首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upon binding of platelet-derived growth factor (PDGF), PDGF receptor is autophosphorylated at tyrosine residues in its cytoplasmic region, which induces the activation of diverse intracellular signaling pathways such those involving Ras-ERK, c-Src, and Rap1-Rac. Signaling through activated Ras-ERK promotes cell cycle and cell proliferation. The sequential activation of Rap1 and Rac affects cellular morphology and induces the formation of leading-edge structures, including lamellipodia, peripheral ruffles, and focal complexes, resulting in the enhancement of cell movement. In addition to the promotion of cell proliferation, the Ras-ERK signaling is involved in the regulation of cellular morphology. Here, we showed a novel role of afadin in the regulation of PDGF-induced intracellular signaling and cellular morphology in NIH3T3 cells. Afadin was originally identified as an actin filament-binding protein, which binds to a cell-cell adhesion molecule nectin and is involved in the formation of cell-cell junctions. When afadin was tyrosine-phosphorylated by c-Src activated in response to PDGF, afadin physically interacted with and increased the phosphatase activity of Src homology 2 domain-containing phosphatase-2 (SHP-2), a protein-tyrosine phosphatase that dephosphorylates PDGF receptor, leading to the prevention of hyperactivation of PDGF receptor and the Ras-ERK signaling. In contrast, knockdown of afadin or SHP-2 induced the hyperactivation of PDGF receptor and Ras-ERK signaling and consequently suppressed the formation of leading-edge structures. Thus, afadin plays a critical role in the proper regulation of the PDGF-induced activation of PDGF receptor and signaling by Ras-ERK. This effect, which is mediated by SHP-2, impacts cellular morphology.  相似文献   

2.
A clonal human glioma cell line, U-343 MGa 31L, which expresses the A-type but not the B-type receptor for platelet-derived growth factor (PDGF), was used in a functional study of the A-type receptor. PDGF-AA induced, in a dose- and time-dependent manner, phosphorylation on tyrosine residues of the receptor in metabolically labelled cells. The optimal dose was around 30 ng/ml; at 100 ng/ml, phosphorylation was maximal at 15 min and had almost returned to the control level after 60 min. The phosphorylation on tyrosine residues of the PDGF A-type receptor was stimulated by PDGF-AA, PDGF-AB and PDGF-BB; these isoforms also stimulated [3H]thymidine incorporation into U-343 MGa 31L cells. In addition, activation of the A-type PDGF receptor induced transmodulation of the epidermal growth factor receptor.  相似文献   

3.
Platelet-derived growth factor (PDGF) receptors (PDGFRs) are membrane protein-tyrosine kinases that, upon activation, become tyrosine-phosphorylated and associate with numerous SH2 domain-containing molecules involved in mediating signal transduction. In Rat-2 fibroblasts, we have characterized the phosphorylation of the beta-PDGFR following its activation by PDGF. In contrast to tyrosine phosphorylation, which was transient and returned to near basal levels by 30 min, PDGF-stimulated Ser/Thr phosphorylation of the beta-PDGFR was increased by 5 min and remained elevated after 30 min. In vivo, after 5 min of PDGF stimulation, serine phosphorylation of the beta-PDGFR was greatly reduced by CKI-7, a specific inhibitor of casein kinase I (CKI). In vitro, recombinant CKI-gamma2 phosphorylated the ligand-activated beta-PDGFR on serine residues in a CKI-7-sensitive manner and resulted in a marked inhibition of the receptor's autophosphorylating activity. Furthermore, in Rat-2 fibroblasts, expression of hemagglutinin epitope-tagged active CKI-gamma2 resulted in a dramatic decrease in the tyrosine phosphorylation state of the beta-PDGFR in response to PDGF, consistent with receptor inactivation. Our data suggest that upon PDGF stimulation, CKI-gamma2 is activated and/or translocated in proximity to the beta-PDGFR, whereby it phosphorylates the beta-PDGFR on serine residues and negatively regulates its tyrosine kinase activity, leading to receptor inactivation.  相似文献   

