首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A calmodulin-dependent protein kinase from canine myocardial cytosol was purified 1150-fold to apparent homogeneity with a 1.5% yield. The purified enzyme had a Mr of 550,000 with a sedimentation coefficient of 16.6 S, and showed a single protein band with a Mr of 55,000 (55K protein), determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 1.6 μmol/mg protein/min, and Ka values of 67 nM and 1.1 μM for calmodulin and Ca2+, respectively, using chicken gizzard myosin light chain as substrate. Calmodulin bound to the 55K protein. The purified enzyme had a broad substrate specificity. Endogenous proteins including glycogen synthase, phospholamban, and troponin I from the canine heart were phosphorylated by the enzyme. These results suggest that the purified enzyme works as a multifunctional protein kinase in the Ca2+, calmodulin-dependent cellular functions of the canine myocardium, and that the enzyme resembles enzymes detected in the brain, liver, and skeletal muscle.  相似文献   

2.
A calcium/calmodulin-dependent protein kinase (Ca/calmodulin protein kinase) was purified from rat pancreas using hydrophobic chromatography followed by gel filtration and affinity chromatography. Ca/calmodulin protein kinase from pancreas resembled previously described multifunctional Ca/calmodulin protein kinases from other tissues with respect to substrate specificity, autophosphorylation on serine and threonine residues, and catalytic and hydrodynamic properties. While Ca/calmodulin protein kinase from other tissues contains subunits of 53-60 kDa with variable proportions of a smaller 50-52 kDa subunit, pancreatic Ca/calmodulin protein kinase was found to contain a single component of 51 kDa. Experiments mixing brain Ca/calmodulin protein kinase with pancreatic homogenate suggest that the absence of a larger subunit in the pancreatic Ca/calmodulin protein kinase is not due to proteolytic degradation during enzyme preparation. Ca/calmodulin protein kinase binding to 125I-labeled calmodulin in solution was demonstrated using the photoaffinity cross-linker, N-hydroxysuccinimidyl-4-azidobenzoate. 125I-labeled calmodulin binding to Ca/calmodulin protein kinase was also demonstrated using filters containing Ca/calmodulin protein kinase transferred from polyacrylamide gels after two-dimensional gel electrophoresis. Finally, the ribosomal substrate for Ca/calmodulin protein kinase was identified as the ribosomal protein, S6. The purification procedure presented in this study promises to be useful in characterizing Ca/calmodulin protein kinase in other tissues and in clarifying the role of these enzymes in cellular function.  相似文献   

3.
A rat liver cAMP-independent protein kinase that phosphorylates peptide b of ATP-citrate lyase (Ramakrishna, S., Pucci, D. L., and Benjamin, W. B. (1983) J. Biol. Chem. 258, 4950-4956) has been purified to apparent homogeneity. The molecular weight, determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, sucrose density gradient, and by gel filtration, was found to be 36,000. This protein kinase phosphorylates in vitro ATP-citrate lyase, acetyl-CoA carboxylase, and glycogen synthase and does not phosphorylate phosphorylase, phosphorylase kinase, histone, phosvitin, and casein. It has Fa (activity factor) activity stimulating the ATP X Mg-dependent phosphatase and is therefore named a multifunctional protein kinase. This kinase differs from glycogen synthase kinase-3 with regard to substrate specificity, kinetic parameters, and physicochemical properties.  相似文献   

4.
M Ikebe  S Reardon  G C Scott-Woo  Z Zhou  Y Koda 《Biochemistry》1990,29(51):11242-11248
Previously, it was reported that smooth muscle caldesmon is a protein kinase and is autophosphorylated [Scott-Woo, G.C., & Walsh, M.P. (1988) Biochem. J. 252, 463-472]. We separated a Ca2+/calmodulin-dependent protein kinase from caldesmon in the presence of 15 mM MgCl2. The Ca2+/calmodulin-dependent caldesmon kinase was purified by using a series of liquid chromatography steps and was characterized. The subunit molecular weight (MW) of the kinase was 56K by SDS gel electrophoresis and was autophosphorylated. After the autophosphorylation, the kinase became active even in the absence of Ca2+/calmodulin. The substrate specificity of caldesmon kinase was similar to the rat brain calmodulin-dependent multifunctional protein kinase II (CaM PK-II) and phosphorylated brain synapsin and smooth muscle 20-kDa myosin light chain. The purified kinase bound to caldesmon, and the binding was abolished in the presence of high MgCl2. Enzymological parameters were measured for smooth muscle caldesmon kinase, and these were KCaM = 32 nM, KATP = 12 microM, Kcaldesmon = 4.9 microM, and KMg2+ = 1.1 mM. Optimum pH was 7.5-9.5. The observed properties were similar to brain CaM PK-II, and, therefore, it was concluded that smooth muscle caldesmon kinase is the isozyme of CaM PK-II in smooth muscle.  相似文献   

