首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast folding of cytochrome c.   总被引:5,自引:5,他引:0       下载免费PDF全文
Native iso-2 cytochrome c contains two residues (His 18, Met 80) coordinated to the covalently attached heme. On unfolding of iso-2, the His 18 ligand remains coordinated to the heme iron, whereas Met 80 is displaced by a non-native heme ligand, His 33 or His 39. To test whether non-native His-heme ligation slows folding, we have constructed a double mutant protein in which the non-native ligands are replaced by asparagine and lysine, respectively (H33N,H39K iso-2). The double mutant protein, which cannot form non-native histidine-heme coordinate bonds, folds significantly faster than normal iso-2 cytochrome c: gamma = 14-26 ms for H33N,H39K iso-2 versus gamma = 200-1,100 ms for iso-2. These results with iso-2 cytochrome c strongly support the hypothesis that non-native His-heme ligation results in a kinetic barrier to fast folding of cytochrome c. Assuming that the maximum rate of a conformational search is about 10(11) s-1, the results imply that the direct folding pathway of iso-2 involves passage through on the order of 10(9) or fewer partially folded conformers.  相似文献   

2.
Slow refolding kinetics in yeast iso-2 cytochrome c   总被引:1,自引:0,他引:1  
J J Osterhout  B T Nall 《Biochemistry》1985,24(27):7999-8005
  相似文献   

3.
A dominant feature of folding of cytochrome c is the presence of nonnative His-heme kinetic traps, which either pre-exist in the unfolded protein or are formed soon after initiation of folding. The kinetically trapped species can constitute the majority of folding species, and their breakdown limits the rate of folding to the native state. A temperature jump (T-jump) relaxation technique has been used to compare the unfolding/folding kinetics of yeast iso-2 cytochrome c and a genetically engineered double mutant that lacks His-heme kinetic traps, H33N,H39K iso-2. The results show that the thermodynamic properties of the transition states are very similar. A single relaxation time tau(obs) is observed for both proteins by absorbance changes at 287 nm, a measure of solvent exclusion from aromatic residues. At temperatures near Tm, the midpoint of the thermal unfolding transitions, tau(obs) is four to eight times faster for H33N,H39K iso-2 (tau(obs) approximately 4-10 ms) than for iso-2 (tau(obs) approximately 20-30 ms). T-jumps show that there are no kinetically unresolved (tau < 1-3 micros T-jump dead time) "burst" phases for either protein. Using a two-state model, the folding (k(f)) and unfolding (k(u)) rate constants and the thermodynamic activation parameters standard deltaGf, standard deltaGu, standard deltaHf, standard deltaHu, standard deltaSf, standard deltaSu are evaluated by fitting the data to a function describing the temperature dependence of the apparent rate constant k(obs) (= tau(obs)(-1)) = k(f) + k(u). The results show that there is a small activation enthalpy for folding, suggesting that the barrier to folding is largely entropic. In the "new view," a purely entropic kinetic barrier to folding is consistent with a smooth funnel folding landscape.  相似文献   

