high levels of behavioural dominance. A possible non-niche–based explanation is that the abundance of behaviourally dominant ants is highly patchy at fine spatial scales, and subordinate species act as insinuators by preferentially occupying these gaps—we refer to this as the interstitial hypothesis. To test this hypothesis, we examined fine-scale patterns of ant abundance and richness according to a three-tiered competition hierarchy (dominants, subdominants and subordinates) in an Australian tropical savanna using pitfall traps spaced at 2 m intervals. Despite the presence of gaps in the fine-scale abundance of individual species, the combined abundance of dominant ants (species of Iridomyrmex, Papyirus and Oecophylla) was relatively uniform. There was therefore little or no opportunity for subordinate species to preferentially occupy gaps in the foraging ranges of dominant species, and we found no relationship between the abundance of dominant ants and nondominant species richness at fine spatial scales. However, we found a negative relationship between subdominant and subordinate ants, a negative relationship between dominant and subdominant ants, and a positive relationship between dominant and subordinate ants. These results suggest that dominant species actually promote species richness by neutralizing the effects of subdominant species on subordinate species. Such indirect interactions have very close parallels with three-tiered trophic cascades in food webs, and we propose a “competition cascade” where the interactions are through a competition rather than trophic hierarchy.  相似文献   

6.
为探讨金佛山方竹经营对扁刺栲群落物种多样性和优势种种群结构的影响,该研究以金佛山的扁刺栲自然群落和金佛山方竹经营群落为对象,分析了两类群落的物种组成特征、物种多样性及优势种种群结构。结果表明:(1)两种群落内共记录维管束植物84种,隶属于40科63属,以樟科、蔷薇科、壳斗科、山茶科物种为主;扁刺栲为群落优势种,中华木荷和灰柯为次优势种,金佛山方竹为灌木层优势种,扁刺栲群落组成与亚热带其他地区的扁刺栲群落组成相似。(2)金佛山方竹经营群落的灌木层物种丰富度显著低于自然群落,草本层Shannon-Wiener指数和Pielou指数均显著低于自然群落。(3)扁刺栲和灰柯在自然群落中为稳定型种群,而在金佛山方竹经营群落中为衰退型种群,中华木荷在两类群落中均为衰退型种群。(4)自然群落中扁刺栲、中华木荷、灰柯种群的萌枝率、有萌个体率和幼苗相对优势度均高于金佛山方竹经营群落。综上认为,金佛山方竹经营对金佛山扁刺栲群落灌木层和草本层物种多样性产生了负面影响,并显著影响扁刺栲群落优势种种群更新和维持。  相似文献   

7.
The impact of arbuscular mycorrhizal fungi (AMF) on plant ecosystems has been intensively reported. In this research, we explored the difference between native and introduced AMF in promoting the growth of dominant and subordinate plant species. In glasshouse experiments, dominants and subordinates from subtropical grasslands were colonized by native AMF or introduced AMF, Glomus versiforme. The biomass revealed that mycorrhizal dependencies (MD) on the native AMF of the dominants were much higher than those of the subordinates, while MD on the introduced AMF changed following the replacement of native AMF with introduced AMF. A close relationship between biomass promotion and increase in phosphorus uptake was observed, indicating the important role of AMF-enhanced nutrient acquisition by roots. Our results show that plant community structures are partly determined by MD on native AMF, and could be modified by introducing exogenous AMF species.  相似文献   

8.
Dominant competitors govern resource use in many communities, leading to predictions of local exclusion and lower species diversity where dominant species are abundant. However, subordinate and dominant species frequently co‐occur. One mechanism that could facilitate resource sharing and co‐occurrence of dominant and subordinate competitors is fine‐scale resource dispersion. Here, we distributed 6 g of a food resource into 1, 2, 8, 32 or 64 units in small 0.40 m2 areas centred on nests of the dominant ant Monomorium sydneyense. We tested three hypotheses. First, we hypothesized that the species richness and abundance of foraging ants would increase with increasing resource dispersion. Accordingly, species richness doubled and total ant abundance was two orders of magnitude higher in high resource dispersion treatments. Secondly, we hypothesized that increasing resource dispersion would reduce competitive interactions such as resource turnover events and lower the probability of food resources being occupied. Substantial support for this hypothesis was observed. Finally, we tested the hypothesis that the foraging time of each species would be proportional to the relative abundance of each species solely in high resource dispersion treatments. Expected and observed foraging times were statistically similar for only the dominant ant M. sydneyense. The subdominant Pheidole rugosula increased its foraging time much more than was expected, while two subordinate ants showed no relationship between observed and expected times. Thus, while increasing resource dispersion significantly increased overall species richness, this increase in co‐occurrence did not correlate with a significant increase in foraging time for the two subordinate species. Rather, changes in resource dispersion appeared to benefit only the subdominant species. Inter‐site variation appeared more important for other subordinate species indetermining co‐occurrence and foraging time. Multiple mechanisms facilitate co‐occurrence and resource sharing in this community, and probably in most other communities.  相似文献   