5.
A calmodulin-dependent protein kinase has been purified from rat spleen. The enzyme showed a remarkably similar substrate specificity and kinetic parameters to those of rat brain calmodulin-dependent protein kinase II, and exhibited cross-reactivity to a monoclonal antibody against rat brain calmodulin-dependent protein kinase II, indicating that the enzyme might be a calmodulin-dependent protein kinase II isozyme. The sedimentation coefficient was 13.9S, the Stokes radius was 67 A, and the molecular weight was calculated to be 380,000. The purified enzyme gave five polypeptides bands, corresponding to molecular weights of 51,000, 50,000, 21,000, 20,000, and 18,000, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incubation of the purified enzyme with Ca2+, calmodulin, and ATP under phosphorylating conditions induced the phosphorylation of all five polypeptides. When the logarithm of the velocity of the phosphorylation was plotted against the logarithm of the enzyme concentration (van't Hoff plot), slopes of 0.89, 0.94, and 1.1 were obtained for the phosphorylation of the 50/51-kDa doublet, 20/21-kDa doublet, and 18-kDa polypeptide, respectively. These results indicate that the phosphorylation of the five polypeptides is an intramolecular process, and further indicate that all five polypeptides are subunits of this enzyme. Of the five polypeptides, only the 50- and 51-kDa polypeptides bound to [125I]calmodulin, the other polypeptides not binding to it. A number of isozymic forms of calmodulin-dependent protein kinase II so far demonstrated in various tissues are known to be composed of subunits with molecular weights of 50,000 to 60,000 which can bind to calmodulin. Thus a new type of calmodulin-dependent protein kinase II was demonstrated in the present study.  相似文献   

6.
J Kuret  H Schulman 《Biochemistry》1984,23(23):5495-5504
A soluble Ca2+/calmodulin-dependent protein kinase has been purified from rat brain to near homogeneity by using casein as substrate. The enzyme was purified by using hydroxylapatite adsorption chromatography, phosphocellulose ion-exchange chromatography, Sepharose 6B gel filtration, affinity chromatography using calmodulin-Sepharose 4B, and ammonium sulfate precipitation. On sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gels, the purified enzyme consists of three protein bands: a single polypeptide of 51 000 daltons and a doublet of 60 000 daltons. Measurements of the Stokes radius by gel filtration (81.3 +/- 3.7 A) and the sedimentation coefficient by sucrose density sedimentation (13.7 +/- 0.7 S) were used to calculate a native molecular mass of 460 000 +/- 29 000 daltons. The kinase autophosphorylated both the 51 000-dalton polypeptide and the 60 000-dalton doublet, resulting in a decreased mobility in NaDodSO4 gels. Comparison of the phosphopeptides produced by partial proteolysis of autophosphorylated enzyme reveals substantial similarities between subunits. These patterns, however, suggest that the 51 000-dalton subunit is not a proteolytic fragment of the 60 000-dalton doublet. Purified Ca2+/calmodulin-dependent casein kinase activity was dependent upon Ca2+, calmodulin, and ATP X Mg2+ or ATP X Mn2+ when measured under saturating casein concentrations. Co2+, Mn2+, and La3+ could substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations. In addition to casein, the purified enzyme displayed a broad substrate specificity which suggests that it may be a "general" protein kinase with the potential for mediating numerous processes in brain and possibly other tissues.  相似文献   

