首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  Interspecific competition between Diadegma semiclausum and Cotesia plutellae was investigated at 25°C in the laboratory, by exposing the third instar larvae of the diamondback moth, Plutella xylostella to both species together, either species alone or by exposing the host larvae already parasitized by one species, at different intervals, to the other. When host larvae were exposed simultaneously to two species in one arena, parasitism rates of the host by each species were not reduced by the presence of the other species; joint parasitism rate by two species was not significantly higher than that by either parasitoid alone. Both parasitoids could lay eggs into the host larvae which had previously been parasitized by the other species, leading to the occurrence of multiparasitized hosts. When host larvae were parasitized first by D. semiclausum and then being followed within 1–2 h by exposing to C. plutellae , or vice versa, ensuing parasitoid cocoons from the multiparasitized host larvae were nearly all C. plutellae . When host larvae were parasitized initially by C. plutellae and then being followed by D. semiclausum two or more days later, all parasitoids ensued from the multiparasitized hosts were C. plutellae . In contrast, when host larvae were parasitized initially by D. semiclausum and then being followed by C. plutellae two or more days later, most host larvae could not survive to prepupae and most of the ensuing parasitoid adults from the surviving hosts were D. semiclausum . Dissections of host larvae at various time intervals after parasitization by the two parasitoids showed that development of both parasitoids in multiparasitized hosts were somewhat arrested, and that the first instar larvae of C. plutellae could initiate a physical attack on the larvae of D. semiclausum and remove the latter.  相似文献   

2.
在28℃下,以小菜蛾3龄幼虫作寄主,研究了菜蛾绒茧蜂与菜蛾啮小蜂间的相互关系.当寄主供2种蜂同时产卵寄生时,与只供1种蜂时相比。绒茧蜂的寄生率无显著变化,而啮小蜂的寄生率则显著下降;2种蜂的合计寄生率与任一种蜂单独存在时相比无显著差异.当寄主先供绒茧蜂寄生,再供啮小蜂寄生时,绒茧蜂的成功寄生率不受影响,而啮小蜂的寄生率仅为8%~13%;啮小蜂能寄生在寄主体内的绒茧蜂高龄幼虫.绒茧蜂能寄生已被啮小蜂寄生的寄主幼虫,其子代部分个体能正常发育至成虫羽化.当已被绒茧蜂寄生和未被寄生的寄主同时存在时,啮小蜂主要寄生未被寄生的寄主.表明绒茧蜂具有竞争优势。但这种优势可因啮小蜂的寄生而被削弱.  相似文献   

3.
Zoophthora radicans (Zygomycetes: Entomophthorales), Diadegma semiclausum (Hymenoptera: Ichneumonidae), and Cotesia plutellae (Hymenoptera: Braconidae) are all natural enemies of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Adult C. plutellae are not susceptible to Z. radicans infection but the pathogen can infect and kill adult D. semiclausum. Infection of adult D. semiclausum prior to exposure to P. xylostella host larvae significantly reduced the number of parasitoid cocoons subsequently developing from the host larvae. Although Z. radicans infection of P. xylostella larvae prior to parasitism by D. semiclausum or C. plutellae always resulted in the death of the immature parasitoids, neither species discriminated between healthy and Z. radicans-infected host larvae in an oviposition choice experiment. However, host larvae recently killed by Z. radicans were always rejected by D. semiclausum but sometimes accepted by C. plutellae. At 20 degrees C, egg to pupa development took 6.7 and 7.8 days for D. semiclausum and C. plutellae, respectively. C. plutellae parasitism significantly increased host instar duration but D. semiclausum parasitism did not. Cadavers of P. xylostella larvae parasitized 1 day prior to fungal infection showed no reduction in Z. radicans conidia yield. However, cadavers of larvae parasitized 3 days prior to fungal infection demonstrated a marked decrease in Z. radicans conidia yield. Z. radicans infection of P. xylostella larvae < or = 4 days after parasitism resulted in 100% parasitoid mortality; thereafter, the reduction in parasitoid cocoon yield decreased as the time between parasitism and initiation of fungal infection increased. The extended duration of the host larval stage induced by C. plutellae parasitism increased the availability of the parasitoid to the pathogen. Estimates of interspecific competition indicated a similar pattern for the interaction between Z. radicans and each species of parasitoid.  相似文献   