9.
The relative importance of abiotic factors in community assembly is debated and thought to be dependent on the scale. I investigated the relative role of topography and soils as structuring agents at the landscape and the community scales in 126 subalpine calcareous grasslands in the Pyrenees, in terms of species composition and abundance. I wished to know: (1) the role of abiotic factors in the organization of plant communities across the landscape; (2) how much of the variation in community distribution was accounted for by abiotic factors; and (3) how well their role applied to the distribution of dominant species at the landscape and the community scales. The hypothesis was: abiotic factors play an important role in community distribution in the landscape, but species interactions are more important within communities. Multivariate methods generated four communities, organized in two contrasting groups along the main vegetation axis, which explained 13% of the variation: mesic grasslands (Nardus stricta and Festuca nigrescens communities) and xeric grasslands (Carex humilis and Festuca gautieri communities). Mesic communities were more acidic and fertile than xeric communities. Changes in the abiotic environment, accounting for up to 80% of the variation in the vegetation, were smooth, while the transition between xeric and mesic grasslands was sharp in terms of species composition. The distribution in the landscape of the first main species from each community was closely related to abiotic factors, which modeled poorly the abundance of the main species at smaller scales. At the within-community scale, the explanatory power of biotic relationships was community dependent, producing the most significant models for plants highly dominant within their communities, such as N. stricta and F. gautieri. Contrary to current hypothesis, there was a shift from mainly positive relationships among dominant species in fertile mesic communities to mainly negative in infertile xeric ones.  相似文献   

10.
Patterns of woody plants dispersal in a semi-arid nature reserve situated in Eastern Transvaal, South Africa, revealed that trees have spread from core areas and converted previously open grasslands to densely vegetated woodlands. These patterns were found in catchment areas of the gently undulating terrain which characterizes the region.Two plant communities dominated by Acacia senegal-Acacia tortilis and Euclea divinorum-Acacia nilotica were distinguished. Analysis of nearest-neighbour distances, dispersal patterns of seedlings and mature woody plants identified successional processes. These were manifested through intra and interspecific competition among the dominant tree species. Within each plant community, a transition of relative abundance was occurring namely, A. senegal became dominant in areas previously dominated by A. tortilis while E. divinorum was replacing previous A. nilotica dominance.Comparative assessment of the two plant communities was facilitated by the summary of competition and seedling dispersal indices in a multivariate analysis. Results indicated that tree species had characteristic dispersal strategies. Identification the patterns of woody plants establishment could advance the evaluation of successional dynamics and management of savannas in areas prone to bush encroachment.  相似文献   

11.
The effects of interference on community structure of subalpine meadows were investigated. Adults greatly reduced seedling survival in the greenhouse, and natural seedling survival was low. In fell fields, nurse plant effects were common, while survival was confined to gaps in productive meadows. A greenhouse experiment demonstrated that community dominants were strong competitors able to suppress subordinates. Simulated grazing of Festuca, a dominant, reduced its yield relative to most subordinates. Interference intensity appears to be a function of productivity and proximity. The proportion of negative species associations increased as productivity increased. Morphological similarity between species is least in the most productive community, but greatest where productivity is only moderate. Interference may permit only relatively dissimilar species to coexist unless it is ameliorated by factors such as grazing or heterogeneity. Spacing patterns suggest that minimal contact between dominants and other species is a characteristic of communities with intense interference. The evidence points to this hypothesis: interference acts contemporaneously to limit niche width in productive communities, but evolutionary changes are unlikely where complete dominance is possible and specialization is not a viable option. In contrast, species in unproductive communities, where abiotic stress is likely to have been an evolutionary force, appear genetically more niche differentiated. Where contemporary interference is moderate, evolutionary effects are possible because species may use resources not preempted by the dominants.  相似文献   