7.
Ca2+/calmodulin-dependent protein kinase II, an abundant brain protein proposed to mediate a number of Ca2+-regulated processes in neuronal tissue, is composed of autophosphorylatable subunits of Mr 50,000 and 60,000/58,000. A recent study (McGuinness, T. L., Lai, Y., Greengard, P., Woodgett, J.R., and Cohen, P. (1983) FEBS Lett. 163, 329-334) suggested that this kinase exists as isozymes which vary in the relative ratio of these subunits in different tissues or species. Other studies (Walaas, S. I., Nairn, A. C., and Greengard, P. (1983) J. Neurosci. 3, 291-301, 302-311) provided evidence which suggested that the ratio of these phosphopeptides might vary in different brain regions. In the present investigation, we have tested this possibility by comparing Ca2+/calmodulin-dependent protein kinase II purified from rat forebrain and cerebellum. The two kinases had similar purification characteristics, subunit compositions, physical properties, and substrate specificities. Gel filtration and sucrose density gradient centrifugation provided an estimated molecular weight of 550,000 for the forebrain kinase and 615,000 for the cerebellar kinase. The kinases from the two regions clearly differed in the relative proportions of the Mr 50,000 and 60,000/58,000 subunits. Three independent methods indicated that the forebrain kinase contained the Mr 50,000/(60,000/58,000) subunits in approximately a 3:1 ratio, while the cerebellar kinase contained the Mr 50,000/(60,000/58,000) subunits in approximately a 1:4 ratio. The forebrain kinase subunits were shown to be identical to the corresponding subunits of the cerebellar kinase by several criteria. The data are consistent with the existence in various brain regions of isozymic forms of Ca2+/calmodulin-dependent protein kinase II which differ in their relative subunit ratios.  相似文献   

8.
Substrate specificity of a multifunctional calmodulin-dependent protein kinase   总被引:31,自引:0,他引:31  
The substrate specificity of the multifunctional calmodulin-dependent protein kinase from skeletal muscle has been studied using a series of synthetic peptide analogs. The enzyme phosphorylated a synthetic peptide corresponding to the NH2-terminal 10 residues of glycogen synthase, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH2, stoichiometrically at Ser-7, the same residue phosphorylated in the parent protein. The synthetic peptide was phosphorylated with a Vmax of 12.5 mumol X min-1 X mg-1 and an apparent Km of 7.5 microM compared to values of 1.2 mumol X min-1 X mg-1 and 3.1 microM, respectively, for glycogen synthase. Similarly, a synthetic peptide corresponding to the NH2-terminal 23 residues of smooth muscle myosin light chain was readily phosphorylated on Ser-19 with a Km of 4 microM and a Vmax of 5.4 mumol X min-1 X mg-1. The importance of the arginine 3 residues NH2-terminal to the phosphorylated serine in each of these peptides was evident from experiments in which this arginine was substituted by either leucine or alanine, as well as from experiments in which its position in the myosin light chain sequence was varied. Positioning arginine 16 at residues 14 or 17 abolished phosphorylation, while location at residue 15 not only decreased Vmax 14-fold but switched the major site of phosphorylation from Ser-19 to Thr-18. It is concluded that the sequence Arg-X-Y-Ser(Thr) represents the minimum specificity determinant for the multifunctional calmodulin-dependent protein kinases. Studies with various synthetic peptide substrates and their analogs revealed that the specificity determinants of the multifunctional calmodulin-dependent protein kinase were distinct from several other "arginine-requiring" protein kinases.  相似文献   

9.
10.
Protein kinase C (PKC) exhibits both negative and positive cross-talk with multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in PC12 cells. PKC effects negative cross-talk by inhibiting the mobilization of intracellular Ca2+ stores and by inhibiting Ca2+ influx through voltage-sensitive Ca2+ channels. In the absence of cross-talk, Ca2+ influx induced by depolarization with 56 mM K+ stimulates CaM kinase and its autophosphorylation and converts up to 50% of the enzyme to a Ca(2+)-independent or autonomous species. Acute treatment with phorbol myristate acetate (PMA) elicits a parallel reduction in depolarization-induced Ca2+ influx and in generation of autonomous CaM kinase. Negative cross-talk also occurs during stimulation of the phosphatidylinositol signaling system with bradykinin, which activates both PKC and CaM kinase. The extent of CaM kinase activation is attenuated by the simultaneous activation of PKC; it is enhanced by prior down-regulation of PKC. PKC also exhibits positive cross-talk with CaM kinase. Submaximal activation of CaM kinase by ionomycin is potentiated by concurrent activation of PKC with PMA. Such PMA treatment is found to increase the level of cytosolic calmodulin. Enhanced activation of CaM kinase by PKC may result from PKC-mediated phosphorylation of calmodulin-binding proteins, such as neuromodulin and MARCKS, and the subsequent increase in the availability of previously bound calmodulin for activation of CaM kinase.  相似文献   