4.
pH dependence of folding of iso-2-cytochrome c   总被引:4,自引:0,他引:4  
B T Nall  J J Osterhout  L Ramdas 《Biochemistry》1988,27(19):7310-7314
Starting from a standard unfolded state (3.0 M guanidine hydrochloride, pH 7.2), the kinetics of refolding of iso-2-cytochrome c have been investigated as a function of final pH between pH 3 and pH 10. Absorbance in the ultraviolet and visible spectral regions and tryptophan fluorescence are used to monitor folding. Over most of the pH range, fast and slow folding phases are detected by both fluorescence and absorbance probes. Near neutral pH, the rate of fast folding appears to be the same when monitored by absorbance and fluorescence probes. At higher and lower pH, there are two fast folding reactions, with absorbance-detected fast folding occurring in a slightly faster time range than fluorescence-detected fast folding. The rates of both fast folding reactions pass through broad minima near neutral pH, indicating involvement of ionizable groups in rate-limiting steps. The rates of slow folding also depend on the final pH. At acid pH, there appears to be a single slow folding phase for both fluorescence and absorbance probes. At neutral pH, the absorbance-detected and fluorescence-detected slow folding phases separate into distinct kinetic processes which differ in rate and relative amplitude. At high pH, absorbance-detected slow folding is no longer observed, while fluorescence-detected slow folding is decreased in amplitude. In contrast, the equilibrium and kinetic properties of proline imide bond isomerization, believed to be involved in the slow folding reactions, are largely independent of pH. The results suggest that the pH dependence of slow folding involves coupling of pH-sensitive structure to proline imide bond isomerization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Bandi S  Baddam S  Bowler BE 《Biochemistry》2007,46(37):10643-10654
To probe the mechanism of the alkaline conformational transition and its effect on the dynamics of gated electron transfer (ET) reactions, a Lys 79 --> His (K79H) variant of iso-1-cytochrome c has been prepared. Guanidine hydrochloride denaturation monitored by circular dichroism and absorbance at 695 nm indicates that this variant unfolds from a partially unfolded state. The conformation of the wild type (WT) and K79H proteins was monitored at 695 nm from pH 2 to 11. These data indicate that acid unfolding is multi-state for both K79H and WT proteins and that the His 79-heme alkaline conformer is more stable than a previously reported His 73-heme alkaline conformer. Fast and slow phases are observed in the kinetics of the alkaline transition of the K79H variant. The pH dependence of the fast phase kinetic data shows that ionizable groups with pKa values near 6.8 and 9 modulate the formation of the His 79-heme alkaline conformer. The slow phase kinetic data are consistent with a single ionizable group with a pKa near 9.5 promoting the Lys 73-heme alkaline transition. In the broader context of data on the alkaline transition, ionization of the ligand replacing Met 80 appears to play a primary role in promoting the formation of the alkaline conformer, with other ionizable groups acting as secondary modulators. Intermolecular ET with hexaammineruthenium(II) chloride shows conformational gating due to both His 79-heme and Lys 73-heme alkaline conformers. Both the position and the nature of the alkaline state ligand modulate the dynamics of ET gating.  相似文献   

6.
A kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, involving four parallel channels with multiple native, intermediate and unfolded forms, has recently been proposed. The hypothesis that cis/trans isomerization of several Xaa-Pro peptide bonds is the source of the multiple folding channels was tested by measuring the sensitivity of the three rate-limiting phases (tau(1), tau(2), tau(3)) to catalysis by cyclophilin, a peptidyl-prolyl isomerase. Although the absence of catalysis for the tau(1) (fast) phase leaves its assignment ambiguous, our previous mutational analysis demonstrated its connection to the unique cis peptide bond preceding proline 28. The acceleration of the tau(2) (medium) and tau(3) (slow) refolding phases by cyclophilin demonstrated that cis/trans prolyl isomerization is also the source of these phases. A collection of proline mutants, which covered all of the remaining 18 trans proline residues of alphaTS, was constructed to obtain specific assignments for these phases. Almost all of the mutant proteins retained the complex equilibrium and kinetic folding properties of wild-type alphaTS; only the P217A, P217G and P261A mutations caused significant changes in the equilibrium free energy surface. Both the P78A and P96A mutations selectively eliminated the tau(1) folding phase, while the P217M and P261A mutations eliminated the tau(2) and tau(3) folding phases, respectively. The redundant assignment of the tau(1) phase to Pro28, Pro78 and Pro96 may reflect their mutual interactions in non-random structure in the unfolded state. The non-native cis isomers for Pro217 and Pro261 may destabilize an autonomous C-terminal folding unit, thereby giving rise to kinetically distinct unfolded forms. The nature of the preceding amino acid, the solvent exposure, or the participation in specific elements of secondary structure in the native state, in general, are not determinative of the proline residues whose isomerization reactions can limit folding.  相似文献   