12.
Many field studies have examined how site fertility, soil differences and site history influence the diversity of a plant community. However, only a few studies have examined how the identity of the dominant species influences the diversity in grasslands. Plant species differ widely in phenology, growth form and resource uses; thus, communities dominated by different species are also likely to strongly differ in the environment that they create and in which the subdominant species exist. We examined the correlation between the four most dominant species and community diversity in 2100 plots, located in 21 abandoned agricultural fields in central Minnesota over a 23‐year period. The four most common species were two non‐native C3 cool season species, Poa pratensis and Agropyron repens, and two native C4 warm season species, Schizachyrium scoparium and Andropogon gerardii. We found that the differences in the dominants explained up to 27% of the community diversity. Thus, the identity of the dominant species can have a strong influence on community diversity and studies examining factors that influence plant community diversity need to incorporate the effect of the dominants. Secondly, we found that the non‐native C3 grass dominated communities had lower overall and lower native species richness relative to the native C4 grass dominated communities. Therefore, a shift in dominants from C4 to C3 may lead to a large community diversity decline. We found that Poa pratensis, the most abundant non‐native C3 grass increased in abundance over the 23 years; thus, the negative influence of non‐natives on the community diversity is not decreasing over time and active management is required to restore native grassland plant communities.  相似文献   

13.
Stein C  Rissmann C  Hempel S  Renker C  Buscot F  Prati D  Auge H 《Oecologia》2009,159(1):191-205
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15–24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
This study examined arginine vasotocin (AVT) expression in the brains of dominant and subordinate male medaka Oryzias latipes after short‐ and long‐term competition. High AVT expression in distinct preoptic regions was found in dominants and subordinates within minutes of encountering each other. During long‐term competition, AVT expression remained high in dominants but not in subordinates.  相似文献   

15.
高梅香  李景科  石昊  张雪萍  朱纪元 《生态学报》2016,36(20):6591-6601
揭示群落物种共存格局是群落生态学研究的重点内容之一,零模型的应用极大的促进了群落物种共存格局及其调控机制的进展,然而针对地下生物群落共存格局动态特征的研究并不多见。在帽儿山森林生态站的人工红松林内,通过5次调查取样基于零模型模拟分析小尺度空间(20 m×20 m)步行虫群落物种共存格局的动态特征。结果表明:(1)共捕获步行虫20种,2278只个体,其中Carabus billergi maoershanensis为所有调查季节数量最具优势且分布最广泛的物种,步行虫群落结构具明显的时间变异性;(2)2013年6月步行虫群落为集群性共存格局,而2014年8、10月为竞争性共存格局,基于目前的零模型指标和法则难以准确揭示其他月份是集群性还是竞争性的共存格局,但所有季节的群落均表现为明显的非随机性共存格局,这些共存格局的发现并不完全支持Diamond的群落构建机制理论;(3)所有调查季节均发现很少的显著物种对,基于更严格的检验表明群落中集群性物种对多于隔离性物种对,那些表现为显著的非随机性共存关系的物种对往往是群落内数量较大且分布广泛的优势和常见物种。表明非随机性共存格局可能是帽儿山人工红松林小尺度空间步行虫群落的常见格局,这种非随机性格局具一定的短期动态稳定性,但不同季节这种非随机性共存格局类型表现不同,群落内这些较少的显著物种对可能对群落物种共存格局具有一定的贡献。  相似文献   

16.
In many hierarchical animal societies, dominant individuals control group membership owing to their power to evict subordinates. In such groups, the presence of subordinates, and therefore group stability, is continually dependent on subordinates being tolerated by dominants. The dominant decision to tolerate or evict is, in turn, dependent on the costs and benefits to dominants of subordinate presence. We investigated the effect of subordinate presence on dominants in the female dominance hierarchy of the dwarf angelfish Centropyge bicolor, using both observations of natural groups and experimental removals of subordinates. We found that the presence of subordinates had no effect on dominant access to resources, as measured by dominant foraging rates and home range areas, nor on dominant fitness, as measured by growth rates and spawning frequencies. Our results suggest that the presence of subordinates has a neutral effect on the current fitness of dominants, so that dominants have no great incentive to evict subordinates. We discuss the possibility that tolerance of subordinates might be further explained by considering future fitness, as dominant females in these haremic protogynous angelfish stand to inherit the male position, whereupon subordinate females change from potential competition to useful mates.  相似文献   