4.
三种内寄生蜂寄生对小菜蛾幼虫精子发生的影响   总被引:3,自引:0,他引:3  
内寄生蜂寄生可能会引起寄主的寄生性去势。对小菜蛾Plutella xylostella与菜蛾啮小蜂Oomyzus sokolowskii Kurdumov (膜翅目: 姬小蜂科)、半闭弯尾姬蜂Diadegma semiclausum Hellén (膜翅目: 姬蜂科)、菜蛾盘绒茧蜂Cotesia plutellae (Kurdj.) (膜翅目: 茧蜂科) 3个寄生体系,利用形态学方法和蛋白质技术,研究了寄生对小菜蛾幼虫精子发生的影响。结果表明:菜蛾啮小蜂寄生对寄主的精子发生过程没有影响。半闭弯尾姬蜂寄生造成寄主精母细胞的细胞核畸形,精细胞的染色质超浓缩并趋向核膜,但能形成少量的精子;半闭弯尾姬蜂寄生会导致寄主精巢总蛋白的含量显著下降。菜蛾盘绒茧蜂寄生对小菜蛾幼虫精子发生的抑制程度最强,被寄生寄主的精母细胞出现肿胀,核膜皱缩,胞质中的线粒体发生病变;精细胞的染色体也出现超浓缩并趋向核膜,大量的精子溶解,无正常的精子形成;其精巢总蛋白含量的下降程度比姬蜂寄生的更为明显,且导致分子量为63.4 kD的主蛋白缺失。  相似文献   

5.
Cotesia plutellae, a solitary endoparasitoid wasp, parasitizes the diamondback moth, Plutella xylostella, and induces host immunosuppression and lethality in the late larval stage. This study focused on changes of cellular immunity in the parasitized P. xylostella in terms of hemocyte composition and cellular functions. In third and fourth instar larvae of nonparasitized P. xylostella, granular cells represented the main hemocyte type (60-70%) and plasmatocytes were also present at around 15% among the total hemocytes. Following parasitization by C. plutellae, the relative proportions of these two major hemocytes changed very little, but the total hemocyte counts exhibited a significant reduction. Functionally, the granular cells played a significant role in phagocytosis based on a fluorescence assay using fluorecein isothiocyanate-labeled bacteria. The phagocytic activity of the granular cells occurred as early as 5 min after incubation with the bacteria, and increased during the first 40 min of incubation. The parasitism by C. plutellae significantly inhibited phagocytosis of the granular cells. Plasmatocytes also exhibited minor phagocytic activity. Moreover, plasmatocyte phagocytosis was not inhibited by parasitism. On the other hand, hemocyte-spreading behavior in response to pathogen infection was significant only for plasmatocytes, which exhibited a characteristic spindle shape upon infection. A significant spreading of the plasmatocytes was found as early as 5 min after pathogen incubation and their ratio increased during the first 40 min.An insect cytokine, plasmatocyte-spreading peptide 1 (PSP1) from Pseudoplusia includens, was highly active in inducing plasmatocyte-spreading behavior of P. xylostella in a dose-dependent manner. P. xylostella parasitized by C. plutella was significantly inhibited in plasmatocyte-spreading in response to an active dose of PSP1. An in vivo encapsulation assay showed that the parasitized P. xylostella could not effectively form the hemocyte capsules around injected agarose beads. This research demonstrates that the parasitism of C. plutellae adversely affects the total hemocyte populations in number and function, which would contribute to host immunosuppression.  相似文献   

6.
Laboratory and greenhouse studies were conducted on Oomyzus sokolowskii Kurdjumov, a parasite of the crucifer pest Plutella xylostella ( L.). O. sokolowskii preferred the 3rd and 4th instar P. xylostella larvae over fresh pupae for parasitization. It is thus a larval parasite. Within the range of 10?C to 35?C, parasitism was positively correlated with temperature. High parasitism at temperatures of 30?C and 35?C indicates that this insect is suitable for the control of P. xylostella in the tropical lowlands. In a no- choice test where only fresh pupae of Cotesia plutellae Kurdjumov, another potentially competing larval parasite of P. xylostella, were offered, O. sokolowskii failed to parasitize pupae of C. plutellae. In a choice test where the 4th instar P. xylostella larvae and fresh C. plutellae pupae were offered, O. sokolowskii parasitized only P. xylostella larvae. This parasite, therefore, is not a hyperparasite of P. xylostella. When C. plutellae-ovvposited P. xylostella larvae were offered at intervals, O. sokolowskii, parasitized only freshly oviposited host larvae. The longer the period that elapsed after C. plutellae oviposition of P. xylostella larvae, the lesser was the parasitism of these larvae by O. sokolowski.  相似文献   