7.
The kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli involves four parallel channels whose inter-conversions are controlled by three cis/trans prolyl isomerization reactions (tau(1), tau(2) and tau(3)). A previous mutational analysis of all 19 proline positions, including the unique cis Asp27-Pro28 peptide bond, revealed that the G(3)P28G, P78A or P96A mutations selectively eliminated the fast, tau(1) (ten seconds), folding phase, while the P217M and P261A mutations eliminated the medium, tau(2) (40 seconds) and the slow, tau(3) ( approximately 300 seconds) folding phases, respectively. To further elucidate the role of these proline residues and to simplify the folding mechanism, a series of double and triple mutants were constructed at these critical positions, and comprehensive kinetic and thermodynamic experiments were performed. Although it was not possible to construct a stable system that was free of proline isomerization constraints, a double mutant variant, G(3)P28G/P217M, in which the refolding of more than 90% of the unfolded protein is not limited by proline isomerization reactions was identified. Further, long-range interactions between several of these residues appear to be a crucial part of the cooperative network of structure that stabilizes the TIM barrel motif for alphaTS.  相似文献   

8.
To understand general aspects of stability and folding of c-type cytochromes, we have studied the folding characteristics of cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). This cytochrome is structurally similar but lacks sequence homology to other heme proteins; moreover, it has an abnormally low reduction potential. Unfolding of oxidized and reduced cytochrome c553 by guanidine hydrochloride (GuHCl) was monitored by circular dichroism (CD) and Soret absorption; the same unfolding curves were obtained with both methods supporting that cytochrome c553 unfolds by an apparent two-state process. Reduced cytochrome c553 is 7(3) kJ/mol more stable than the oxidized form; accordingly, the reduction potential of unfolded cytochrome c553 is 100(20) mV more negative than that of the folded protein. In contrast to many other unfolded cytochrome c proteins, upon unfolding at pH 7.0 both oxidized and reduced heme in cytochrome c553 become high-spin. The lack of heme misligation in unfolded cytochrome c553 implies that its unfolded structure is less constrained than those of cytochromes c with low-spin, misligated hemes.  相似文献   