4.
PDGF binding to its receptor promotes the association with and stimulates the phosphorylation of PLC-gamma 1 at tyrosine and serine residues. Also, PDGF induces an increase in the hydrolysis of inositol phospholipids by PLC. How PDGF activates PLC was investigated by substituting phenylalanine for tyrosine at PLC-gamma 1 phosphorylation sites 771, 783, and 1254 and expressing the mutant enzymes in NIH 3T3 cells. Phenylalanine substitution at Tyr-783 completely blocked the activation of PLC by PDGF, whereas mutation at Try-1254 inhibited and mutation at Tyr-771 enhanced the response. Like the wild type, PLC-gamma 1 substituted with phenylalanine at Tyr-783 became associated with the PDGF receptor and underwent phosphorylation at serine residues in response to PDGF. These results suggest that PLC-gamma 1 is the PLC isozyme that mediates PDGF-induced inositol phospholipid hydrolysis, that phosphorylation on Tyr-783 is essential for PLC-gamma 1 activation. These results provide direct evidence that growth factor receptors activate the function of intracellular protein by tyrosine phosphorylation.  相似文献   

5.
We used site-directed mutagenesis to determine the minimum number of PDGF B residues needed to convert PDGF A to a potently transforming PDGF B-like molecule. Substitution of two PDGF B subdomains, 106-115 and 135-144, were found to be critical. These substitutions were sufficient to broaden the ability of PDGF A to activate beta as well as alpha platelet-derived growth factor (PDGF) receptors and increase its transforming efficiency to that of PDGF B. Within subdomain I, either PDGF B residues Arg-109 and Asn-115 or Arg-109, Leu-110, and Arg-113, in combination with subdomain II PDGF B residues Asn-136, Arg-137, and Arg-142 were identified as being essential. Those mutants with transforming ability comparable with PDGF B showed significantly lower efficiencies of beta receptor triggering. Thus, our studies identify a small number of PDGF B amino acids indispensable for beta PDGF receptor interaction and suggest that a low level of beta PDGF receptor activation is sufficient to dramatically increase PDGF transforming efficiency in NIH 3T3 cells.  相似文献   

6.
In an effort to biochemically characterize PDGF receptors and their mechanism of activation, recombinant baculovirus vectors containing the cDNAs of the human alpha PDGF receptor or beta PDGF receptor were engineered. Characterization of recombinant PDGF receptor expression in infected Sf9 insect cells by immunoblot analysis with specific PDGF receptor peptide antisera revealed that the alpha and beta PDGF receptor gene products were translated as 160- and 165-kDa transmembrane proteins, respectively. Ligand binding analysis demonstrated saturable, high-affinity binding of either 125I-labeled PDGF AA or 125I-labeled PDGF BB to Sf9 cells expressing the recombinant alpha PDGF receptor. In contrast, recombinant beta PDGF receptor expressing Sf9 cells showed high-affinity binding only for PDGF BB. Analysis of the kinetics of PDGF receptor expression demonstrated that receptor number increased dramatically from 24- to 48-h postinfection. Early in infection, the PDGF receptors were present in low numbers, lacked tyrosine phosphorylation, and exhibited ligand-dependent tyrosine phosphorylation. However, with increasing time postinfection and increasing receptor number, the PDGF receptors became constitutively tyrosine-phosphorylated in serum-free culture medium. Cross-linking studies revealed that receptor activation involved ligand-independent receptor dimer formation at high receptor number. Thus, these results strongly suggest that PDGF stabilizes and increases the frequency of PDGF receptor interaction, which ultimately results in PDGF receptor activation and intracellular signaling.  相似文献   

