首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microcapsules containing fragrant oils as a core material were prepared byin situ polymerization, using melamine-formaldehyde prepolymer as the wall material. The several parameters, such as stirring times, stirring rates, emulsifier types, emulsifier concentrations, and the viscosity of the core materials, affect the characteristics of the microcapsules. These parameters were investigated by the analyses of microcapsule size, particle size distribution, and morphology. The average microcapsule size decreased with an increase in stirring time, stirring rate, emulsifier concentration, and viscosity of the core material. It was also found that poly(vinyl alcohol) as a protective colloid could enhance the stability of the melamine-formaldehyde microcapsules.  相似文献   

2.
Microencapsulation offers a unique potential for high cell density, high productivity mammalian cell cultures. However, for successful exploitation there is the need for microcapsules of defined size, properties and mechanical stability. Four types of alginate/poly-l-Lysine microcapsules, containing recombinant CHO cells, have been investigated: (a) 800 μm liquid core microcapsules, (b) 500 μm liquid core microcapsules, (c) 880 μm liquid core microcapsules with a double PLL membrane and (d) 740 μm semi-liquid core microcapsules. With encapsulated cells a reduced growth rate was observed, however this was accompanied by a 2–3 fold higher specific production rate of the recombinant protein. Interestingly, the maximal intracapsular cell concentration was only 8.7 × 107 cell mL-1, corresponding to a colonization of 20% of the microcapsule volume. The low level of colonization is unlikely to be due to diffusional limitations since reduction of microcapsule size had no effect. Measurement of cell leaching and mechanical properties showed that liquid core microcapsules are not suitable for continuous long-term cultures (>1 month). By contrast semi-liquid core microcapsules were stable over long periods with a constant level of cell colonization (ϕ = 3%). This indicates that the alginate in the core plays a predominant role in determining the level of microcapsule colonization. This was confirmed by experiments showing reduced growth rates of batch suspension cultures of CHO cells in medium containing dissolved alginate. Removal of this alginate would therefore be expected to increase microcapsule colonization.  相似文献   

3.
Preparation of microcapsules through interfacial cross-linking of soluble starch/hydroxyethyl starch and bovine serum albumin (BSA) with terephthaloyl chloride is described. The proteinase inhibitor aprotinin, either native or active site protected, was microencapsulated, being incorporated in the aqueous phase. The influence of aqueous phase pH, BSA, and terephthaloyl chloride concentrations as well as stirring rate on microcapsule morphology and size was studied. The polycondensation pH was shown to be the determining factor for tough microcapsule production with a high encapsulation yield. The size of the microcapsules ranged between 10-30 and 50-100 microm at stirring speed 1500 and 500 rpm, respectively. Fourier transform infrared spectroscopic studies were performed on microcapsules prepared under various conditions. A correlation was established between spectral changes and microcapsule morphology and size. The optimal conditions for microcapsule degradation by alpha-amylase were found. Active site-protected aprotinin was shown to fully retain its activity after microencapsulation.  相似文献   

4.
Yang JS  Ren HB  Xie YJ 《Biomacromolecules》2011,12(8):2982-2987
1-Octyl amine was covalently coupled to sodium alginate(NaAlg) in an aqueous-phase reaction via acidamide functions using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC-HCl) as a coupling reagent to provide octyl-grafted amphiphilic alginate-amide derivative(OAAD) for subsequent use in λ-cyhalothrin (LCH) microcapsule application. The structure of OAAD was confirmed by FT-IR and (1)H NMR spectroscopies. The new alginate-amide derivative was used for fabricating microcapsule that can effectively encapsulate LCH by emulsification-gelation technique. The microcapsules were characterized by optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and laser particle size analysis. The encapsulation efficiency and drug release behavior of LCH from the microcapsules were investigated. Results showed that the microcapsules were in spherical form with diameter mostly in the range of 0.5-10 μm and possessed a structure with LCH as core and OAAD as shell. The encapsulation efficiency and the release performance of the microcapsules were influenced by DS of OAAD and amount of CaCl(2). The mechanism of LCH release was found to vary from anomalous to Fickian to quasi-Fickian transport with the DS of OAAD varied from 10.8 to 30.3 and the CaCl(2)/emulsion ratios varied from 0.09 to 0.03%.  相似文献   