9.
B T Nall 《Biochemistry》1986,25(10):2974-2978
Titration to high pH converts yeast iso-2 cytochrome c to an inactive but more stable alkaline form lacking a 695-nm absorbance band [Osterhout, J. J., Jr., Muthukrishnan, K., & Nall, B. T. (1985) Biochemistry 24, 6680-6684]. The kinetics of absorbance-detected refolding of the alkaline form have been measured by dilution of guanidine hydrochloride in a stopped-flow instrument. Fast-folding species (tau 2) are detected, as in refolding to the native state at neutral pH. An additional kinetic phase (tau a) is observed with an amplitude opposite in sign to the fast phase. The amplitude of this phase increases and the rate increases with increasing pH. Comparison to pH-jump measurements of the fully folded protein shows that phase tau a has the same sign, rate, and pH dependence as the alkaline isomerization reaction, suggesting that this new phase involves isomerization of native or nativelike species following fast folding. Absorbance difference spectra are taken at 5-s intervals during refolding at high pH. The spectra verify that nativelike species--with a 695-nm absorbance band--are formed transiently, before conversion of the protein to the alkaline form. Refolding in the presence of ascorbate shows that the transient, nativelike species are reducible, unlike alkaline iso-2. Thus, (1) refolding to the alkaline form of iso-2 cytochrome c proceeds through transient native or nativelike species, and (2) a folding pathway leading to native or nativelike forms is maintained at high pH, where native species are no longer the thermodynamically favored product.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
New experimental data and a quantitative theoretical treatment are given for the kinetics of the thermal folding transition of ribonuclease A at pH 3.0. A three-species mechanism is used as a starting point for the analysis: U1 (slow) in equilibrium U2(fast) in equilibrium N, where U1 and U2 are two forms of the unfolded enzyme with markedly different rates of refolding and N is the native enzyme. This mechanism is based on certain facts established in previous studies of refolding. The kinetics of unfolding and refolding show two phases a fast phase and a slow phase, over a range of temperatures extending above the transition midpoint, Tm. The three-species mechanism can be used in this range. At higher temperatures a new much faster kinetic phase is also observed corresponding to the transient formation of a new intermediate (I). Although the general solution for a four-species mechanism is complex it is not difficult to extend the three-species analysis for the special case found here, in which the fast reaction (I in equilibrium N) is well separated from the other two reactions. At temperatures below the transition zone the slow phase of refolding becomes kinetically complex. No attempt has been made to extend the analysis to include this effect. The basic test of the three-state analysis is the prediction as a function of temperature of alpha2, the relative amplitude of the fast phase, both for unfolding and refolding. At temperatures above Tm for which the three-state analysis must be extended to include the new intermediate I, a crresponding quanitity alpha2(cor) is predicted and compared with measured values. Data used in the three-state prediction are values of tau2 and tau1, the time constants of the fast and slow kinetic phases, plus a single value of alpha2 measured when tau2 and tau1 are well separated. The observed and predicted values of alpha2 agree within experimental error. The analysis predicts correctly that, for these experiments, alpha2 should have the same value in unfolding as in refolding in the final conditions. The analysis also predicts satisfactorily the equilibrium transition curve from kinetic data alone. Four striking properties of the kinetics are explained or correlated by the analysis: (a) the drop in alpha2 to a minimum near Tm as well as the delayed rise in alpha2 above Tm;(b) the vanishing of alpha1 above the transition zone; (c) the sharp drop in tau1 inside the transition zone followed by a partial leveling off outside this zone; and (d) the passage of tau2 through a maximum near Tm. Through a comparison of observed and predicted values of alpha2, the analysis also rules out the alternative three-species mechanism U1 (slow) in equilibrium N (fast) in equilibrium U2. Finally, the temperature dependence of the amplitude for the fast reaction (I in equilibrium N) is discussed; the behavior of I is like that of U2 and I may be an unfolded species populated at equilibrium...  相似文献   

11.
L C Wood  T B White  L Ramdas  B T Nall 《Biochemistry》1988,27(23):8562-8568
As a test of the proline isomerization model, we have used oligonucleotide site-directed mutagenesis to construct a mutant form of iso-2-cytochrome c in which proline-76 is replaced by glycine [Wood, L. C., Muthukrishnan, K., White, T. B., Ramdas, L., & Nall, B. T. (1988) Biochemistry (preceding paper in this issue)]. For the oxidized form of Gly-76 iso-2, an estimate of stability by guanidine hydrochloride induced unfolding indicates that the mutation destabilizes the protein by 1.2 kcal/mol under standard conditions of neutral pH and 20 degrees C (delta G degrees u = 3.8 kcal/mol for normal Pro-76 iso-2 versus 2.6 kcal/mol for Gly-76 iso-2). The kinetics of folding/unfolding have been monitored by fluorescence changes throughout the transition region using stopped-flow mixing. The rates for fast and slow fluorescence-detected refolding are unchanged, while fast unfolding is increased in rate 3-fold in the mutant protein compared to normal iso-2. A new kinetic phase in the 1-s time range is observed in fluorescence-detected unfolding of the mutant protein. The presence of the new phase is correlated with the presence of species with an altered folded conformation in the initial conditions, suggesting assignment of the phase to unfolding of this species. The fluorescence-detected and absorbance-detected slow folding phases have been monitored as a function of final pH by manual mixing between pH 5.5 and 8 (0.3 M guanidine hydrochloride, 20 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Bandi S  Bowler BE 《Biochemistry》2011,50(46):10027-10040
The alkaline transition of cytochrome c involves substitution of the Met80 heme ligand of the native state with a lysine ligand from a surface Ω-loop (residues 70 to 85). The standard mechanism for the alkaline transition involves a rapid deprotonation equilibrium followed by the conformational change. However, recent work implicates multiple ionization equilibria and stable intermediates. In previous work, we showed that the kinetics of formation of a His73-heme alkaline conformer of yeast iso-1-cytochrome c requires ionization of the histidine ligand (pK(HL) ~ 6.5). Furthermore, the forward and backward rate constants, k(f) and k(b), respectively, for the conformational change are modulated by two auxiliary ionizations (pK(H1) ~ 5.5, and pK(H2) ~ 9). A possible candidate for pK(H1) is His26, which has a strongly shifted pK(a) in native cytochrome c. Here, we use the AcH73 iso-1-cytochrome c variant, which contains an H26N mutation, to test this hypothesis. pH jump experiments on the AcH73 variant show no change in k(obs) for the His73-heme alkaline transition from pH 5 to 8, suggesting that pK(H1) has disappeared. However, direct measurement of k(f) and k(b) using conformationally gated electron transfer methods shows that the pH independence of k(obs) results from coincidental compensation between the decrease in k(b) due to pK(H1) and the increase in k(f) due to pK(HL). Thus, His26 is not the source of pK(H1). The data also show that the H26N mutation enhances the dynamics of this conformational transition from pH 5 to 10, likely as a result of destabilization of the protein.  相似文献   