7.
Tyrosine residues have been identified in the human platelet-derived growth factor (PDGF) receptor beta-subunit whose phosphorylation is stimulated by PDGF. These sites are also in vitro autophosphorylation sites. There are a total of three phosphorylation sites in the kinase insert region, tyrosines 740, 751 and 771. Mutagenesis studies show that Tyr740 and 751 are involved in the PDGF-stimulated binding of phosphatidylinositol (PI) 3 kinase, and Tyr771 is required for efficient binding of GAP, the GTPase activator of Ras. The requirement for Tyr751 is only detected at low PDGF receptor levels, suggesting that it increases the affinity of binding of PI3 kinase but is not absolutely required. Small deletions in the kinase insert only 10 residues from Tyr740 and Tyr771 do not significantly reduce binding of PI3 kinase or GAP, indicating that distant sequences are probably unimportant for recognition. The data suggest that the receptor signals to different pathways via different phosphorylated tyrosines, and that certain proteins, such as PI3 kinase, can recognize two phosphorylated tyrosines in a single receptor.  相似文献   

8.
P Kanakaraj  S Raj  S A Khan  S Bishayee 《Biochemistry》1991,30(7):1761-1767
Two types of PDGF receptors have been cloned and sequenced. Both receptors are transmembrane glycoproteins with a ligand-stimulatable tyrosine kinase site. We have shown earlier that ligand-induced activation of the beta-type PDGF receptor is due to the conversion of the monomeric form of the receptor to the dimeric form [Bishayee et al. (1989) J. Biol. Chem. 264, 11699-11705]. In the present studies, we have established the ligand-binding specificity of two receptor types and extended it further to investigate the ligand-induced association state of the alpha-receptor and the role of alpha-receptor in the activation of beta-receptor. These studies were conducted with cells that express one or the other type of PDGF receptor as well as with cells that express both types of receptors. Moreover, ligand-binding characteristics of the receptor were confirmed by immunoprecipitation of the receptor-125I-PDGF covalent complex with type-specific anti-PDGF receptor antibodies. These studies revealed that all three isoforms of PDGF bind to alpha-receptor, and such binding leads to dimerization as well as activation of the receptor. In contrast, beta-receptor can be activated only by PDGF BB and not by PDGF AB or PDGF AA. However, by using antipeptide antibodies that are specific for alpha- or beta-type PDGF receptor, we demonstrated that in the presence of alpha-receptor, beta-receptor kinase can be activated by PDGF AB. We present here direct evidence that strongly suggests that such PDGF AB induced activation of beta-receptor is due to the formation of a noncovalently linked alpha-beta receptor heterodimer.  相似文献   

9.
Growth factor receptors are typically activated by the binding of soluble ligands to the extracellular domain of the receptor, but certain viral transmembrane proteins can induce growth factor receptor activation by binding to the receptor transmembrane domain. For example, homodimers of the transmembrane 44-amino acid bovine papillomavirus E5 protein bind the transmembrane region of the PDGF beta receptor tyrosine kinase, causing receptor dimerization, phosphorylation, and cell transformation. To determine whether it is possible to select novel biologically active transmembrane proteins that can activate growth factor receptors, we constructed and identified small proteins with random hydrophobic transmembrane domains that can bind and activate the PDGF beta receptor. Remarkably, cell transformation was induced by approximately 10% of the clones in a library in which 15 transmembrane amino acid residues of the E5 protein were replaced with random hydrophobic sequences. The transformation-competent transmembrane proteins formed dimers and stably bound and activated the PDGF beta receptor. Genetic studies demonstrated that the biological activity of the transformation-competent proteins depended on specific interactions with the transmembrane domain of the PDGF beta receptor. A consensus sequence distinct from the wild-type E5 sequence was identified that restored transforming activity to a non-transforming poly-leucine transmembrane sequence, indicating that divergent transmembrane sequence motifs can activate the PDGF beta receptor. Molecular modeling suggested that diverse transforming sequences shared similar protein structure, including the same homodimer interface as the wild-type E5 protein. These experiments have identified novel proteins with transmembrane sequences distinct from the E5 protein that can activate the PDGF beta receptor and transform cells. More generally, this approach may allow the creation and identification of small proteins that modulate the activity of a variety of cellular transmembrane proteins.  相似文献   

