首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The question of whether yeasts with similar physiological properties are closely related has been examined using recently published phylogenetic analyses of 26S domain D1/D2 rDNA nucleotide sequences from all currently recognized ascomycetous yeasts. When apparently unique metabolic pathways are examined, some relationships between physiology and rDNA phylogeny are evident. Most Candida and Pichia species that are able to assimilate methanol as the sole carbon source are in a clade delimited by C. nanospora and C. boidinii. Exceptions are P. capsulata and P. pastoris which are phylogenetically separated from the other methanol-assimilating yeasts. Yeasts subject to the petite mutation, resulting in respiratory deficiency, belong to three different clades, viz. a Saccharomyces clade delimited by S. cerevisiae and S. rosinii,the Dekkera/Brettanomyces clade, and some Schizosaccharomyces species (‘Archiascomycete’ clade). However, petite mutants were also found in Zygosaccharomyces fermentati and some other more distantly related species. Yeasts able to assimilate n-hexadecane, uric acid or amines as sole carbon source are broadly distributed over the ascomycetous phylogenetic tree. However, species that assimilate adenine as sole carbon source are closely related. Most of these species also assimilated glycine, uric acid, n-hexadecane, putrescine and branched-chain aliphatic compounds such as isobutanol, leucine and isoleucine. Among the Saccharomycetales, species utilizing all or the great majority of these eight compounds are in the Stephanoascus/Arxula/Blastobotrys clade. Candida blankii, which is distantly related to this clade, proved to be an exception and assimilated six of eight of these compounds. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Six new species of the yeast genus Candida are described from their unique nucleotide sequences in the D1/D2 domain of 26S rDNA. Five of these species form a clade with Candida tanzawaensis, and the sixth is basal to this group. The new species and their sources of isolation are the following: Candida ambrosiae (type strain NRRL YB-1316, CBS 8844), from insect frass, rotted wood and mushroom fruiting bodies; Candida canberraensis (type strain NRRL YB-2417, CBS 8846), from soil; Candida caryicola (type strain NRRL YB-1499, CBS 8847), from a pignut hickory tree; Candida prunicola (type strain NRRL YB-869, CBS 8848), from exuded gum of a black cherry tree; Candida pyralidae (type strain NRRL Y-27085, CBS 5035), from insect frass; Candida xylopsoci (type strain NRRL Y-27066, CBS 6037), from insect frass.  相似文献   

3.
4.
Two strains of anamorphic yeasts isolated from insect frass collected in southern Thailand were assigned to the genus Candida based on the conventional taxonomic criteria used for yeast classification. In the phylogenetic tree based on the D1/D2 domain of the 26S rDNA, these strains are distant from the known species of yeasts and considered to represent two different new species. They are named Candida kazuoi sp. nov. and Candida hasegawae sp. nov.  相似文献   

5.
Strains of three species of the ascomycetous yeasts Hanseniaspora guilliermondii, Torulaspora delbrueckii, and Debaryomyces hansenii, isolated from the above-ground parts of plants in similar biocenoses of distant geographic regions (Moscow and Novosibirsk regions), have been investigated. The strains in each species were indistinguishable with respect to phenotypic features and general DNA characteristics as determined by restriction analysis. However, comparison of the strains using PCR analysis with nonspecific primers revealed considerable intraspecific variability. From their electrophoretic patterns, the strains of the three species studied were found to cluster in accordance with the region of isolation. This phenomenon is interpreted as an example of the existence of geographical races in the major eurytopic species of yeasts.  相似文献   

6.
Molecular phylogeny of Trametes and related genera   总被引:1,自引:0,他引:1  
Mitochondrial small subunit ribosomal DNAs were sequenced and phylogenetically analyzed for Trametes and related genera of Ryvarden's Trametes group. Parsimony and distance analyses indicated that most of trimitic genera with white rotting habit of the Trametes group clustered within a single clade, suggesting that they may have originated from a common ancestor. The phylogenetic position and generic placement of Trametes consors was uncertain as yet. Trametes trogii grouped with Coriolopsis gallica and indicated that color of the basidiocarp is a poor character at generic level. Nucleotide differences between Daedaleopsis confragosa and D. tricolor were quite few and both species closely grouped together in a same clade, thus supporting that D. tricolor might be an ecotype of D. confragosa.  相似文献   

