首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F2 population obtained from a Col × Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

2.
Juenger TE  Sen S  Stowe KA  Simms EL 《Genetica》2005,123(1-2):87-105
A major goal of evolutionary biology is to understand the genetic architecture of the complex quantitative traits that may lead to adaptations in natural populations. Of particular relevance is the evaluation of the frequency and magnitude of epistasis (gene–gene and gene–environment interaction) as it plays a controversial role in models of adaptation within and among populations. Here, we explore the genetic basis of flowering time in Arabidopsis thaliana using a series of quantitative trait loci (QTL) mapping experiments with two recombinant inbred line (RIL) mapping populations [Columbia (Col) x Landsberg erecta (Ler), Ler x Cape Verde Islands (Cvi)]. We focus on the response of RILs to a series of environmental conditions including drought stress, leaf damage, and apical damage. These data were explicitly evaluated for the presence of epistasis using Bayesian based multiple-QTL genome scans. Overall, we mapped fourteen QTL affecting flowering time. We detected two significant QTL–QTL interactions and several QTL–environment interactions for flowering time in the Ler x Cvi population. QTL–environment interactions were due to environmentally induced changes in the magnitude of QTL effects and their interactions across environments – we did not detect antagonistic pleiotropy. We found no evidence for QTL interactions in the Ler x Col population. We evaluate these results in the context of several other studies of flowering time in Arabidopsis thaliana and adaptive evolution in natural populations.  相似文献   

3.

Background and Aims

Dormancy is a complex trait finely regulated by hormones and environmental factors. The phytochromes that sense red:far-red (R:FR) are the sole photoreceptors involved in the termination of dormancy and the induction of germination by light. The aims of this study were to identify and characterize loci controlling this process in seeds of Arabidopsis thaliana.

Methods

Recombinant inbred lines (RILs) derived from Landsberg erecta and Cape Verde Islands (Ler × Cvi), and Bayreuth and Shahdara (Bay-0 × Sha) were used to map loci related to light effects in seeds previously exposed to chilling and after-ripening periods.

Key Results

Substantial genetic variation was found between accessions of A. thaliana in the induction of germination by light. Twelve loci were identified under R, FR or darkness, some of which were novel loci: DOG8, DOG9, DOG13, DOG14 and DOG15 detected in the Ler × Cvi RIL population; and DOG10, DOG11 and DOG12 mapped in the Bay-0 × Sha RIL population. Furthermore, independent loci were mapped for the induction of germination by low fluence (DOG-LF1 and DOG-LF2) and very low fluence of light (DOG-VLF1) in the Ler × Cvi RIL population. Several loci were confirmed and characterized after different after-ripening and chilling treatments through near-isogenic lines (NILs) and heterogeneous inbred families (HIFs).

Conclusions

The results show that one group of loci act in a wide range of environmental scenarios, whereas a smaller group of loci are relevant only under a narrower set of conditions when the influence of the most-prevalent loci is reduced as a consequence of changes in the physiological status of the seeds. In addition, the identification of specific loci controlling the action modes of the phytochromes improves our understanding of the two independent signalling pathways that promote germination in response to light.Key words: Arabidopsis thaliana, dormancy, germination, phytochromes, very-low-fluence response (VLFR), low-fluence response (LFR), natural genetic variation, quantitative trait loci (QTL), recombinant inbred line (RIL), near-isogenic line (NIL) heterogeneous inbred family (HIF)  相似文献   

4.
Comparative analysis of nucleotide sequences of the genomic region located around 100 map unit of chromosome 1 using two accessions, Columbia (Col) and Landsberg erecta (Ler), of Arabidopsis thaliana was performed. High divergence was detected between them, and the length of the Ler sequence was half of corresponding sequence of Col. This divergence occurred by tandem duplication, deletion of large regions, and insertion of unrelated sequences. These events led to the high polymorphism of plant disease resistant genes, which are located in the analyzed region. It is highly probable that two-round duplication occurred, and the insertion sequences are transposable elements. The data suggest that the analyzed region had been evolving until quite recently.  相似文献   