10.
We previously described that pervanadate, a potent tyrosine phosphatase inhibitor, induced contraction of rat myometrium via phospholipase (PL) C-gamma1 activation [Biol Reprod 54 (1996) 1383]. In this study, we found that pervanadate induced tyrosine phosphorylation of the platelet-derived growth factor (PDGF)-beta receptor, interaction of the phosphorylated PDGF receptor with the phosphorylated PLC-gamma1, production of inositol phosphates (InsPs), extracellular signal-regulated kinase (ERK) activation and DNA synthesis. All these responses were insensitive to PDGF receptor kinase inhibition or PDGF receptor down-regulation. We showed that Src family kinases were activated by pervanadate, and that InsPs production and phosphorylation of both PLC-gamma1 and the PDGF receptor were blocked by PP1, an Src inhibitor. In contrast, the stimulation of ERK by pervanadate was totally refractory to PP1. These results demonstrated that the activation of Src by pervanadate is involved in PLC-gamma1/InsPs signalling but does not play a major role in ERK activation.  相似文献   

11.
Endothelial cell activation by thrombin is a key event in wound healing, Inflammation, and hemostasis. To better define thrombin-endothelial cell interactions we synthesized several peptides of varying length corresponding to the initial 14 amino acid sequence of the cloned human platelet thrombin receptor after cleavage at an arginine41 site (R/SFLLRNPNDKYEPF). Thrombin receptor activating peptides (TRAPs) as short as 5 amino acids induced significant levels of PGl2 synthesis and expression of PDGF mRNA in human endothelium and produced dose-dependent cellular contraction and permeability of confluent human umbilical vein and bovine pulmonary artery endothelial monolayers. To explore whether TRAPs utilized similar signal transducing pathways as α-thrombin to accomplish endothelial cell activation, phospholipase C production of the Ca2+ secretagogue IP3 was measured and detected 10 seconds after either TRAP 7 or α-thrombin. Furthermore, TRAPs ranging from 5-14 residues induced significant dose-dependent incsreases in Fura-2 fluorescence indicative of Ca2+ 1 mobilization. These results indicate that thrombin-mediated proteolytic cleavage of the human and bovine thrombin receptor initiates stimulus/coupling respones such phospholipase C activation, Ca2+ mobilization, and protein kinase C activation. The functional consequence of this cellular activation via the cleaved receptor is enhanced cellular contraction, barrier dysfunction, PGI2 synthesis, and expression of PDGF mRNA. © 1993 Wiley-Liss, Inc.  相似文献   

12.
The bovine papillomavirus E5 protein is a 44-amino-acid membrane-associated protein that forms a stable complex with the endogenous platelet-derived growth factor (PDGF) beta receptor in rodent and bovine fibroblasts, resulting in sustained receptor activation and cell transformation. We report here that high-level expression of the E5 protein caused a reduction in the level of the mature form of the PDGF beta receptor in acutely and stably transformed mouse C127 cells. To explore in more detail the interaction of the E5 protein and the PDGF beta receptor, we tested the abilities of various E5 point mutants to bind the PDGF receptor, to induce PDGF receptor down-regulation and tyrosine phosphorylation, and to transform cells. A transformation-competent mutant, like the wild-type E5 protein, bound the receptor and induced receptor tyrosine phosphorylation and down-regulation. Transformation-defective E5 proteins either failed to interact with the endogenous PDGF beta receptor in mouse fibroblasts or underwent an aberrant interaction with the receptor. Mutation of glutamine at position 17, aspartic acid at position 33, or both carboxyl-terminal cysteine residues required for E5 homodimerization interfered with stable complex formation with the PDGF receptor, tyrosine phosphorylation and down-regulation of the receptor, and cell transformation. Point mutations at several other carboxyl-terminal positions generated transformation-defective E5 proteins that formed a complex with the PDGF receptor and induced receptor tyrosine phosphorylation but did not induce PDGF receptor down-regulation. Either PDGF receptor activation is not sufficient for transformation of C127 cells or the receptors that are tyrosine phosphorylated in response to these mutant E5 proteins are not fully activated and therefore are not able to deliver a mitogenic signal.  相似文献   