11.
Ca2+/calmodulin-dependent protein kinase (Ca2+/CaM kinase I), which phosphorylates site I of synapsin I, has been highly purified from bovine brain. The physical properties and substrate specificity of Ca2+/CaM kinase I were distinct from those of all other known Ca2+/CaM kinases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the purified enzyme preparation consisted of two major polypeptides of Mr 37,000 and 39,000 and a minor polypeptide of Mr 42,000. In the presence of Ca2+ and calmodulin (CaM), all three polypeptides bound CaM, were autophosphorylated on threonine residues, and were labeled by the photoaffinity label 8-azido-ATP. Peptide maps of the three autophosphorylated polypeptides were very similar. The Stokes radius and the sedimentation coefficient of the enzyme were, respectively, 31.8 A and 3.25 s. A molecular weight of 42,400 and a frictional ratio of 1.38 were calculated from the above values, suggesting that Ca2+/CaM kinase I is a monomer. It is possible that the polypeptides of lower molecular weight are derived from the polypeptide of Mr 42,000 by proteolysis; alternatively, the polypeptides may represent isozymes of Ca2+/CaM kinase I. Synapsin I (site I) was the best substrate tested (Km, 2-4 microM) for Ca2+/CaM kinase I. Of many additional proteins tested, only protein III (a phosphoprotein related to synapsin I) and smooth muscle myosin light chain were phosphorylated. Ca2+/CaM kinase I was found in highest concentration in brain, where it showed widespread regional and subcellular distributions. In addition, the enzyme had a widespread and predominantly cytosolic tissue distribution. The widespread neuronal and tissue distribution of Ca2+/CaM kinase I suggests that other substrates might exist for this enzyme in both neuronal and non-neuronal tissues.  相似文献   

12.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase was assayed with calf thymus histone as substrate and partially purified from the soluble fraction of bovine cerebellum. The enzyme was selectively activated by cyclic GMP at lower concentrations; the Ka value for cyclic GMP was 1.7 times 10- minus 8 M whereas that for adenosine 3':5'-monophosphate (cyclic AMP) was 1.0 times 10- minus 6 M. The Km value for ATP was 1.0 times 10- minus 5 M. A high concentration of Mg-2+ (100 mM) was needed for maximum stimulation by cyclic GMP and maximum reaction rate. The pH optimum was 7.5 to 8.0. The isoelectric point was pH 5.7. The molecular weight was about 140,000 as estimated by gel filtration. The enzyme was unable to activate muscle glycogen phosphorylase kinase, and was clearly distinguishable from cyclic AMP-dependent protein kinase in kinetic and catalytic properties. Comparative data on cyclic GMP-dependent and cyclic AMP-dependent protein kinases in this tissue are presented.  相似文献   

13.
We have previously identified a novel protein kinase, pk146, in the brain of Tetraodon. In the present study, we cloned the homologous protein kinase gene encoding a protein of 385 amino acid residues from zebrafish. The overall amino acid sequence and the kinase domain of zebrafish BSK146 shows 48% and 69% identity to that of rat sbk, a SH3-containing serine/threonine protein kinase. By whole-mount in situ hybridization and RT-PCR, the expression of bsk146 mRNA was mainly in the brain. To explore the in vivo function of BSK146 during zebrafish development, we used morpholino knockdown approach and found that BSK146 morphants displayed enlarged hindbrain ventricle and smaller eyes. Whole-mount in situ hybridization was further performed to analyze the brain defects in BSK146-MO-injected embryos. The expression of brain-specific markers, such as otx2, pax2.1, and krox20, was found normal in morphant embryos at 24hpf, while expression of pax2.1 exerted changes in midbrain-hindbrain boundary and hindbrain in morphant embryos at 48hpf. These data suggest that BSK146 may play an important role in later ventricle expansion in zebrafish brain development. Although the recombinant BSK146 protein produced in insect cells was active and could phosphorylate both histone H1 and histone 2B, the endogenous substrate of BSK146 in the embryonic brain of zebrafish is not clear at the present time and needs further investigation.  相似文献   