5.
目的:本文研究了一种海藻酸钠漂浮微囊的制备方法用以实现胃部持续给药。方法:采用微胶囊发生器制备海藻酸钠漂浮微囊,壁材为海藻酸钠,芯材为食用油的漂浮微囊,衡量不同的制备参数对微囊的理化特性影响;采用克拉霉素作为模型脂溶性药物,测量漂浮药物递送系统的控制释放性质、以及微囊载药特性和小鼠体内漂浮验证。结果:成功制备出了具有漂浮特性的海藻酸钠微囊,其中泵送速度对微囊性质的影响最大。制备出的微囊具有低细胞毒性,可以实现90%的药物包埋率。此外,微囊可以在小鼠的胃中保存超过6小时,具有良好的漂浮特性。结论:海藻酸钠漂浮微囊是一种有效的胃部药物递送系统,可明显延长药物在胃部的滞留时间。  相似文献   

6.
In previous studies, we developed and characterised multicompartmental microcapsules as a platform for the targeted oral delivery of lipophilic drugs in type 2 diabetes (T2D). We also designed a new microencapsulated formulation of probucol-sodium alginate (PB-SA), with good structural properties and excipient compatibility. The aim of this study was to examine the stability and pH-dependent targeted release of the microcapsules at various pH values and different temperatures. Microencapsulation was carried out using a Büchi-based microencapsulating system developed in our laboratory. Using SA polymer, two formulations were prepared: empty SA microcapsules (SA, control) and loaded SA microcapsules (PB-SA, test), at a constant ratio (1:30), respectively. Microcapsules were examined for drug content, zeta potential, size, morphology and swelling characteristics and PB release characteristics at pH 1.5, 3, 6 and 7.8. The production yield and microencapsulation efficiency were also determined. PB-SA microcapsules had 2.6 ± 0.25% PB content, and zeta potential of −66 ± 1.6%, suggesting good stability. They showed spherical and uniform morphology and significantly higher swelling at pH 7.8 at both 25 and 37°C (p < 0.05). The microcapsules showed multiphasic release properties at pH 7.8. The production yield and microencapsulation efficiency were high (85 ± 5 and 92 ± 2%, respectively). The PB-SA microcapsules exhibited distal gastrointestinal tract targeted delivery with a multiphasic release pattern and with good stability and uniformity. However, the release of PB from the microcapsules was not controlled, suggesting uneven distribution of the drug within the microcapsules.KEY WORDS: anti-inflammatory, antioxidant, artificial-cell microencapsulation, diabetes mellitus, probucol, type 2 diabetes  相似文献   

7.
Recently, we demonstrated the safety use of calendula oil/chitosan microcapsules as a carrier for both oral and topical deliveries. We also reported the improved biological activity towards skin cells and Staphylococcus aureus of phyllanthin containing chitosan microcapsules. However, the possibility of both oral and topical applications was still necessary to be further studied. Here we investigated that both oral and topical applications of chitosan-based microcapsules were tested using hydrocortisone succinic acid (HSA) and 5-fluorouracil (5-FU), respectively. The drug loading efficiency, particle size, surface morphology and chemical compositions of both drug loaded microcapsules were confirmed by UV-vis spectrophotometer, particle size analyzer, scanning electron microscope and Fourier transform infrared spectroscopy. The in vitro release studies revealed that both HSA and 5-FU could be released form chitosan microcapsules. The mean adrenocorticotropic hormone concentration in HSA loaded microcapsule mice plasma was detected to be lower than that of water control. One hundred micrograms per milliliter of 5-FU containing microcapsules exhibited a stronger growth inhibition towards skin keratinocytes than that of free 5-FU. In vitro drug delivery model demonstrated the delivery of 5-FU from microcapsule treated textiles into nude mice skin. Further uses of the drug loaded microcapsules may provide an efficiency deliverable tool for both oral and topical applications.  相似文献   