13.
J Mo  M E Holtzer  A Holtzer 《Biopolymers》1991,31(12):1417-1427
Stopped flow CD (SFCD) kinetic studies of self-assembly of coiled coils of rabbit alpha alpha-tropomyosin and of nonpolymerizable alpha alpha-tropomyosin (NPTm) are reported. The protein was denatured in 6 M urea buffer, then renatured by 10-fold dilution into benign saline buffer. Folding was monitored by SFCD in the backbone region (222 nm). Protein chains are shown to be totally unfolded (and separated in the reduced species) in the initial denaturing medium and fully folded as two-chain coiled coils in the final benign medium. In all cases of folding in benign buffer of totally unfolded chains, two phases were found in the folding process: a fast phase (less than 0.04 s, the SFCD dead time), in which an intermediate state with about 70% of the equilibrium ellipticity forms; followed by a slower, observable phase that completes the folding. The slow phase is first order (k-1 = 1.6 s at 20 degrees C), signifying that chain association for reduced samples occurs in the fast phase. In contrast, folding in benign buffer from an initial state with 70% of the equilibrium ellipticity is all fast, suggesting that the folding intermediate is not an equilibrium species. Cross-linking at Cys-190 increases the helix content of the fast-formed intermediate state to about 85% of the equilibrium value, but leaves the rate constant of the slow phase unchanged. In NPTm, which does not form high aggregates at low ionic strength, the rate of the observable phase is almost independent of ionic strength in the range of approximately 0.15-0.6 M, but is reduced one to two orders of magnitude by further reduction to 0.026 M. In folding from totally unfolded chains, the rate is reduced less than one order of magnitude by changing the final state to about 50% folded. In contrast to folding, unfolding of alpha alpha-tropomyosin from the native state is all fast.  相似文献   