14.
A calcium and calmodulin-dependent protein kinase has been purified from rat brain. It was monitored during the purification by its ability to phosphorylate the synaptic vesicle-associated protein, synapsin I. A 300-fold purification was sufficient to produce kinase that is 90-95% pure as determined by scans of stained sodium dodecyl sulfate-polyacrylamide gels and has a specific activity of 2.9 mumol of 32P transferred per min/mg of protein. Thus, the kinase is a relatively abundant brain enzyme, perhaps comprising as much as 0.3% of the total brain protein. The Stokes radius (95 A) and sedimentation coefficient (16.4 S) of the kinase indicate a holoenzyme molecular weight of approximately 650,000. The holoenzyme is composed of three subunits as judged by their co-migration with kinase activity during the purification steps and co-precipitation with kinase activity by a specific anti-kinase monoclonal antibody. The three subunits have molecular weights of 50,000, 58,000, and 60,000, and have been termed alpha, beta', and beta, respectively. The alpha- and beta-subunits are distinct peptides, however, beta' may have been generated from beta by proteolysis. All three of these subunits bind calmodulin in the presence of calcium and are autophosphorylated under conditions in which the kinase is active. The subunits are present in a ratio of about 3 alpha-subunits to 1 beta/beta'-subunit. We therefore postulate that the 650,000-Da holoenzyme consists of approximately 9 alpha-subunits and 3 beta/beta'-subunits. The abundance of this calmodulin-dependent protein kinase indicates that its activation is likely to be an important biochemical response to increases in calcium ion concentration in neuronal tissue.  相似文献   

15.
Tubulin is a major substrate for endogenous Ca2+-calmodulin-dependent phosphorylation in synaptic cytoplasm. The present study details the purification to apparent homogeneity and characterization of a brain cytosolic Ca2+-calmodulin-dependent kinase which phosphorylates tubulin and microtubule-associated proteins as major substrates. The cytosolic kinase system, purified by sequential chromatography on phosphocellulose resin, calmodulin-affinity resin, and Fractogel TSK HW-55, chromatographs as a homogeneous complex of approximately 600,000 Da on Sephacryl S-300. This calmodulin-dependent kinase possesses a group of properties which specifically characterize this enzyme system: 1) the enzyme contains two calmodulin-binding doublets, rho and sigma, of approximately 52,000 and 63,000 Da, respectively; 2) both the rho and the sigma subunits demonstrate isoelectric points between 6.7 and 7.2; 3) both the rho and sigma subunits demonstrate autophosphorylation; 4) both the rho and sigma subunits show significant homologies as assessed by tryptic peptide fingerprints; 5) in the absence of substrate, both the rho and sigma subunits manifest lower mobility autophosphorylated species; 6) the kinase phosphorylates beta-tubulin equally on threonine and serine residues. Substrate specificity, kinetic parameters, calmodulin-binding properties, subunit composition, and subunit isoelectric points clearly differentiate this enzyme from other previously reported calmodulin-dependent kinases.  相似文献   

16.
A calcium- and calmodulin-dependent kinase that represents the majority of the myosin heavy chain kinase activity in chicken intestinal brush borders has been highly purified. The purification steps include gel filtration, high performance chromatography on anion and cation exchangers, and affinity chromatography on calmodulin-Sepharose. The purified kinase consists of a single major, apparently autophosphorylatable polypeptide of 50,000 daltons. The Stokes radius (68 A) and sedimentation coefficient (17.5 S) indicate that it has a molecular weight of approximately 490,000. The kinase catalyzed the incorporation of a maximum of 0.8 mol of phosphate/mol of heavy chain, and essentially no phosphate was incorporated into the light chains. This kinase is distinct from other myosin kinases, but has a number of properties in common with the type II calmodulin-dependent protein kinases.  相似文献   

17.
A partial cDNA encoding Aspergillus nidulans calmodulin-dependent multifunctional protein kinase (ACMPK) was isolated from a lambda ZAP expression library by immunoselection using monospecific polyclonal antibodies to the enzyme. The sequence of both strands of the cDNA (CMKa) was determined. The deduced amino acid (aa) sequence contained all eleven consensus domains found in serine/threonine protein kinases [Hanks et al., Science 241 (1988) 42-52], as well as a putative calmodulin-binding domain. The cDNA contained an intron, lacked an in-frame start codon, and was not polyadenylated. A full-length copy of CMKa was subsequently isolated from a lambda gt10 library of A. nidulans cDNA using a restriction fragment of the first clone as a probe. It contained an in-frame start codon, an open reading frame (ORF) of 1242 bp and was polyadenylated. The ORF encoded a protein of 414 aa residues with an M(r) of 46,895 and an isoelectric point pI = 6.4. These values are in good agreement with that observed for the native enzyme [Bartelt et al., Proc. Natl. Acad. Sci. USA 85 (1988) 3279-3283]. When aligned to optimize homology, 29% of the predicted aa sequence of ACMPK is identical to that of the alpha-subunit of rat brain calmodulin-dependent protein kinase II. ACMPK shares 40 and 44% identity in aa sequence with YCMK1 and YCMK2, respectively, two Ca2+/calmodulin-dependent protein kinases recently cloned from Saccharomyces cerevisiae [Pausch et al., EMBO J. 10 (1991) 1511-1522]. Results of Southern analysis of restriction digests of genomic DNA indicate that ACMPK is encoded by a single-copy gene.  相似文献   