8.
The aim of this study was to microencapsulate caffeine by the emulsion technique, trying to control its release from a medicated chewing gum. Three formulations were prepared using alginate, alginate-starch, and alginate-starch with chitosan coating as the wall materials. These microcapsules were characterized with regard to the morphology studied by using an optical microscope and scanning electron microscopy (SEM), particle size, and encapsulation efficiency. The microcapsules were then incorporated into the chewing gums. The chewing gums were characterized by thermal behavior (by differential scanning calorimetry [DSC]), texture profile analysis [TPA], and sensory evaluation. Furthermore, the release of caffeine from the chewing gum was studied in vitro using the masticatory simulator and in vivo by a chew-out study. The microcapsules revealed a spherical form and high encapsulation efficiency, representing the success of the technique. The outcomes indicated that it is possible to encapsulate caffeine with the techniques employed and the microcapsules prolonged the release of caffeine throughout mastication. The chewing gum containing alginate-starch with chitosan-coated microcapsules showed the great potential of the microcapsule in controlling the release of the caffeine from the chewing gum, thereby delaying its bitterness.  相似文献   

9.

The present work aimed to study the influence of the pH and protein ratio on the formation of complex coacervates of carboxymethylcellulose (CMC) and whey protein isolated nanoparticles (WPIN). These biopolymers and transglutaminase, as a cross-linking agent, were used to encapsulate sacha inchi oil (SIO) containing β-carotene (β-C). The stability of β-C from SIO microcapsules (β-SIO microcapsules) was evaluated under in vitro digestion using an INFOGEST 2.0 in vitro digestion protocol. The release of β-C in a simulated food model was studied, and mathematical models were used to determine the mechanism. A ratio of 1:6 (CMC/WPIN) at pH 3.5 was used for the formation of the complex. Chemical and morphological analyses suggested that SIO was microencapsulated and that a high encapsulation efficiency was obtained. The β-C from β-SIO microcapsules was preserved in vegetable oil (food model), and Fickian diffusion occurred. The β-C from β-SIO microcapsules was preserved under oral and gastric conditions, and higher release occurred during intestinal digestion when samples were subjected to in vitro digestion simulation. After in vitro digestion, the β-C from β-SIO microcapsules presented higher stability (83.37%) and acceptable bioaccessibility (31.16%). There are few studies in the literature of encapsulated SIO using the CMC/WPIN complex or studies of the release of β-carotene from SIO during in vitro digestion and in food simulants. The knowledge obtained in this study will facilitate the use and applications of β-C-loaded microcapsule delivery systems.

  相似文献   

10.
为了制备包埋率高、稳定性好的火麻仁油微胶囊,拓展其在食品领域的应用范围,以火麻仁油为芯材、单双脂肪酸甘油酯为乳化剂、酪蛋白酸钠为壁材、固体玉米糖浆为填充剂、柠檬酸钠为缓冲盐、抗坏血酸棕榈酸钠为抗氧化剂,通过喷雾干燥法制备60%载油率的火麻仁油微胶囊,以微胶囊包埋率为响应值,在单因素实验的基础上,以干物浓度、进风温度、出风温度为实验因素,采用Box-Behnken响应面分析法进行优化。随后通过扫描电镜观察火麻仁油微胶囊表面形态结构,以确定包埋效果。并利用油脂氧化分析仪检测火麻仁油微胶囊的氧化稳定性。研究确定微胶囊的最佳工艺条件为:干物浓度42%、进风温度168 ℃、出风温度74 ℃,在此条件下制备得到的火麻仁油微胶囊包埋率可达92.15%。通过扫描电镜观察到火麻仁油微胶囊表面圆滑无裂痕,表明火麻仁油微胶囊包埋效果比较理想。经油脂氧化分析仪测定,与对照组(火麻仁油)相比,试验组(火麻仁油微胶囊)的氧化诱导期时间较长,能够达到30 h以上,说明通过对火麻仁油进行微胶囊包埋可以较大程度地提高油脂的稳定性。研究结果为火麻仁油在食品工业领域的开发和应用提供了理论支持。  相似文献   