7.
寄主小菜蛾Plutella xylostella被内寄生蜂菜蛾盘绒茧蜂Cotesia plutellae寄生后,其取食、发育及营养代谢在各种寄生因子的作用下伴随幼蜂的发育而发生很大的变化,畸形细胞作为调节因子之一也发挥了重要的作用。本实验通过比较被寄生和未被寄生小菜蛾血淋巴蛋白浓度以及两种血淋巴对菜蛾盘绒茧蜂幼蜂进行体外培养的培养液的蛋白浓度,发现被寄生小菜蛾血淋巴比未被寄生小菜蛾血淋巴的蛋白浓度略低但差异不显著,而未被寄生小菜蛾血淋巴幼蜂培养液的蛋白浓度显著低于被寄生小菜蛾血淋巴幼蜂培养液的蛋白浓度,证明畸形细胞的蛋白质分泌功能。被寄生后期, 小菜蛾体重明显大于未被寄生的小菜蛾体重,而脂肪体重量相比正好相反;通过显微染色观察,在小菜蛾念珠状脂肪体表面粘附有畸形细胞,对脂肪体进行分解破坏而使其成颗粒状; 蛋白含量和脂滴浓度测定也表明,脂肪体的可溶性蛋白含量和脂滴浓度也迅速降低,同比低于未被寄生小菜蛾。而与此同时,幼蜂正处在快速生长阶段,中肠酯酶的活性逐步上升,幼蜂得以快速消化吸收小菜蛾体内的营养直到完成幼虫发育,整个幼蜂的脂滴浓度也达到了最大值。因此寄生后期,推测在畸形细胞的协助下,幼蜂吸收了寄主小菜蛾体内的营养为自身生长发育所用。  相似文献   

8.
闭弯尾姬蜂与菜蛾盘绒茧蜂寄生菜蛾幼虫时的种间竞争   总被引:5,自引:1,他引:4  
在室内25℃下,以菜蛾3龄初幼虫作寄主,研究了菜蛾盘绒茧蜂Cotesia plutellae和半闭弯尾姬蜂Diadegma semiclausum的种间竞争。当寄主供2种蜂同时产卵寄生时,2种蜂各自的寄生率与其单独寄生时无显著差异,合计寄生率比一种蜂单独存在时有所提高,但差异不显著。2种蜂均能产卵寄生已被另一种蜂寄生了的寄主幼虫。当寄主被2种蜂寄生的间隔时间很短(少于10 h)时,所育出的蜂绝大部分(80%以上)为绒茧蜂;当寄主先被绒茧蜂寄生,并饲养2天以上再供弯尾姬蜂寄生时,所育出的全为绒茧蜂;当寄主先被弯尾姬蜂寄生,并饲养2天以上再供绒茧蜂寄生时,寄主幼虫绝大部分不能存活,只有少部分能育出寄生蜂,且多为弯尾姬蜂。当2种蜂的幼虫存在于同一寄主体内时,2种蜂的发育均受到另一种蜂的抑制;绒茧蜂1龄幼虫具有物理攻击能力,能将弯尾姬蜂卵或幼虫致死。这些结果表明,菜蛾盘绒茧蜂与半闭弯尾姬蜂在同一寄主中发育时,前者具有明显的竞争优势。  相似文献   