5.
Naturally occurring genetic variation for contents of cationic minerals in seeds of Arabidopsis thaliana was studied by screening a series of accessions (ecotypes) for Ca, Fe, K, Mg, Mn, Na, Zn, and for total contents of P. Variation was observed for all minerals and correlations between contents of various minerals were present, most noticeably between Ca and Mg, P and Mg, and P and Mn. The genetic basis of this variation was further studied by QTL analysis, using the Landsberg erecta (Ler) × Cape Verde Islands (Cvi) recombinant inbred population. For all minerals, except Na, one or more QTL were detected, explaining up to 78% of the variation. The map positions of several QTL were confirmed by analysis of near isogenic lines, carrying small Cvi introgressions in Ler background. Interesting co‐locations of QTL suggest pleiotropic effects, due to physiological coupling of the accumulation of certain minerals or to linkage of different genes. By comparing the map positions of QTL with the positions of genes expected to play a role in cation translocation, several candidate genes are suggested.  相似文献   

6.
Konieczny and Ausubel have described a technique whereby Arabidopsis thaliana loci can be rapidly mapped to one of the ten chromosome arms using a small number of F2 progeny from crosses between the ecotypes Landsberg erecta and Columbia. The technique involves the use of 18 co-dominant, cleaved amplified polymorphic sequence (CAPS) markers which are evenly distributed throughout the Arabidopsis genome. We have mapped these 18 markers using recombinant inbred (RI) lines generated in our laboratory. These data enable a better integration of loci mapped relative to the CAPS markers into the restriction fragment length polymorphism (RFLP) map generated using Arabidopsis RI lines.  相似文献   

7.
Natural variation for primary root growth response to high Ca stress in Arabidopsis thaliana was studied by screening a series of accessions (ecotypes) under high Calcium (40 mM CaCl2 ) conditions. The genetic basis of this variation was further investigated by QTL analysis using recombinant inbred lines from Landsberg erecta (Ler)×Cape Verde Islands (Cvi) cross. Four QTLs were identified in chromosome 1, 2 and 5,and named response to high Calcium (RHCA) 1–4. The three QTLs (RHCA1, RHCA2 and RHCA4) were further confirmed by analysis of near isogenic lines harboring Cvi introgression fragments in Ler background. Real-time PCR analysis showed that several genes associated with high Ca response including SMT1 and XHT25 have changed expression pattern between Ler and near isogenic lines. These results were useful for detecting molecular mechanisms of plants for high Ca adaption.  相似文献   

8.
Copper (Cu) is an essential element in plant nutrition, but it inhibits the growth of roots at low concentrations. Accessions of Arabidopsis (Arabidopsis thaliana) vary in their tolerance to Cu. To understand the molecular mechanism of Cu tolerance in Arabidopsis, we performed quantitative trait locus (QTL) analysis and accession studies. One major QTL on chromosome 1 (QTL1) explained 52% of the phenotypic variation in Cu tolerance in roots in a Landsberg erecta/Cape Verde Islands (Ler/Cvi) recombinant inbred population. This QTL regulates Cu translocation capacity and involves a Cu-transporting P1B-1-type ATPase, HMA5. The Cvi allele carries two amino acid substitutions in comparison with the Ler allele and is less functional than the Ler allele in Cu tolerance when judged by complementation assays using a T-DNA insertion mutant. Complementation assays of the ccc2 mutant of yeast using chimeric HMA5 proteins revealed that N923T of the Cvi allele, which was identified in the tightly conserved domain N(x)6YN(x)4P (where the former asparagine was substituted by threonine), is a cause of dysfunction of the Cvi HMA5 allele. Another dysfunctional HMA5 allele was identified in Chisdra-2, which showed Cu sensitivity and low capacity of Cu translocation from roots to shoots. A unique amino acid substitution of Chisdra-2 was identified in another strictly conserved domain, CPC(x)6P, where the latter proline was replaced with leucine. These results indicate that a portion of the variation in Cu tolerance of Arabidopsis is regulated by the functional integrity of the Cu-translocating ATPase, HMA5, and in particular the amino acid sequence in several strictly conserved motifs.  相似文献   