11.
Scalable encapsulation of hepatocytes by electrostatic spraying   总被引:1,自引:0,他引:1  
Encapsulating cells by polyelectrolyte complex coacervation can be accomplished at physiological temperature and buffer conditions. One of the oppositely charged polyelectrolytes in the microcapsule core can be collagen or any other natural extra-cellular matrices suitable for cellular support while the other polyelectrolyte forms the ultra-thin shell to ensure efficient mass transfer. These microcapsules with ultra-thin shell are difficult to produce in large quantities due to their fragility. In this study, electrostatic spraying technique was used to achieve a scalable production of one such type of microcapsules formed by complex coacervation between the cationic methylated collagen and anionic terpolymer of hydroxylethyl methacrylate, methyl methacrylate and methylacrylic acid (HEMA-MMA-MAA). It was found that the microcapsule sizes were dependent on several important operational parameters, such as the diameter of the spraying needle, the flow rate of the hepatocytes-collagen mixture and the voltage of the electrical field. The microcapsules with diameters of 200-800 microm and a narrow size distribution (standard deviation of 5-28%) were successfully produced. The above parameters also influenced the hepatocyte viability and functions. With a practical encapsulation rate of up to 55 ml/h per orifice required in bio-artificial liver-assisted device applications, we have produced large quantities of microcapsules maintaining comparable cell viability (>87%), mechanical stability and bio-functions to the manually extruded microcapsules.  相似文献   

12.
Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed.  相似文献   

13.
Chitosan based microcapsule which encapsulated with phyllanthin was developed by simple coacervation. The composition and surface morphology of phyllanthin containing microcapsules were analyzed by Fourier Transform Infrared spectroscopy and Scanning Electron Microscopy, respectively. The release of phyllanthin from the microcapsules was found to be more than 60% after 120 h. In vitro biological assays demonstrated that these phyllanthin containing microcapsules showed a stronger anti-oxidation potential on both human fibroblasts and keratinocytes as well as a better growth inhibitory activity towards Staphylococcus aureus.  相似文献   

14.
Response surface methodology (RSM) was used to optimize microencapsulation yield (MY) using three independent variables; the ratio of coating material to core material (w/w, X1), the emulsifier concentration (%, v/v, X2), and the CaCl2 concentration (%, w/v, X3). In the preparation of sodium alginate (SA) microcapsule, the regression model equation for the MY was predicted as follows; MY(%) = 56.02 + 3.64X2 + 3.18X1X2 - 3.74X2(2). The optimal conditions for the SA microcapsule were obtained at the [SA]/[alpha-TP] ratio of 6.6:3.4 (w/w), [emulsifier] of 1.35% (v/v), and [CaCl2] of 4.3% (w/v), and the predicted MY in this condition was of 57.2%. In vitro alpha-TP releasing test of the SA-based microcapsules was performed. The SA microcapsule released 28.8% of alpha-TP when exposed in the simulated gastric fluid (SGF, pH 1.2) for 24 h. In the simulated intestinal fluid (SIF, pH 7.4), the amount of released alpha-TP (81.5%) was significantly greater than that in the SGF. The duration time required for releasing 50 (T50%) and 70% (T70%) of alpha-TP from the SA-microcapsule were calculated to be 3.8 and 12.3 h, respectively. From these results, it was suggested that SA microcapsule would be structurally resistant against acidic environment, and it would rapidly release core material under mild alkali condition.  相似文献   