9.
A full genome sequence of the episomal form of Cotesia plutellae bracovirus (CpBV) suggests 11 BEN family genes. This study analyzed their expression and physiological function in the viral host, Plutella xylostella. All 11 BEN family genes were expressed during entire parasitization period of P. xylostella larvae. In addition, these BEN family genes were expressed in fat body, gut, epidermis, and hemocytes in final larval instar of parasitized P. xylostella. The 11 BEN family genes were transiently expressed in nonparasitized larvae by injection of each viral segment containing its corresponding BEN family gene. The transient expression of BEN family genes significantly suppressed hemocyte nodule formation in response to bacterial challenge. Subsequent injection of double-stranded RNA specific to each BEN family gene suppressed the expression of the BEN family gene and rescued the immunosuppression. These results indicate that 11 BEN family genes are expressed in larvae parasitized by C. plutellae and play crucial role in inducing immunosuppression. Homologous BEN family genes were found in other bracoviral genomes. We propose BEN domain-containing genes as a new functional gene family in polydnaviruses.  相似文献   

10.
分别在小菜蛾体内的菜蛾绒茧蜂处于卵期、早期幼虫和中期幼虫时,饲喂小菜蛾2龄幼虫亚致死剂量(=LC10)的阿维菌素和氟虫睛,研究上述杀虫剂处理对寄主体内菜蛾绒茧蜂结茧率和羽化率的影响。结果表明: 在菜蛾绒茧蜂处于卵期、早期幼虫和中期幼虫时,饲喂小菜蛾LC10剂量阿维菌素处理的菜叶后,菜蛾绒茧蜂的结茧率分别下降26.6%,22.8%和5.8%,饲喂小菜蛾LC10剂量氟虫睛处理的菜叶后,菜蛾绒茧蜂的结茧率分别下降76.9%,42.5%和18.5%。上述阿维菌素处理对菜蛾绒茧蜂成虫羽化率影响不显著,但上述氟虫睛处理可显著抑制菜蛾绒茧蜂成虫羽化率,在菜蛾绒茧蜂处于卵期、早期幼虫和中期幼虫时,饲喂小菜蛾LC10 剂量氟虫睛处理的菜叶可导致菜蛾绒茧蜂成虫羽化率分别下降53.1%,36.1%和47.8%。结果显示,即便是对寄主小菜蛾幼虫很低的剂量(LC10剂量)也会显著危害小菜蛾幼虫体内的菜蛾绒茧蜂的生长发育。此外,饲喂小菜蛾幼虫亚致死剂量杀虫剂对菜蛾绒茧蜂生长发育的影响与杀虫剂种类及蛾绒茧蜂发育阶段有关。  相似文献   

11.
Laboratory experiments were conducted to examine host selection by Cotesia plutellae Kurdjumov when larvae of its host, Plutella xylostella (Linnaeus), fed on Chinese cabbage, Brassica campestris L. ssp. pekinensis and those fed on common cabbage, Brassica oleracea L. var. capitata were provided simultaneously, and to investigate the roles of plant and host volatiles in mediating host selection. When C. plutellae were provided with equal numbers of host larvae on plants of the two species in one arena, the parasitoid parasitized 4- to 15-fold more host larvae on Chinese cabbage than on common cabbage. This preference changed little with host density. However, an experience of searching coupled with an oviposition in a host larva on a leaf of the less-preferred plant, common cabbage, significantly increased the preference for parasitizing host larvae on this plant and resulted in twice as many host larvae parasitized on this plant than on Chinese cabbage. Dual choice tests with a Y-tube olfactometer showed that plant volatiles from Chinese cabbage were more attractive to female C. plutellae than those from common cabbage when plants of both species were either intact or infested. In parallel to the increased parasitism on common cabbage following experience, oviposition in a host larva on this less-preferred plant significantly increased the response to volatiles emanating from that plant. These results indicate that host plants may strongly influence the foraging behaviour of C. plutellae, but their differential attractiveness to the parasitoid may be altered by experience of the parasitoid.  相似文献   

12.
Changes in haemolymph proteins of the fall armyworm, Spodoptera frugiperda, associated with parasitism by the parasitoid Cotesia (= Apanteles) marginiventris were monitored by sodium dodecyl sulphate polyacrylamide gel electrophoresis. As early as hour 4 after parasitization treatment, several electrophoretically slow-migrating, high-molecular-weight proteins were detected in the host's haemolymph. These proteins were detected earlier in haemolymph from parasitized larvae than in haemolymph from control larvae, and their concentrations were higher in heavily parasitized host larvae (≥ 3 eggs/host) than in lightly parasitized larvae (1 egg/host). Additionally, unique proteins that migrated electrophoretically with bovine serum albumin appeared in the haemolymph of parasitized larvae at hour 8 after parasitization treatment and were evident in haemolymph collected through to hour 64.  相似文献   