9.
Late-flowering mutants that have been described in ecotypes other than Landsberg erecta (Ler) have been found to be dominant alleles of the FRI locus located on chromosome 4, which determines lateness in many very late ecotypes. The extreme lateness of dominant FRI alleles depends on dominant alleles at the FLC locus that maps on the top of chromosome 5. FLC alleles with this effect have been found in all ecotypes tested (Col, Ws, S96, Est and Li) except Ler. Most likely the same locus confers lateness to the luminidependens (ld) mutant. Genotypes with a dominant FRI allele and the monogenic recessive ld mutant are only slightly later with recessive Ler alleles at the FLC locus. Genotypes where the dominant FLC alleles are combined with FRI or with the ld mutant, are strongly responsive to vernalization, which is much less effective in the FLC-Ler background.  相似文献   

10.
11.
Fatty acid composition is an important determinant of seed oil quality. Overall, 72 QTL for 12 fatty acid traits that control seed oil composition were identified in four recombinant inbred line (RIL) populations (Ler-0 × Sha, Ler-0 × Col-4, Ler-2 × Cvi, Ler-0 × No-0) of Arabidopsis thaliana. The identified QTL explained 3.2–79.8% of the phenotypic variance; 33 of the 59 QTL identified in the Ler-0 × Sha and the Ler-0 × Col RIL populations co-located with several a priori candidate genes for seed oil composition. QTL for fatty acids 18:1, 18:2, 22:1, and fatty acids synthesized in plastids was identified in both Ler-0 × Sha and Ler-0 × Col-4 RIL populations, and QTL for 16:0 was identified in the Ler-0 × Sha and Ler-0 × No-0 RIL populations providing strong support for the importance of these QTL in determining seed oil composition. We identified melting point QTL in three RIL populations, and fatty acid QTL collocated with two of them, suggesting that the loci could be under selection for altering the melting point of seed oils to enhance adaptation and could be useful for breeding purposes. Nuclear-cytoplasmic interactions and epistasis were rare. Analysis of the genetic correlations between these loci and other fatty acids indicated that these correlations would tend to strongly enhance selection for desirable fatty acids.  相似文献   

12.
Summary The Arabidopsis ecotypes Columbia (Col), Landsberg erecta (Ler), Cape Verde Island (Cvi) and Wassilewskija (WS) have been tested for their regeneration response in vitro. A characteristic morphology of leaf-derived calluses has been found for each ecotype. Differences in regeneration ability have been detected depending on the plant strain. the explant source and on the culture medium composition. In CIR/SIR media, which contain 0.5 mg l−1 (2.26 μM) of 2,4-dichlorophenoxyacetic acid (2,4-D) and glucose, root explants from the four ecotypes are able to reach a considerable regeneration level, while leaf explants do not regenerate beyond a basal level (5% approximately). In CIH/SIH media, which contain 2.2 mg l−1 (9.95 μM) of 2,4-D and suerose, leaf explants from all the ecotypes, with the exception of Col, are able to regenerate, but they do it at variable levels (Ler 5.75%, WS 75.09%, and Cvi 27.53% as regeneration rates). With these media all root explants are able to regenerate, but again the four ecotypes show different rates (Col 27.7%, Ler 57.25%, WS 98.54%, and Cvi 42.25%). The variation of the different medium components affects differentially the regeneration ability of the four ecotypes depending also on the kind of explant. Thus, when the 2,4-D concentration is raised WS duplicates its regeneration rate in both leaf and root explants. Changing glucose for sucrose in CIR/SIR media diminishes to the basal level the regeneration of Cvi root explants, while the CIH/SIH salts and vitamin concentration permit the regeneration of leaf explants from all the ecotypes except Col. The genes responsible for those observed differences in regeneration ability could be identified and mapped by analyzing the in vitro regeneration behavior of the recombinant inbred lines (RILs) obtained by crossing these ecotypes.  相似文献   