13.
Exposure of cells to hydrogen peroxide or platelet-derived growth factor (PDGF) induced Akt phosphorylation and oxidation of phosphatase and tensin homolog (PTEN). The Cys124 and Cys71 residues of PTEN were critical for the formation of a disulfide bond and the intermediate glutathionylation in the process of reduction of the disulfide bond. To determine which specific tyrosine residues of the PDGF beta receptor (PDGFβR) is involved in PDGF-induced PTEN oxidation and Akt phosphorylation, we investigated a kinase activity-deficient mutant and PDGFβR mutants where the tyrosine residues in the binding site for phosphoinositide 3-kinase (PI3K), GTPase-activating protein of Ras, Src homology 2 domain containing protein-tyrosine phosphatase-2, and phospholipase C-1 were replaced by Phe. Both PTEN oxidation and Akt phosphorylation did not occur in response to PDGF in the kinase-deficient mutant and in the PDGFβR mutant with a mutation in the PI3K binding site (Tyr740 and Tyr751). Thus, the kinase activity and the constituent Tyr740 and Tyr751 residues of PDGFβR in the cells stimulated with PDGF are responsible for the oxidation of PTEN and the Akt phosphorylation.  相似文献   

14.
Platelet-derived growth factor (PDGF) is a 30 kDa dimer of disulfide-bonded A and B chains. Three isoforms of PDGF have been isolated (PDGF-AA, PDGF-AB and PDGF-BB). These bind with different affinities and specificities to two structurally related cell surface receptors, viz. the α-receptor and the β-receptor. The receptors are transmembrane proteins with an intracellular, ligand-stimulatable protein tyrosine kinase domain. Activation of the receptors is intimately associated with receptor dimerization, and available data suggest that PDGF is a divalent ligand such that one molecule of PDGF binds and dimerizes two receptor molecules. Stimulation of PDGF receptors leads to a cascade of cellular events, which have been shown to require an intact receptor tyrosine kinase activity. However, ligand-induced internalization and degradation of the β-receptor occur essentially independent of the receptor kinase activity. Receptor activation leads to the phosphorylation on tyrosine residues of three enzymes, probably by direct phosphorylation: phospholipase C-γ, phosphatidylinositol 3′ kinase and Raf-1. In certain cells, PDGF β-receptor expression is inducible such that cells in normal tissue in vivo do not express receptors; only in inflammatory lesions or when cells are explanted in vitro, are receptors being expressed. Transformation by the v-sis oncogene is mediated by an autocrine PDGF-like growth factor. Although both the α- and β-receptors are structurally related to the v-fms and v-kit oncogenes, it is not known if the PDGF receptors have a transforming potential. In conclusion, the finding of three isoforms of PDGF that interact with two structurally related receptors implies a finely tuned regulatory network, the role of which in cell growth and transformation remains to be clarified.  相似文献   

15.
Platelet-derived growth factor (PDGF) is a dimeric factor stabilized by disulfide bonds. Using an approach involving partial reduction of PDGF, we have identified the 2nd and 4th cysteine residues in the PDGF chains as the cysteine residues forming interchain disulfide bonds. Analysis of PDGF mutants in which the 2nd and 4th cysteine residues were mutated to serine residues revealed that the disulfide bonds are arranged in a cross-wise manner, with the 2nd cysteine residue in one chain being linked to the 4th cysteine residue in the other. A PDGF B-chain mutant, in which both the 2nd and 4th cysteine residues were substituted with serine residues, migrated as a monomer in sodium dodecyl sulfate gel electrophoresis and retained receptor binding activity. When analyzed in receptor dimerization and autophosphorylation assays, this mutant showed agonistic activity. Thus, structural information has been obtained that will allow the large scale production of properly folded monomeric PDGF, as well as design of specific PDGF heterodimers.  相似文献   

