首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zelano C  Mohanty A  Gottfried JA 《Neuron》2011,72(1):178-187
Neuroscientific models of sensory perception suggest that the brain utilizes predictive codes in advance of a stimulus encounter, enabling organisms to infer forthcoming sensory events. However, it is poorly understood how such mechanisms are implemented in the olfactory system. Combining high-resolution functional magnetic resonance imaging with multivariate (pattern-based) analyses, we examined the spatiotemporal evolution of odor perception in the human brain during an olfactory search task. Ensemble activity patterns in anterior piriform cortex (APC) and orbitofrontal cortex (OFC) reflected the attended odor target both before and after stimulus onset. In contrast, prestimulus ensemble representations of the odor target in posterior piriform cortex (PPC) gave way to poststimulus representations of the odor itself. Critically, the robustness of target-related patterns in PPC predicted subsequent behavioral performance. Our findings directly show that the brain generates predictive templates or "search images" in PPC, with physical correspondence to odor-specific pattern representations, to augment olfactory perception.  相似文献   

2.
Miura K  Mainen ZF  Uchida N 《Neuron》2012,74(6):1087-1098
How information encoded in neuronal spike trains is used to guide sensory decisions is a fundamental question. In olfaction, a single sniff is sufficient for fine odor discrimination but the neural representations on which olfactory decisions are based are unclear. Here, we recorded neural ensemble activity in the anterior piriform cortex (aPC) of rats performing an odor mixture categorization task. We show that odors evoke transient bursts locked to sniff onset and that odor identity can be better decoded using burst spike counts than by spike latencies or temporal patterns. Surprisingly, aPC ensembles also exhibited near-zero noise correlations during odor stimulation. Consequently, fewer than 100 aPC neurons provided sufficient information to account for behavioral speed and accuracy, suggesting that behavioral performance limits arise downstream of aPC. These findings demonstrate profound transformations in the dynamics of odor representations from the olfactory bulb to cortex and reveal likely substrates for odor-guided decisions. VIDEO ABSTRACT:  相似文献   

3.
Intensity versus identity coding in an olfactory system   总被引:11,自引:0,他引:11  
Stopfer M  Jayaraman V  Laurent G 《Neuron》2003,39(6):991-1004
We examined the encoding and decoding of odor identity and intensity by neurons in the antennal lobe and the mushroom body, first and second relays, respectively, of the locust olfactory system. Increased odor concentration led to changes in the firing patterns of individual antennal lobe projection neurons (PNs), similar to those caused by changes in odor identity, thus potentially confounding representations for identity and concentration. However, when these time-varying responses were examined across many PNs, concentration-specific patterns clustered by identity, resolving the apparent confound. This is because PN ensemble representations changed relatively continuously over a range of concentrations of each odorant. The PNs' targets in the mushroom body-Kenyon cells (KCs)-had sparse identity-specific responses with diverse degrees of concentration invariance. The tuning of KCs to identity and concentration and the patterning of their responses are consistent with piecewise decoding of their PN inputs over oscillation-cycle length epochs.  相似文献   

4.
5.
Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process -lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations.  相似文献   

6.
Li W  Luxenberg E  Parrish T  Gottfried JA 《Neuron》2006,52(6):1097-1108
It is widely presumed that odor quality is a direct outcome of odorant structure, but human studies indicate that molecular knowledge of an odorant is not always sufficient to predict odor quality. Indeed, the same olfactory input may generate different odor percepts depending on prior learning and experience. Combining functional magnetic resonance imaging with an olfactory paradigm of perceptual learning, we examined how sensory experience modifies odor perception and odor quality coding in the human brain. Prolonged exposure to a target odorant enhanced perceptual differentiation for odorants related in odor quality or functional group, an effect that was paralleled by learning-induced response increases in piriform cortex and orbitofrontal cortex (OFC). Critically, the magnitude of OFC activation predicted subsequent improvement in behavioral differentiation. Our findings suggest that neural representations of odor quality can be rapidly updated through mere perceptual experience, a mechanism that may underlie the development of odor perception.  相似文献   