7.
Strains representing a novel ascomycetous yeast species, Candida sanyaensis, were isolated from soil samples collected on Hainan Island and Taiwan Island in China. Analysis of the D1/D2 domains of the large subunit (LUS) rRNA gene and internal transcribed spacer (ITS) regions of these strains showed that this species was related to Candida tropicalis and Candida sojae, their closest relatives. C. sanyaensis differed by three substitutions and one gap from C. tropicalis, and by four substitutions and one gap from C. sojae, in the D1/D2 domain sequences. However, the ITS sequences of C. sanyaensis were quite divergent from the latter two species, showing that it is a genetically separate species. The novel strains were also found to have very similar PCR-fingerprinting profiles which were quite distinct from those of C. tropicalis and C. sojae strains. The type strain of C. sanyaensis is HN-26T (= CICC 1979T = CBS 12637T).  相似文献   

8.
Approximately 500 species of ascomycetous yeasts, including members of Candida and other anamorphic genera, were analyzed for extent of divergence in the variable D1/D2 domain of large subunit (26S) ribosomal DNA. Divergence in this domain is generally sufficient to resolve individual species, resulting in the prediction that 55 currently recognized taxa are synonyms of earlier described species. Phylogenetic relationships among the ascomycetous yeasts were analyzed from D1/D2 sequence divergence. For comparison, the phylogeny of selected members of the Saccharomyces clade was determined from 18S rDNA sequences. Species relationships were highly concordant between the D1/D2 and 18S trees when branches were statistically well supported.  相似文献   

9.
The biochemical characterization of sugar uptake in yeasts started five decades ago and led to the early production of abundant kinetic and mechanistic data. However, the first accurate overview of the underlying sugar transporter genes was obtained relatively late, due mainly to the genetic complexity of hexose uptake in the model yeast Saccharomyces cerevisiae . The genomic era generated in turn a massive amount of information, allowing the identification of a multitude of putative sugar transporter and sensor-encoding genes in yeast genomes, many of which are phylogenetically related. This review aims to briefly summarize our current knowledge on the biochemical and molecular features of the transporters of hexoses and pentoses in yeasts, when possible establishing links between previous kinetic studies and genomic data currently available. Emphasis is given to recent developments concerning the identification of d -xylose and l -arabinose transporter genes, which are thought to be key players in the optimization of S. cerevisiae strains for bioethanol production from lignocellulose hydrolysates.  相似文献   

10.
Multigene phylogenies have been instrumental in revising the classification of ascosporic (teleomorph) yeasts in a natural system based on lines of descent. Although many taxonomic changes have already been implemented for teleomorph taxa, this is not yet the case for the large genus Candida and smaller anascosporic (anamorph) genera. In view of the recently introduced requirement that a fungal species or higher taxon be assigned only a single valid name under the new International Code of Nomenclature for algae, fungi, and plants (Melbourne Code), the current species of Candida and other anamorph yeast genera must undergo revision to make genus membership consistent with phylogenetic affinities. A review of existing data and analyses shows that certain Candida species may be assigned to teleomorph genera with high confidence using multigene phylogenies. Candida species that form well-circumscribed phylogenetic clades without any teleomorph member justify the creation of new genera. However, a considerable number of Candida species sit at the end of isolated and often long branches, and hence cannot be assigned to larger species groups. They should be maintained in Candida sensu lato until studied by multigene analyses in datasets with comprehensive taxon sampling. The principle of name stability has to be honoured to the largest extent compatible with a natural classification of Candida species.  相似文献   