16.
The platelet-derived growth factor beta receptor (betaPDGFR) is a receptor tyrosine kinase involved in multiple aspects of cell growth and differentiation. Upon activation, betaPDGFR is phosphorylated at up to nine different tyrosine residues. Phosphorylation of the receptor results in at least two different outcomes: recruitment of signaling molecules and activation of intrinsic receptor kinase activity. In order to evaluate the phosphorylation state of the receptor, phosphospecific antibodies were generated against peptides encompassing betaPDGFR phospho-Y751, phospho-Y771, or phospho-Y857. When phosphorylated, these sites enable the receptor to recruit signaling molecules PI3K or RasGAP, or enhance the receptor's kinase activity, respectively. We found that receptors phosphorylated at Y751, Y771, and Y857 display distinct temporal and spatial distribution by immunofluorescence. Subsequent biochemical studies revealed that receptor function corresponding to each of the phosphorylated sites was regulated as a function of time. Within the first 10 min, PDGF enhanced the receptor's kinase activity and initiated recruitment of PI3K and RasGAP. After prolonged exposure to PDGF, PI3K binding persisted to approximately 85% of the amount bound at 10 min, whereas binding of RasGAP and the exogenous kinase activity of the receptor diminished to less than 15% of the levels displayed at 10 min. We conclude that the phosphorylation state of the receptor, as well as its signaling capacity, is dynamic and changes as cells are continuously exposed to PDGF.  相似文献   

17.
Incubation of the serum-deprived cultures of NIH/3T3 cells with bombesin or platelet-derived growth factor (PDGF) induced the phospholipase C-mediated hydrolysis of phosphoinositides. Protein kinase C-activating 12-O-tetradecanoylphorbol 13-acetate (TPA) and pertussis toxin inhibited the bombesin-induced phospholipase C reactions. AlF4-, a direct activator of GTP-binding proteins (G proteins), also induced the phospholipase C reactions and TPA inhibited the AlF4- -induced reactions. These results suggest that a pertussis toxin-sensitive G protein is involved in the coupling of the bombesin receptor to the phospholipase C and that the coupling of the G protein to the phospholipase C is inhibited by protein kinase C. In contrast, neither TPA nor pertussis toxin inhibited the PDGF-induced phospholipase C reactions, indicating that a pertussis toxin-sensitive G protein is not involved in the coupling of the PDGF receptor to the phospholipase C and that this coupling is insensitive to protein kinase C. These results suggest that the regulatory mechanism of the PDGF receptor for the phospholipase C activation is different from that of the bombesin receptor.  相似文献   

18.
Sphingosine-1-phosphate, a sphingolipid metabolite, is involved in the mitogenic response of platelet-derived growth factor (PDGF) and is formed by activation of sphingosine kinase. We examined the effect of PDGF on sphingosine kinase activation in TRMP cells expressing wild-type or various mutant betaPDGF receptors. Sphingosine kinase was stimulated by PDGF in cells expressing wild-type receptors but not in cells expressing kinase-inactive receptors (R634). Cells expressing mutated PDGF receptors with phenylalanine substitutions at five major tyrosine phosphorylation sites 740/751/771/1009/1021 (F5 mutants), which are unable to associate with PLCgamma, phosphatidylinositol 3-kinase, Ras GTPase-activating protein, or protein tyrosine phosphatase SHP-2, not only failed to increase DNA synthesis in response to PDGF but also did not activate sphingosine kinase. Moreover, mutation of tyrosine-1021 of the PDGF receptor to phenylalanine, which impairs its association with PLCgamma, abrogated PDGF-induced activation of sphingosine kinase. In contrast, PDGF was still able to stimulate sphingosine kinase in cells expressing the PDGF receptor mutated at tyrosines 740/751 and 1009, responsible for binding of phosphatidylinositol 3-kinase and SHP-2, respectively. In agreement, PDGF did not stimulate sphingosine kinase activity in F5 receptor 'add-back' mutants in which association with the Ras GTPase-activating protein, phosphatidylinositol 3-kinase, or SHP-2 was individually restored. However, a mutant PDGF receptor that was able to bind PLCgamma (tyrosine-1021), but not other signaling proteins, restored sphingosine kinase sensitivity to PDGF. These data indicate that the tyrosine residue responsible for binding of PLCgamma is required for PDGF-induced activation of sphingosine kinase. Moreover, calcium mobilization downstream of PLCgamma, but not protein kinase C activation, appears to be required for stimulation of sphingosine kinase by PDGF.-Olivera, A., Edsall, J., Poulton, S., Kazlauskas, A., Spiegel, S. Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma.  相似文献   