13.
过寄生、寄生时寄主龄期和寄生后寄主饥饿处理影响菜蛾盘绒茧蜂Cotesia plutellae(Kurdj.)幼蜂及畸形细胞的发育。显微解剖和观察表明,4龄小菜蛾Plutella xylostella L.幼虫被寄生后,其体内菜蛾盘绒茧蜂幼蜂发育不整齐、假寄生比例增高。过寄生后,每头被寄生的寄主血腔中畸形细胞数量明显增多,但直径变小;随着过寄生程度的加剧,幼蜂发育严重受阻。寄主营养显著影响体内幼蜂及畸形细胞的发育,被寄生的小菜蛾经饥饿处理62 h后,体内畸形细胞的数量、活性明显降低,与此同时,幼蜂的发育也受到明显抑制,寄主发育与寄生蜂和畸形细胞的发育呈正相关性。由此可见,寄主不同龄期、过寄生及寄主营养状况均对寄主体内幼蜂和畸形细胞发育产生影响。  相似文献   

14.
15.
Larval development of the parasitoid Cardiochiles nigriceps Viereck occurs in the last instar larva of its host, Heliothis virescens (F.). This allows the parasitoid to exploit the nutritional increase in the biosynthetic activity occurring in the host in preparation for metamorphosis. To understand the biochemical basis of this host parasitoid developmental synchrony, we undertook host ligation studies and analyzed host hemolymph for proteins and glycerol esters. Parasitization affected the biochemical profile of the host. The hemolymph protein concentration of parasitized last instar H. virescens larvae increased through time, whereas unparasitized (control) larvae were characterized by a decrease in the protein titer when they reached the prepupal stage. The effect of parasitism on glyceride titers of host hemolymph was not as pronounced as the effect on proteins. Ligation conducted on 5th instar hosts, which were parasitized as 4th instars, affected parasitoid development in a time-dependent way. The percentage of successfully developing C. nigriceps larvae increased with the increase of the time interval between parasitization and ligation. Ligation performed before day 2 of the 5th larval instar of H. virescens completely inhibited parasitoid development. Ligations that disrupted parasitoid developmentwere associated with a low host hernolymph protein concentration. Parasitoid development was successful when hernolymph protein titer was high, as occurred when ligations were performed after day 3 of the 5th host instar in both control and parasitized larvae. Ligations in both situations resulted in a slight increase in glyceride titers. The results suggest that host proteins and/or some factor(s) associated with them may play a role in parasitoid growth and development. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Polydnaviruses (PDVs) are obligatory symbionts of parasitoid wasps and play an important role in suppressing host immune defenses. Although PDV genes that inhibit host melanization are known in Microplitis bracovirus, the functional homologs in Cotesia bracoviruses remain unknown. Here, we find that Cotesia vestalis bracovirus (CvBV) can inhibit hemolymph melanization of its host, Plutella xylostella larvae, during the early stages of parasitization, and that overexpression of highly expressed CvBV genes reduced host phenoloxidase activity. Furthermore, CvBV-7-1 in particular reduced host phenoloxidase activity within 12 h, and the injection of anti-CvBV-7-1 antibody increased the melanization of parasitized host larvae. Further analyses showed that CvBV-7-1 and three homologs from other Cotesia bracoviruses possessed a C-terminal leucine/isoleucine-rich region and had a similar function in inhibiting melanization. Therefore, a new family of bracovirus genes was proposed and named as C -terminal L eucine/isoleucine-rich P rotein (CLP). Ectopic expression of CvBV-7-1 in Drosophila hemocytes increased susceptibility to bacterial repression of melanization and reduced the melanotic encapsulation of parasitized D. melanogaster by the parasitoid Leptopilina boulardi. The formation rate of wasp pupae and the eclosion rate of C. vestalis were affected when the function of CvBV-7-1 was blocked. Our findings suggest that CLP genes from Cotesia bracoviruses encoded proteins that contain a C-terminal leucine/isoleucine-rich region and function as melanization inhibitors during the early stage of parasitization, which is important for successful parasitization.  相似文献   