11.
Chromosome phylogeny of Drosophila pachea and related species   总被引:1,自引:0,他引:1  
  相似文献   

12.
Hsieh HM  Ju YM  Rogers JD 《Mycologia》2005,97(4):844-865
Phylogenetic relationships were inferred among several xylariaceous genera with Nodulisporium or nodulisporium-like anamorphs based on the analyses of beta-tubulin and alpha-actin sequences. One hundred nine cultures and three specimens of 83 representatives of these four genera were included in the study. Biscogniauxia taxa formed a well supported clade that was basal to the other taxa, while taxa of Hypoxylon and Daldinia comprised a large monophyletic group that contained two subclades. The first subclade encompassed Hypoxylon sect. Annulata and is accepted here as the new genus Annulohypoxylon. The second subclade contained taxa of Hypoxylon sect. Hypoxylon and Daldinia. Hypoxylon is restricted to include only those taxa in sect. Hypoxylon. Thirty-three epithets are made in Annulohypoxylon. Hypoxylon cohaerens var. microsporum is raised to the species level and accepted as A. minutellum. Hypoxylon polyporoideum is recognized as distinct from H. crocopeplum. Hypoxylon placentiforme is accepted as Daldinia placentiformis.  相似文献   

13.
Four yeast strains, RS42, SSK10, ST-520 and ST-521, isolated from water in a mangrove forest, bark of a tree and fruit of Ficus sp., respectively, were found to represent a hitherto undescribed anamorphic species. The four strains are related to Candida sinolaborantium in the D1/D2 domain of the large subunit rRNA gene, but differed by eight nucleotide substitutions and two indels, and for this reason are regarded as members of a separate species. Because ascospore formation was not detected, it is described as a new species of Candida, Candida nonsorbophila sp. nov. The type strain is RS42T (BCC 25963T=NBRC 103860T=CBS 10862T). This species is distinguished from C. sinolaborantium by the inability to assimilate l -sorbose, l -rhamnose and galactitol, and a higher maximum growth temperature.  相似文献   

14.
Molecular phylogeny and divergence times of drosophilid species   总被引:17,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   

15.
Summary Three yeasts of the genus Candida (Candida intermedia, candida lipolytica and Candida tropicalis) were cultivated batchwise on three different carbon sources: glucose, acetate, and hexadecane. Growth curves, oxygen uptake rates, CO2 evolution rates and the amount of oxygen required for biomass production were determined. The data were compared and discussed from the point of maximum specific growth rate, maximum oxygen uptake rate, carbon conversion into CO2 and biomass, consumption of oxygen and available energy for cell synthesis. The results indicated a relationship between m m, Ys, YO, and for different carbon sources. YO and were in the same order of magnitude for acetate (0.58 and 0.38 respectively) and hexadecane (0.45 and 0.40 respectively). These values were remarkably lower than those for glucose (1.26 and 0.54 respectively).Symbols av e Available electrons per mol of substrate (dimensionless) - Eav Energy available per mol of substrate (dimensionless) - Cd Dissimilated carbon (%) - m Maximum specific rate of oxygen uptake (mMO2 h–1 g–1) - RQ CO2 evolved per O2 consumed - mol. wt. Molecular weight - YATP Biomass mass yield based on mol of ATP generated (g) - Biomass mass yield based on available energy (g) - YM Biomass mass yield based on mol of organic substrate (g) - YO Biomass mass yield based on oxygen consumed (gg–1) - 1/YO Oxygen consumed for one gram of biomass produced (gg–1) - Ys Biomass mass yield based on organic substrate (dimensionless) - b Reductance degree of biomass (equiv. available electrons/g atom carbon) - s Reductance degree of organic substrate (equiv. available electrons/g atom carbon) - Fraction of energy in organic substrate which is converted to biomass - b Weight fraction carbon in biomass (dimensionless) - s Weight fraction carbon in organic substrate (dimensionless) - m Maximum specific growth rate (h–1)  相似文献   

16.
Two new yeast species were isolated from flowers of Hibiscus species in Eastern and Northern Australia. Kodamaea kakaduensis is heterothallic, haploid, and similar to other Kodamaea species and to Candida restingae. Buds are often produced on short protuberances, and a true mycelium is formed. The new species differs from others by the assimilation of trehalose, melezitose, and xylitol, and is reproductively isolated. The cells of Candida tolerans are small and a pseudomycelium is formed. The carbon and nitrogen assimilation pattern is reminiscent of that of Zygosaccharomyces rouxii but the two are not closely related. Sequences of the D1/D2 domain of large subunit ribosomal DNA confirm the membership of K. kakaduensis in the genus Kodamaea and indicate that C. tolerans belongs to the Clavispora-Metschnikowia clade, with a moderate relatedness to Candida mogii. The type strains are: K. kakaduensis, UWO(PS)98-119.2 (h+, holotype, CBS 8611) and UWO(PS)98-117.1 (h-, isotype, CBS 8612); and C. tolerans, UWO(PS)98-115.5 (CBS 8613).  相似文献   