13.
Map‐based cloning has been widely used to identify genes responsible for mutant phenotypes in Arabidopsis, especially those mutants generated by EMS or fast neutron mutagenesis. The success of map‐based cloning relies on the availability of molecular markers that distinguish the polymorphisms between two Arabidopsis ecotypes. So far, most molecular markers in Arabidopsis have been generated by individual laboratories or the Arabidopsis Information Resource (TAIR). However, the TAIR markers, which are distributed unevenly on the five Arabidopsis chromosomes, only cover approximately 25% of the Arabidopsis BACs. Designing and testing molecular markers is still a time‐consuming endeavor. Here we report the construction of a high‐resolution BAC‐based Arabidopsis mapping platform (AMP), using Col‐0 and Ler as model ecotypes. The AMP comprises 1346 markers (1073 INDEL and 273 CAPS/dCAPS markers), of which 971 were newly designed and experimentally confirmed, 179 were from published papers and 196 were TAIR markers. These AMP markers cover 1186 BACs, 1121 of which are in non‐centromere regions, representing approximately 75% of the Arabidopsis BACs in non‐centromere regions. All the marker information is included on the AMP website ( http://amp.genomics.org.cn/ ) for easy access and download, and sets of standard markers for initial chromosomal localization of a particular gene are recommended. The feasibility of using the AMP to map mutated genes is also discussed.  相似文献   

14.
The late-flowering phenotype of mutations in the LUMINIDEPENDENS (LD) gene and the late flowering caused by the naturally occurring dominant gene FRIGIDA (FRI) are suppressed in the Landsberg erecta (Ler) strain of Arabidopsis thaliana. This suppression is dependent on a locus on chromosome 5 designated FLC. Of the ecotypes tested, only the Ler strain contains the suppressor allele of FLC; ld mutations and FRI cause late flowering in the other genetic backgrounds. The allele at FLC also has a moderate effect on flowering time in the absence of FRI or ld mutations. The flowering time effects of FLC are gene dosage dependent.  相似文献   

15.
Automated image acquisition, a custom analysis algorithm, and a distributed computing resource were used to add time as a third dimension to a quantitative trait locus (QTL) map for plant root gravitropism, a model growth response to an environmental cue. Digital images of Arabidopsis thaliana seedling roots from two independently reared sets of 162 recombinant inbred lines (RILs) and one set of 92 near isogenic lines (NILs) derived from a Cape Verde Islands (Cvi) × Landsberg erecta (Ler) cross were collected automatically every 2 min for 8 hr following induction of gravitropism by 90° reorientation of the sample. High-throughput computing (HTC) was used to measure root tip angle in each of the 1.1 million images acquired and perform statistical regression of tip angle against the genotype at each of the 234 RIL or 102 NIL DNA markers independently at each time point using a standard stepwise procedure. Time-dependent QTL were detected on chromosomes 1, 3, and 4 by this mapping method and by an approach developed to treat the phenotype time course as a function-valued trait. The QTL on chromosome 4 was earliest, appearing at 0.5 hr and remaining significant for 5 hr, while the QTL on chromosome 1 appeared at 3 hr and thereafter remained significant. The Cvi allele generally had a negative effect of 2.6–4.0%. Heritability due to the QTL approached 25%. This study shows how computer vision and statistical genetic analysis by HTC can characterize the developmental timing of genetic architectures.  相似文献   

16.
17.
Postpollination nonrandom mating among compatible mates is a widespread phenomenon in plants and is genetically undefined. In this study, we used the recombinant inbred line (RIL) population between Landsberg erecta and Columbia (Col) accessions of Arabidopsis (Arabidopsis thaliana) to define the genetic architecture underlying both female- and male-mediated nonrandom mating traits. To map the genetic loci responsible for male-mediated nonrandom mating, we performed mixed pollinations with Col and RIL pollen on Col pistils. To map the genetic loci responsible for female-mediated nonrandom mating, we performed mixed pollinations with Col and Landsberg erecta pollen on RIL pistils. With these data, we performed composite interval mapping to identify two quantitative trait loci (QTLs) that control male-mediated nonrandom mating. We detected epistatic interactions between these two loci. We also explored female- and male-mediated traits involved in seed yield in mixed pollinations. We detected three female QTLs and one male QTL involved in directing seed number per fruit. To our knowledge, the results of these experiments represent the first time the female and male components of seed yield and nonrandom mating have been separately mapped.  相似文献   