17.
The nutritional physiology of the diamondback moth, Plutella xylostella, larvae was examined after parasitization by the solitary endoparasitoids Cotesia vestalis or Diadegma semiclausum. Examinations were performed in two phases, one was examined at the time point of 24 h post‐parasitization, and the other was done at the end of the 4th instar larvae of host. Rates of growth, food consumption, assimilation, excretion, and respiration were calculated as well as approximate digestibility and the rate ratios ECI (percent efficiency of conversion of ingested food to body substance), and ECD (percent efficiency of conversion of digested food to body substance). Parasitization by C. vestalis resulted in significant decrease in the rates of growth, feeding, excretion, assimilation, and respiration, but the final dry rate of respiration at the end of last larval stadium was elevated. The ECI and ECD were also reduced as the result of parasitization, but digestibility was increased. All these parameters in the larvae parasitized by D. semiclausum at 24 h post‐parasitization were also significantly changed compared to the control; however, these differences were quantitatively, but not qualitatively before pupation, similar to those resulted from parasitization by C. vestalis. In spite of the similarities of the parasitism‐induced effects caused by these endoparasitoids, the final metabolic rate, that is, the rate of intake of nutrients required to compensate for metabolism, was much lower in the larvae parasitized by C. vestalis than that of the larvae parasitized by D. semiclausum. All of the results discussed here will contribute toward explaining the different ways these two wasps regulate the parasitoid‐host relationship.  相似文献   

18.
The physiological effects of nucleopolyhedrovirus (NPV) infection and parasitism by Microplitis pallidipes (Hymenoptera: Braconidae) on the hemocytes of Spodoptera exigua (Lepidoptera: Noctuidae) larvae were examined. We found that compared to healthy (control) larvae, the total hemocyte count (THC) and granulocyte count in parasitized larvae increased 1 day after parasitization and then decreased, while the plasmatocyte count was not significantly affected for the first 5 days but was significantly enhanced on day 6 after parasitization. In parasitized + infected larvae, both the THC and granulocyte counts began be lower from day 1 compared to parasitized larvae, while the plasmatocyte count was generally lower than in parasitized larvae. Compared to the control, THC, and granulocyte counts of virus-infected larvae were higher 1 day after infection. Compared to that in virus-infected larvae, THC and granulocyte counts in parasitized + infected larvae began to decrease from day 1 while the plasmatocyte count generally decreased. We concluded that the host immune response of cell communities to parasitization by M. pallidipes was elicited during the development of the parasitoid egg, but that immune response was inhibited during larval development of parasitoids in the host body. Meanwhile, we found that NPV infection impeded the regulatory effect of M. pallidipes on host cellular immune responses, and parasitization by M. pallidipes similarly inhibited the host cellular immune response caused by NPV infection.  相似文献   

19.
20.
Abstract.  1. Little is known about underlying mechanisms by which plants indirectly affect parasitism success in hymenopteran endoparasitoids. The hypothesis that host-plant effects can challenge the innate immune system of an insect host was experimentally tested in this study using a model tritrophic, crucifer – lepidopteran [ Plutella xylostella (L.)] – parasitoid [ Cotesia plutellae (Kurdjumov)], system.
2. The effects of host-plant suitability on herbivore performance and parasitism were examined. The bottom-up effect of plant suitability on host-parasitoid immune responses was then evaluated using measures of cellular and humoral effectors.
3. Host-plant quality showed a significant effect on the encapsulation response of P. xylostella to first instar but not to second instar parasitoid larvae. Encapsulation was never sufficient to prevent parasitoid emergence.
4. Poor host-plant suitability suppressed phenoloxidase activity in the absence of the parasitoid. The suppressive effect of C. plutellae on phenoloxidase activity was much greater and no plant effects were detectable after insects had been parasitized.
5. Despite strong plant effects on parasitism, those on immune effectors of the host were transitory or overwhelmed by the effect of the parasitoid.
6. These results demonstrated that plant-mediated variation in parasitism success by C. plutellae were not as a result of plant nutritional status or other attributes affecting the immune function of P. xylostella , nor to host-plant effects on superparasitism.
7. In these experiments, P. xylostella was a fully permissive host to C. plutellae and host-plant-mediated effects on the innate immune response appeared to play no part in parasitoid survival within hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号