14.
Chen E  Abel CJ  Goldbeck RA  Kliger DS 《Biochemistry》2007,46(43):12463-12472
Previous far-UV time-resolved optical rotatory dispersion (TRORD) studies of the sub-millisecond (burst) phase of secondary structure formation in horse and tuna cytochromes c after photoreduction in denaturant suggested that the non-native His18-Fe-His33 heme ligation dominant in the unfolded horse protein facilitated this fast folding better than did the His18-Fe-His26 coordination dominant in tuna [Chen, E., Goldbeck, R.A., and Kliger, D.S. (2003) J. Phys. Chem. A 107, 8149-8155; Chen, E., Goldbeck, R.A., and Kliger, D.S. (2004) J. Am. Chem. Soc. 126, 11175-11181]. Whether His18-Fe-His33 coordination actually facilitates fast secondary structure formation or just slows folding less than His18-Fe-His26 coordination is probed by examining the double histidine mutant H26QH33N of horse heart cytochrome c. The fast folding phase is absent in H26QH33N, indicating that His18-Fe-His33 misligation does promote fast secondary structure formation, as does His18-Fe-His26 to a lesser extent. His33 may be better able to facilitate folding because it is not as constrained by hydrogen bonding interactions in the denatured state as is His26. A greater flexibility, not only because of weakened or disrupted Van der Waals interactions in the presence of guanidine hydrochloride (GuHCl) but also because of its position relative to His18, may allow His33 to ligate to the heme group more easily than His26. These results are discussed along with the results of far-UV CD and Soret and visible region MCD measurements, which were performed to probe heme ligation in H26QH33N and to understand how GuHCl affects its folding stability and cooperativity.  相似文献   

15.
Equilibrium and kinetic folding studies of horse cytochrome c in the reduced state have been carried out under strictly anaerobic conditions at neutral pH, 10 degrees C, in the entire range of aqueous solubility of guanidinium hydrochloride (GdnHCl). Equilibrium unfolding transitions observed by Soret heme absorbance, excitation energy transfer from the lone tryptophan residue to the ferrous heme, and far-UV circular dichroism (CD) are all biphasic and superimposable, implying no accumulation of structural intermediates. The thermodynamic parameters obtained by two-state analysis of these transitions yielded DeltaG(H2O)=18.8(+/-1.45) kcal mol(-1), and C(m)=5.1(+/-0.15) M GdnHCl, indicating unusual stability of reduced cytochrome c. These results have been used in conjunction with the redox potential of native cytochrome c and the known stability of oxidized cytochrome c to estimate a value of -164 mV as the redox potential of the unfolded protein. Stopped-flow kinetics of folding and unfolding have been recorded by Soret heme absorbance, and tryptophan fluorescence as observables. The refolding kinetics are monophasic in the transition region, but become biphasic as moderate to strongly native-like conditions are approached. There also is a burst folding reaction unobservable in the stopped-flow time window. Analyses of the two observable rates and their amplitudes indicate that the faster of the two rates corresponds to apparent two-state folding (U<-->N) of 80-90 % of unfolded molecules with a time constant in the range 190-550 micros estimated by linear extrapolation and model calculations. The remaining 10-20 % of the population folds to an off-pathway intermediate, I, which is required to unfold first to the initial unfolded state, U, in order to refold correctly to the native state, N (I<-->U<-->N). The slower of the two observable rates, which has a positive slope in the linear functional dependence on the denaturant concentration indicating that an unfolding process under native-like conditions indeed exists, originates from the unfolding of I to U, which rate-limits the overall folding of these 10-20 % of molecules. Both fast and slow rates are independent of protein concentration and pH of the refolding milieu, suggesting that the off-pathway intermediate is not a protein aggregate or trapped by heme misligation. The nature or type of unfolded-state heme ligation does not interfere with refolding. Equilibrium pH titration of the unfolded state yielded coupled ionization of the two non-native histidine ligands, H26 and H33, with a pK(a) value of 5.85. A substantial fraction of the unfolded population persists as the six-coordinate form even at low pH, suggesting ligation of the two methionine residues, M65 and M80. These results have been used along with the known ligand-binding properties of unfolded cytochrome c to propose a model for heme ligation dynamics. In contrast to refolding kinetics, the unfolding kinetics of reduced cytochrome c recorded by observation of Soret absorbance and tryptophan fluorescence are all slow, simple, and single-exponential. In the presence of 6.8 M GdnHCl, the unfolding time constant is approximately 300(+/-125) ms. There is no burst unfolding reaction. Simulations of the observed folding-unfolding kinetics by numerical solutions of the rate equations corresponding to the three-state I<-->U<-->N scheme have yielded the microscopic rate constants.  相似文献   