17.
We performed a field experiment to test whether the presence of litter produced by the dominant species in the first successional year affects the plant community structure in the following year. We removed the litter of Setaria faberii (the first-year dominant) in midfall, early spring, mid-spring, or late spring. Both the fall and early spring removal increased the biomass of Erigeron annuus, which became dominant, and reduced the biomass of S. faberii. In the fall-removal treatment more plants of E. annuus flowered, while early spring removal increased the biomass of rosettes (non-flowering individuals) at the end of the growing season. In the other treatments and in the control S. faberii retained dominance, but its biomass was the highest in mid-spring removal plots. The removal of litter of S. faberii in the fall and in early spring allowed E. annuus to pre-empt the site and dominate the community. When litter was not removed, it strongly hindered the growth of E. annuus, favoring S. faberii. These results highlight the importance of litter as a historical factor linking interactions across successive generations, and controlling the community structure.  相似文献   

18.
During a study of avian fig-eating at Kuala Lompat, Malaysia, observations were also made of fig-eating by mammals. Four species of primate, seven species of squirrel, and two species of civet consumed figs. Twenty-six species ofFicus were of importance to arboreal mammals. Observations suggest that there were differences in the importance of figs in the diets of sympatric langurs (Presbytis) and congeneric squirrels. Dusky langursPresbytis obscura ate carbohydrate-rich ripe figs despite their ruminant-like digestive system and the danger of bloat.  相似文献   

19.
Summary Rhinanthus minor (yellow-rattle) is a widespread hemiparasitic plant of grassland habitats throughout Great Britain. It is usually considered to be indicative of species-rich grassland, but in a survey of 14 habitats throughout Britain it was found that R. minor at the time of flowering normally occupied relatively low-diversity patches within areas of high diversity as determined by the number of species, Simpson's Index and the Shannon-Wiener Index. Following the death of adult plants of R. minor in the summer it was shown that the pattern of species diversity changed such that by the time R. minor germinated in the following spring the differences between the areas containing and not containing R. minor were much less distinct. A perturbation experiment in which R. minor was removed from four sites indicated that the effect of the removal of R. minor on the development of community structure over the next year was to increase species diversity on three of the sites and decrease it on the fourth. Those species which responded to the removal of R. minor by an increase in abundance were shown to be preferred hosts. All three lines of evidence point to the fact R. minor has a significant effect on the species diversity of the communities in which it grows by selectively parasitizing components of the flora and modifying the competitive relationships between plants. However, as the communities generally responded to the removal of R. minor by an increase in diversity and as the general survey indicated that R. minor is generally associated with areas of low diversity it would appear that the plants which are selectively parasitized are generally not the competitive dominants in the community.  相似文献   

20.
We studied the effect of a dominant species, Gerbillus pyramidum (Egyptian sand gerbil), on the patch use of its subordinate competitor, G. andersoni allenbyi (Allenby's gerbil), to better understand interspecific competition between the two species. We used manipulated resource patches (seed trays) covered with cages with two adjustable species-specific gates (either opened or closed to the bigger-dominant species, but always opened to the subordinate one). We recorded species tracks around and on the seed trays and giving-up densities (GUDs) of seeds in the trays after each night of foraging. G. a. allenbyi depleted seed patches to a lower level whenever G. pyramidum was given the opportunity to forage on the seed trays (i.e., present on the grid). This result held regardless of whether G. pyramidum was actually present at a particular station. We suggest that competition from G. pyramidum occurs both directly by interference, in which G. a. allenbyi is forced to be active in the late part of the night, and indirectly by exploitation via resource depletion by G. pyramidum in the early part of the night. The results suggest that interspecific competition from G. pyramidum reduces seed availability and the richness of the environment for G. a. allenbyi enough to affect the marginal value of energy for G. a. allenbyi individuals and cause them to experience lower costs of predation and manifest lower GUDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号