15.
Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions. In this context, the aim of this study was to isolate and characterize putative NFB associated with lupin nodules and to evaluate their microencapsulation by spray drying. For this purpose, 21 putative NFB were isolated from lupin nodules and characterized (16S rRNA genes). Microencapsulation of bacterial cells by spray drying was studied using a mixture of sodium alginate:maltodextrin at different ratios (0:15, 1:14, 2:13) and concentrations (15 and 30 % solids) as the wall material. The microcapsules were observed under scanning electron microscopy to verify their suitable morphology. Results showed the association between lupin nodules of diverse known NFB and nodule-forming bacteria belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Bacteroidetes. In microencapsulation assays, the 1:14 ratio of sodium alginate:maltodextrin (15 % solids) showed the highest cell survival rate (79 %), with a microcapsule yield of 27 % and spherical microcapsules of 5–50 µm in diameter. In conclusion, diverse putative NFB genera and nodule-forming bacteria are associated with the nodules of lupine plants grown in soils in southern Chile, and their microencapsulation by spray drying using sodium alginate:maltodextrin represents a scalable process to generate a biofertilizer as an alternative to traditional nitrogen fertilization.  相似文献   

16.
The emulsion/internal gelation method is highly effective to produce microcapsules of Bacillus thuringiensis (Bt) in a short time; however, it has the limitation to produce microcapsules within a wide range of diameters (1–1000?µm). The aim of this study was to reduce the range of small microcapsule diameters by using a water/corn-oil (W/CO) micro-emulsion as the dispersing medium and the mixture Tween 80–Span 80 as the surfactant. It involved the development of the W/CO micro-emulsion and the determination of the suitable agitation time to disperse the gelling medium (sodium alginate) through the micro-emulsion. A micro-emulsion formulation that allowed reduction of the microcapsule diameter was composed of 82% corn oil, 12% alginate solution and 6% surfactant mixture Tween80–Span80 (31:69). Evaluation of four dispersing times showed that 45 min was suitable to produce 75% of microcapsules of an average diameter of 3.1?±?1?µm containing the spore–protein complex (SPC) produced by Bt. Bioassays carried out at low concentrations of microencapsulated formulations of cry proteins allowed determination of how its insecticidal effect increased if the range of microcapsule diameters was reduced in the range 1–9?µm. Furthermore, the SPC formulation in alginate microcapsules showed high resistance to extreme irradiation (2.9?±?0.5?×?108 erg) of a long wavelength (365?nm), which made the microencapsulated formulation profitable and of high yield since repeated applications of the biopesticide during the same harvest period may not be necessary.  相似文献   

17.
Based on the method of the layer-by-layer (LbL) adsorption of oppositely charged polyelectrolytes, sodium alginate (Alg) and poly-L-lysine (PLL), novel biodegradable microcapsules have been prepared for delivery of biological active substances (BAS). Porous spherical CaCO3 microparticles were used as templates. The template cores were coated with several layers of oppositely charged polyelectrolytes forming shell on the core surface. The core-shell microparticles were converted into hollow microcapsules by means of core dissolution with EDTA. Mild conditions for microcapsules preparation allow to perform incorporation of various biomolecules maintaining their bioactivity. Biocompatibility and biodegradability of the polyelectrolytes give a possibility to use the microcapsules as the target delivery systems. Chymotrypsin entrapped into the microcapsules was used as a model enzyme. The immobilized enzyme retained about 86% of the activity compared to a native chymotrypsin. The resultant microcapsules were stable in acidic medium and could be easily decomposed by trypsin treatment in slightly alkaline medium. Chymotrypsin was shown to be active after its release from the microcapsules decomposed by the trypsin treatment. Thus, the microcapsules prepared by the LbL technique can be used for the development of new type of BAS delivery systems in humans and animals.  相似文献   