16.
Thermal and GdmCl-induced unfolding transitions of aldolase from Staphylococcus aureus are reversible under a variety of solvent conditions. Analysis of the transitions reveals that no partially folded intermediates can be detected under equilibrium conditions. The stability of the enzyme is very low with a delta G0 value of -9 +/- 2 kJ/mol at 20 degrees C. The kinetics of unfolding and refolding of aldolase are complex and comprise at least one fast and two slow reactions. This complexity arises from prolyl isomerization reactions in the unfolded chain, which are kinetically coupled to the actual folding reaction. Comparison with model calculations shows that at least two prolyl peptide bonds give rise to the observed slow folding reactions of aldolase and that all of the involved bonds are presumably in the trans conformation in the native state. The rate constant of the actual folding reaction is fast with a relaxation time of about 15 s at the midpoint of the folding transition at 15 degrees C. The data presented on the folding and stability of aldolase are comparable to the properties of much smaller proteins. This might be connected with the simple and highly repetitive tertiary structure pattern of the enzyme, which belongs to the group of alpha/beta barrel proteins.  相似文献   

17.
Effect of a hydrophobic peptide on folding of oxidized cytochrome c (cyt c) is studied with trityrosine. Folding of cyt c was initiated by pH jump from 2.3 (acid-unfolded) to 4.2 (folded). The Soret band of the 2-ms transient absorption spectrum during folding decreased its intensity and red-shifted from 397 to 400 nm by interaction with trityrosine, whereas tyrosinol caused no significant effect. The change in the transient absorption spectrum by interaction with trityrosine was similar to that obtained with 100 mM imidazole, which showed that the population of the intermediate His/His coordinated species increased during folding of cyt c by interaction with trityrosine. The absorption change was biphasic, the fast phase (82+/-9s(-1)) corresponding to the transition from the His/H(2)O to the His/Met coordinated species, whereas the slow phase (24+/-3s(-1)) from His/His to His/Met. By addition of trityrosine, the relative ratio of the slow phase increased, due to increase of the His/His species at the initial stage of folding. According to the resonance Raman spectra of cyt c, the high-spin 6-coordinate and low-spin 6-coordinate species were dominated at pH 2.3 and 4.2, respectively, and these species were not affected by addition of trityrosine. These results demonstrated that the His/His species increased by interaction with trityrosine at the initial stage of cyt c folding, whereas the heme coordination structure was not affected by trityrosine when the protein was completely unfolded or folded. Hydrophobic peptides thus may be useful to study the effects of hydrophobic interactions on protein folding.  相似文献   

18.
The kinetics of unfolding and refolding of porcine ribonuclease were investigated. The unfolded state of this protein was found to consist of a fast-refolding species (UF) and two slow-refolding species (UIS and UIIS). After the rapid collapse of the structure during the N (native)----UF unfolding reaction, UIS and UIIS are produced from UF by two independent slow isomerizations of the unfolded polypeptide chain, leading ultimately to a mixture of about 10% UF, 20% UIIS and 70% UIS molecules at equilibrium. This is at variance with all other ribonucleases investigated to date, which show a distribution of 20% UF, 60 to 70% UIIS and only 10 to 20% UIS. The two isomerizations of the unfolded porcine protein differ strongly in rate. The first process with tau = 250 seconds (10 degrees C) leads to an increase in the fluorescence of Tyr92 and was identified as cis in equilibrium trans isomerization of Pro93. At equilibrium, most unfolded molecules contain an incorrect trans Pro93. The second isomerization is much slower (tau = 1300 s at 10 degrees C) and leads to a predominance of the incorrect isomer as well. Like isomerization of Pro93, it is governed by an activation enthalpy of 22 kcal/mol (92 kJ/mol) and it was tentatively assigned to the Pro114-Pro115 sequence of porcine ribonuclease. Because of the wide separation in rate between the two reactions, molecules with an incorrect isomer only at Pro93 accumulate transiently after unfolding. These are the UIIS molecules. Most of them are finally converted to UIS by the 1300 second process. All molecules that have undergone this isomerization refold very slowly, i.e. the UIS molecules. The major fraction contains two incorrect isomers. A 1300 second isomerization after unfolding and a predominant very slow refolding reaction were observed only for the porcine protein. We suggest that these changes in the folding mechanism may be correlated with the presence of the Pro114-Pro115 sequence, which occurs only in porcine ribonuclease. The refolding pathway of porcine UIIS involves the rapid formation of a native-like intermediate with an incorrect trans Pro93 as was found previously for the bovine ribonuclease, where the UIIS species predominates in the unfolded state.  相似文献   