17.
18.
Seventy yeast strains, representative of twenty-six ascogenous genera, four saprobic hemibasidiomycetous genera and thirteen genera of the Cryptococcales were tested for their reaction with the stabilized aromatic diazonium compound, Diazonium Blue B salt. An aqueous, buffered solution of this compound gave a characteristic red colouration with the colonies of the hemibasidiomycetous species and those Cryptococcales characterized by the hemibasidiomycetous cell-wall type. The characteristic colour reaction was not observed with colonies of either the ascomycetous yeasts or those Cryptococcales characterized by the ascomycetous cell-wall type.The possible taxonomic use of the colour reaction with Diazonium Blue B salt as an affinitive characteristic is discussed.  相似文献   

19.
Because Candida dubliniensis is closely related to Candida albicans, we tested whether it underwent white-opaque switching and mating and whether white-opaque switching depended on MTL homozygosity and mating depended on switching, as they do in C. albicans. We also tested whether C. dubliniensis could mate with C. albicans. Sequencing revealed that the MTLalpha locus of C. dubliniensis was highly similar to that of C. albicans. Hybridization with the MTLa1, MTLa2, MTLalpha1, and MTLalpha2 open reading frames of C. albicans further revealed that, as in C. albicans, natural strains of C. dubliniensis exist as a/alpha, a/a, and alpha/alpha, but the proportion of MTL homozygotes is 33%, 10 times the frequency of natural C. albicans strains. C. dubliniensis underwent white-opaque switching, and, as in C. albicans, the switching was dependent on MTL homozygosis. C. dubliniensis a/a and alpha/alpha cells also mated, and, as in C. albicans, mating was dependent on a switch from white to opaque. However, white-opaque switching occurred at unusually high frequencies, opaque cell growth was frequently aberrant, and white-opaque switching in many strains was camouflaged by an additional switching system. Mating of C. dubliniensis was far less frequent in suspension cultures, due to the absence of mating-dependent clumping. Mating did occur, however, at higher frequencies on agar or on the skin of newborn mice. The increases in MTL homozygosity, the increase in switching frequencies, the decrease in the quality of switching, and the decrease in mating efficiency all reflected a general deterioration in the regulation of developmental processes, very probably due to the very high frequency of recombination and genomic reorganization characteristic of C. dubliniensis. Finally, interspecies mating readily occurred between opaque C. dubliniensis and C. albicans strains of opposite mating type in suspension, on agar, and on mouse skin. Remarkably, the efficiency of interspecies mating was higher than intraspecies C. dubliniensis mating, and interspecies karyogamy occurred readily with apparently the same sequence of nuclear migration, fusion, and division steps observed during intraspecies C. albicans and C. dubliniensis mating and Saccharomyces cerevisiae mating.  相似文献   

20.
Candida albicans is an important human fungal pathogen in which sexual reproduction is under the control of the novel white-opaque switch. Opaque cells are the mating-competent form, whereas white cells do not mate but can still respond to pheromones, resulting in biofilm formation. In this study, we first define the domains of the α-pheromone receptor Ste2 that are necessary for signaling in both white and opaque forms. Both cell states require the IC loop 3 (IC3) and the C-terminal tail of Ste2 for the cellular response, whereas the first IC loop (IC1) of Ste2 is dispensable for signaling. To also address pheromone-receptor interactions in related species, including apparently asexual Candida species, Ste2 orthologues were heterologously expressed in Candida albicans. Ste2 receptors from multiple Candida clade species were functional when expressed in C. albicans, whereas the Ste2 receptor of Candida lusitaniae was nonfunctional. Significantly, however, expression of a chimeric C. lusitaniae Ste2 receptor containing the C-terminal tail of Ste2 from C. albicans generated a productive response to C. lusitaniae pheromone. This system has allowed us to characterize pheromones from multiple Candida species and indicates that functional pheromone-receptor couples exist in fungal species that have yet to be shown to undergo sexual mating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号