18.
By combining the amplified fragment length polymorphism (AFLP) technique with selective genotyping, we constructed a linkage map for rice and assigned each linkage group to a corresponding chromosome. The AFLP map, consisting of 202 AFLP markers, was generated from 74 recombinant inbred lines (RIL) which were selected from both extremes of the population (250 lines) with respect to the response to complete submergence. Map length was 1756 cM, with an average interval size of 8.5 cM. To assign linkage groups to chromosomes, we used 50 previously mapped AFLP markers as anchor markers distributed over the 12 chromosomes. Other AFLP markers were then assigned to specific chromosomes based on their linkage to anchor markers. This AFLP map is equivalent to the RFLP/AFLP map constructed previously as the anchors were in the same order in both maps. Furthermore, tests with two restriction fragment length polymorphism (RFLP) markers and two sequence-tagged site (STS) markers showed that they mapped in the expected positions. Using this AFLP map, a major gene for submergence tolerance was localized on chromosome 9. Quantitative trait loci (QTL) associated with submergence tolerance were detected on chromosomes 6, 7, 11, and 12. We conclude that the combination of AFLP mapping and selective genotyping provides a much faster and easier approach to QTL identification than the use of RFLP markers. Received: 20 December 1996 / Accepted: 21 January 1997  相似文献   

19.
Association mapping of the seed-coat colour with amplified fragment length polymorphism (AFLP) markers was carried out in 39 Brassica juncea lines. The lines had genetically diverse parentages and varied for seed-coat colour and other morphological characters. Eleven AFLP primer combinations were used to screen the 39 B. juncea lines, and a total of 335 polymorphic bands were detected. The bands were analysed for association with seed-coat colour using multiple regression analysis. This analysis revealed 15 markers associated with seed-coat colour, obtained with eight AFLP primer combinations. The marker E-ACA/M-CTG350 explained 69% of the variation in seed-coat colour. This marker along with markers E-AAC/M-CTC235 and E-AAC/M-CTA250 explained 89% of the total variation. The 15 associated markers were validated for linkage with the seed-coat colour loci using a recombinant inbred line (RIL) mapping population. Bands were amplified with the eight AFLP primer combinations in 54 RIL progenies. Of the 15 associated markers, 11 mapped on two linkage groups. Eight markers were placed on linkage group 1 at a marker density of 6.0 cM, while the remaining three were mapped on linkage group 2 at a marker density of 3.6 cM. Marker E-ACA/M-CTG350 co-segregated with Gene1 controlling seed-coat colour; it was specific for yellow seed-coat colour and mapped to linkage group 1. Marker E-AAC/M-CTC235 (AFLP8), which had been studied previously, was present on linkage group 2; it was specific for brown seed-coat colour. Since AFLP markers are not adapted for large-scale applications in plant breeding, it is important to convert these to sequence-characterised amplified region (SCAR) markers. Marker E-AAC/M-CTC235 (AFLP8) had been previously converted into a SCAR. Work is in progress to convert the second of the linked markers, E-ACA/M-CTG350, to a SCAR. The two linked AFLP markers converted to SCARs will be useful for developing yellow-seeded B. juncea lines by means of marker-assisted selection.Communicated by H.F. Linskens  相似文献   

20.
We exploited the newly developed amplified fragment length polymorphism (AFLP) technique to study the polymorphism, distribution and inheritance of AFLP markers with a doubled haploid rice population derived from ‘IR64’/‘Azucena’. Using only 20 pairs of primer combinations, we detected 945 AFLP bands of which 208 were polymorphic. All 208 AFLP markers were mapped and distributed over all 12 chromosomes. When these were compared with RFLP markers already mapped in the population, we found the AFLP markers to be highly polymorphic in rice and to follow Mendelian segregation. As linkage map of rice can be generated rapidly with AFLP markers they will be very useful for marker-assisted backcrossing. Received: 11 April 1996 / Accepted: 14 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号