19.
Dopamine D2 receptor activation of extracellular signal-regulated kinases (ERKs) in non-neuronal human embryonic kidney 293 cells was dependent on transactivation of the platelet-derived growth factor (PDGF) receptor, as demonstrated by the effect of the PDGF receptor inhibitors tyrphostin A9 and AG 370 on quinpirole-induced phosphorylation of ERKs and by quinpirole-induced tyrosine phosphorylation of the PDGF receptor. In contrast, ectopically expressed D2 receptor or endogenous D2-like receptor activation of ERKs in NS20Y neuroblastoma cells, which express little or no PDGF receptor, or in rat neostriatal neurons was largely dependent on transactivation of the epidermal growth factor (EGF) receptor, as demonstrated using the EGF receptor inhibitor AG 1478 and by quinpirole-induced phosphorylation of the EGF receptor. The D2 receptor agonist quinpirole enhanced the coprecipitation of D2 and EGF receptors in NS20Y cells, suggesting that D2 receptor activation induced the formation of a macromolecular signaling complex that includes both receptors. Transactivation of the EGF receptor also involved the activity of a matrix metalloproteinase. Thus, although D2 receptor stimulation of ERKs in both cell lines was decreased by inhibitors of ERK kinase, Src-family protein tyrosine kinases, and serine/threonine protein kinases, D2-like receptors activated ERKs via transactivation of the EGF receptor in NS20Y neuroblastoma cells and rat embryonic neostriatal neurons, but via transactivation of the PDGF receptor in 293 cells.  相似文献   

20.
The effect of ligand binding on platelet-derived growth factor (PDGF) receptor conformation was examined using peptide antibodies directed against specific receptor domains. Antiserum 83, which was directed to the receptor's carboxyl terminus (residues 934-951), preferentially immunoprecipitated the ligand-activated form of the PDGF receptor from 35S-labeled BALB/c 3T3 cells. By contrast, two antisera directed against other receptor sequences precipitated unactivated and activated receptors equally well. Denatured receptors were recognized equally by all antisera, even 83. Thus, ligand activation caused a change in PDGF receptor conformation that enhanced accessibility of the antibody to the carboxyl terminus. The activated receptor conformation was induced by three different forms of PDGF (AA and BB homodimers and AB heterodimers) and was reversed by suramin, a polyanionic compound that dissociates PDGF from the receptor. The inhibitory effect of suramin on receptor conformation was abolished by the phosphatase inhibitor, sodium orthovanadate, suggesting that receptor phosphorylation mediated the conformational change. In a cell-free assay, the change in receptor conformation was induced by PDGF only in the presence of ATP and was inhibited by adenyl-5'-yl imidodiphosphate, a nonhydrolyzable analog of ATP. The functional significance of receptor conformation was examined in Chinese hamster ovary fibroblasts transfected with wild-type or mutated forms of the PDGF receptor. When receptor tyrosine kinase activity was abolished by a mutation of the ATP binding site the receptor no longer underwent PDGF-induced conformational change and did not mediate PDGF-induced mitogenesis even though 125I-PDGF binding was normal. These findings show that ligand binding elicits a phosphorylation-dependent change in PDGF receptor conformation that may be important for receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号