18.
A substrate-specific calmodulin-dependent myosin light-chain kinase (MLCK) was purified 45,000-fold to near homogeneity from bovine brain in 12% yield. Bovine brain MLCK phosphorylates a serine residue in the isolated turkey gizzard myosin light chain (MLC), with a specific activity of 1.8 mumol/min per mg of enzyme. The regulatory MLC present in intact gizzard myosin is also phosphorylated by the enzyme. The Mr-19,000 rabbit skeletal-muscle MLC is a substrate; however, the rate of its phosphorylation is at best 30% of that obtained with turkey gizzard MLC. Phosphorylation of all other protein substrates tested is less than 1% of that observed with gizzard MLC as substrate. SDS/polyacrylamide-gel electrophoresis of purified MLCK reveals the presence of a major protein band with an apparent Mr of 152000, which is capable of binding 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of MLCK by the catalytic subunit of cyclic-AMP-dependent protein kinase results in the incorporation of phosphate into the Mr-152,000 protein band and a marked decrease in the affinity of MLCK for calmodulin. The presence of Ca2+ and calmodulin inhibits the phosphorylation of the enzyme. Bovine brain MLCK appears similar to MLCKs isolated from platelets and various forms of muscle.  相似文献   

19.
A new Ca2+/calmodulin-dependent serine kinase was isolated from rat parotid gland acinar cells following chronic treatment with the beta-agonist isoproterenol. A single-step purification was performed on a calmodulin-agarose affinity column, following solubilization with Triton X-100. Among various substrates tested, bovine galactosyltransferase was the preferred substrate of the kinase, followed by glycogen synthetase greater than histone greater than phosphodiesterase greater than phenylalanine hydroxylase greater than phosphorylase b greater than bovine serum albumin. In comparison, a spleen preparation of Ca2+/calmodulin-dependent kinase did not show galactosyltransferase to be the preferred substrate. Thus, the enzyme would appear to be similar to the human galactosyltransferase-associated kinase. The kinase activity was saturable with 100 microM Ca2+ and 2 microM calmodulin. The molecular mass determined by nondenaturing and sodium dodecyl sulfate polyacrylamide gel electrophoreses was 75 kDa with a pI of 4.3. The Vmax was 3500 mumol/(min.mg protein) with a Km of 1.6 microM for the transferase substrate. Leukotriene C and prostaglandin E2 were found to be specific noncompetitive inhibitors of the rat galactosyltransferase-associated kinase.  相似文献   

20.
Myosin light chain kinase, which is located primarily in the soluble fraction of bovine myocardium, has been isolated and purified approximately 1200-fold with 16% yield by a three-step procedure. The approximate content of soluble myosin light chain kinase in heart is calculated to be 0.63 microM. The isolated kinase is active only as a ternary complex consisting of the kinase, calmodulin, and Ca2+; the apparent Kd for calmodulin is 1.3 nM. The enzyme also exhibits a requirement for Mg2+ ions. Myosin light chain kinase is a monomeric enzyme with Mr = 85,000. The enzyme exhibits a Km for ATP of 175 microM, and a K0.5 for the regulatory light chain of cardiac myosin of 21 microM. The optimum pH is 8.1. Kinase activity is specific for the regulatory light chain of myosin. The specific activity of the isolated enzyme (30 nmol 32P/min/mg of protein) is considerably less than and corresponding values reported for the skeletal and smooth muscle light chain kinases. This is probably due to proteolysis during extraction of the myocardium, a phenomenon which has, as yet, proven impossible to eliminate. In contrast to the smooth muscle enzyme (Adelstein, R.S., Conti, M.A., Hathaway, D.R., and Klee, C.B. (1978) J. Biol. Chem. 253, 8347-8350), the cardiac kinase is not phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号