18.
Wang C  Ye S  Dai L  Liu X  Tong Z 《Biomacromolecules》2007,8(5):1739-1744
Polyelectrolyte multilayer films were prepared through layer-by-layer (LbL) self-assembly using polysaccharide sodium alginate (ALG) and chitosan (CHI). After incubation in an enzyme pepsin solution, the multilayer film was partially destroyed as detected by the decrease in fluorescent intensity because of the enzymatic degradation of CHI. The enzymatic desorption was also observed from the microcapsule wall made of the ALG/CHI multilayer film directly deposited on indomethacin (IDM) microcrystals through LbL self-assembly. After pepsin erosion, the IDM release from the microcapsules monitored by UV absorbance was obviously accelerated because of desorption. To enhance the stability of the ALG/CHI multilayer film to the enzymatic erosion, some physical and chemical methods were established to increase film thickness or to cross-link the polysaccharides within the film. Increasing the layer number and raising the deposition temperature effectively slowed down the enzymatic desorption and release rate. Especially, increasing deposition temperature was more effective because of producing a more perfect structure in the ALG/CHI multilayer film. Cross-linking the neighboring layers of ALG and CHI with 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide in the ALG/CHI multilayer film significantly reduced the enzymatic desorption and release rate. Therefore, increasing deposition temperature and cross-linking neighboring layers are effective methods to protect the multilayer film fabricated using LbL assembly from the enzymatic erosion and to prolong the release of the encapsulated drug.  相似文献   

19.
A system for the delayed or pulsed release of biologically active substances was achieved by encapsulating liposomes containing the substance of interest inside microcapsules. The microcapsules retain the liposomes but allow controlled diffusion of the active substance when it is released from the liposomes. Furthermore, by coating the liposomes with phospholipase A2 (an enzyme that removes an acyl group from the 2 position of phospholipids) before placing them within the microcapsule, a pulsatile release pattern was achieved both in vitro and in vivo. The time of onset of the pulse as well as the release rate can be controlled by the amount of phospholipase A2, the molecular weight of the poly(L-lysine) that is used to coat the microencapsulated liposomes, and the composition of the phospholipid bilayer membrane. Even at 37 degrees C the system would protect a model enzyme (horseradish peroxidase). When not placed inside the microencapsulated liposomes, the enzyme lost its activity in solution at 37 degrees C in a few days, whereas it retained 40% of the initial activity after 30 days of incubation at 37 degrees C inside the microencapsulated liposomes.  相似文献   

20.
Sustained delivery systems (microcapsules, microparticles, or implants) developed for once a month administration of peptides are efficacious and convenient. Long acting formulations of several bioactive peptides are based on microcapasules of a biodegradable polymer poly(DL-lactide-co-glycolide) (PLG), but a better understanding is required of the mechanism of the peptide release from the microcapsules, which is assumed to be primarily by diffusion through pores. In order to clarify this mechanism, microcapsules and microparticles of the agonist [D-Trp6]-LHRH and microcapsules of the LHRH antagonist SB-75 were given i.m. to rats 2 h and 1, 2, 4, 7, 14 and 21 days before histological and immunohistochemical investigation. Signs of biodegradation of the PLG matrix could be seen the first day after the injection, in a form of vacuole development in the interior of the particles and connected with the presence of macrophages within the matrix. The microcapsules showed excellent tissue-compatibility, and no significant foreign body reaction was detected. Immunohistochemical study on the microcapsules revealed no visible decrease in peptide concentration in the remnants of the matrix even 2 weeks after the injection. Evaluation of serum [D-Trp6]-LHRH showed that after an initial burst, both microcapsules and microparticles maintained elevated serum [D-Trp6]-LHRH levels for more than 3 weeks. Our results suggest that the previously proposed mechanisms do not reflect the experimental findings, particularly for the insoluble peptides. The peptide release from the PLG microcapsules or microparticles appears to be controlled mostly by the speed of the biodegradation of the polymer matrix and the diffusion of the peptides from the PGL is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号