19.
The refolding of mitochondrial aspartate aminotransferase (mAAT; EC 2.6.1.1) has been studied following unfolding in 6 m guanidine hydrochloride for different periods of time. Whereas reactivation of equilibrium-unfolded mAAT is sigmoidal, reactivation of the short term unfolded protein displays a double exponential behavior consistent with the presence of fast and slow refolding species. The amplitude of the fast phase decreases with increasing unfolding times (k approximately 0.75 min(-1) at 20 degrees C) and becomes undetectable at equilibrium unfolding. According to hydrogen exchange and stopped-flow intrinsic fluorescence data, unfolding of mAAT appears to be complete in less than 10 s, but hydrolysis of the Schiff base linking the coenzyme pyridoxal 5'-phosphate (PLP) to the polypeptide is much slower (k approximately 0.08 min(-1)). This implies the existence in short term unfolded samples of unfolded species with PLP still attached. However, since the disappearance of the fast refolding phase is about 10-fold faster than the release of PLP, the fast refolding phase does not correspond to folding of the coenzyme-containing molecules. The fast refolding phase disappears more rapidly in the pyridoxamine and apoenzyme forms of mAAT, both of which lack covalently attached cofactor. Thus, bound PLP increases the kinetic stability of the fast refolding unfolding intermediates. Conversion between fast and slow folding forms also takes place in an early folding intermediate. The presence of cyclophilin has no effect on the reactivation of either equilibrium or short term unfolded mAAT. These results suggest that proline isomerization may not be the only factor determining the slow refolding of this cofactor-dependent protein.  相似文献   

20.
Khan MK  Miller AL  Bowler BE 《Biochemistry》2012,51(17):3586-3595
We use a host-guest approach to evaluate the effect of Trp guest residues relative to Ala on the kinetics and thermodynamics of formation of His-heme loops in the denatured state of iso-1-cytochrome c at 1.5, 3.0, and 6.0 M guanidine hydrochloride (GdnHCl). Trp guest residues are inserted into an alanine-rich segment placed after a unique His near the N-terminus of iso-1-cytochrome c. Trp guest residues are either 4 or 10 residues from the His end of the 28-residue loop. We find the guest Trp stabilizes the His-heme loop at all GdnHCl concentrations when it is the 4th, but not the 10th, residue from the His end of the loop. Thus, residues near loop ends are most important in developing topological constraints in the denatured state that affect protein folding. In 1.5 M GdnHCl, the loop stabilization is ~0.7 kcal/mol, providing a thermodynamic rationale for the observation that Trp often mediates residual structure in the denatured state. Measurement of loop breakage rate constants, k(b,His), indicates that loop stabilization by the Trp guest residues occurs completely after the transition state for loop formation in 6.0 M GdnHCl. Under poorer solvent conditions, approximately half of the stabilization of the loop develops in the transition state, consistent with contacts in the denatured state being energetically downhill and providing evidence for funneling even near the rim of the folding funnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号