7.
BACKGROUND: Olfactory receptor neurons (ORNs) convey chemical information into the brain, producing internal representations of odors detected in the periphery. A comprehensive understanding of the molecular and neural mechanisms of odor detection and processing requires complete maps of odorant receptor (Or) expression and ORN connectivity, preferably at single-cell resolution. RESULTS: We have constructed near-complete maps of Or expression and ORN targeting in the Drosophila olfactory system. These maps confirm the general validity of the "one neuron--one receptor" and "one glomerulus--one receptor" principles and reveal several additional features of olfactory organization. ORNs in distinct sensilla types project to distinct regions of the antennal lobe, but neighbor relations are not preserved. ORNs grouped in the same sensilla do not express similar receptors, but similar receptors tend to map to closely appositioned glomeruli in the antennal lobe. This organization may serve to ensure that odor representations are dispersed in the periphery but clustered centrally. Integrated with electrophysiological data, these maps also predict glomerular representations of specific odorants. Representations of aliphatic and aromatic compounds are spatially segregated, with those of aliphatic compounds arranged topographically according to carbon chain length. CONCLUSIONS: These Or expression and ORN connectivity maps provide further insight into the molecular, anatomical, and functional organization of the Drosophila olfactory system. Our maps also provide an essential resource for investigating how internal odor representations are generated and how they are further processed and transmitted to higher brain centers.  相似文献   

8.
Khan AG  Thattai M  Bhalla US 《Neuron》2008,57(4):571-585
Many species of mammals are very good at categorizing odors. One model for how this is achieved involves the formation of "attractor" states in the olfactory processing pathway, which converge to stable representations for the odor. We analyzed the responses of rat olfactory bulb mitral/tufted (M/T) cells using stimuli "morphing" from one odor to another through intermediate mixtures. We then developed a phenomenological model for the representation of odors and mixtures by M/T cells and show that >80% of odorant responses to different concentrations and mixtures can be expressed in terms of smoothly summing responses to air and the two pure odorants. Furthermore, the model successfully predicts M/T cell responses to odor mixtures when respiration dependence is eliminated. Thus, odor mixtures are represented in the bulb through summation of components, rather than distinct attractor states. We suggest that our olfactory coding model captures many aspects of single and mixed odor representation in M/T cells.  相似文献   

9.
Animals recognize groups and mixtures of odors as a unitary object. This ability is crucial to generalize known odors to newly encountered ones despite variations. However, it remains largely unknown how multitudes of odors are represented and organized in the higher brain regions to support odor object recognition. Here we discuss recent advances uncovering the population odor responses in the rodent piriform cortex and the Drosophila mushroom body, and highlight the emerging principles on the organization, mechanism, stereotypy, and experience-dependence of central odor representations.  相似文献   

10.
A key question in the analysis of hippocampal memory relates to how attention modulates the encoding and long-term retrieval of spatial and nonspatial representations in this region. To address this question, we recorded from single cells over a period of 5 days in the CA1 region of the dorsal hippocampus while mice acquired one of two goal-oriented tasks. These tasks required the animals to find a hidden food reward by attending to either the visuospatial environment or a particular odor presented in shifting spatial locations. Attention to the visuospatial environment increased the stability of visuospatial representations and phase locking to gamma oscillations—a form of neuronal synchronization thought to underlie the attentional mechanism necessary for processing task-relevant information. Attention to a spatially shifting olfactory cue compromised the stability of place fields and increased the stability of reward-associated odor representations, which were most consistently retrieved during periods of sniffing and digging when animals were restricted to the cup locations. Together, these results suggest that attention selectively modulates the encoding and retrieval of hippocampal representations by enhancing physiological responses to task-relevant information.  相似文献   

11.
Fletcher ML 《PloS one》2011,6(12):e29360
Odors are rarely composed of a single compound, but rather contain a large and complex variety of chemical components. Often, these mixtures are perceived as having unique qualities that can be quite different than the combination of their components. In many cases, a majority of the components of a mixture cannot be individually identified. This synthetic processing of odor information suggests that individual component representations of the mixture must interact somewhere along the olfactory pathway. The anatomical nature of sensory neuron input into segregated glomeruli with the bulb suggests that initial input of odor information into the bulb is analytic. However, a large network of interneurons within the olfactory bulb could allow for mixture interactions via mechanisms such as lateral inhibition. Currently in mammals, it is unclear if postsynaptic mitral/tufted cell glomerular mixture responses reflect the analytical mixture input, or provide the initial basis for synthetic processing with the olfactory system. To address this, olfactory bulb glomerular binary mixture representations were compared to representations of each component using transgenic mice expressing the calcium indicator G-CaMP2 in olfactory bulb mitral/tufted cells. Overall, dorsal surface mixture representations showed little mixture interaction and often appeared as a simple combination of the component representations. Based on this, it is concluded that dorsal surface glomerular mixture representations remain largely analytical with nearly all component information preserved.  相似文献   

12.
Insects and vertebrates separately evolved remarkably similar mechanisms to process olfactory information. Odors are sampled by huge numbers of receptor neurons, which converge type-wise upon a much smaller number of principal neurons within glomeruli. There, odor information is transformed by inhibitory interneuron-mediated, cross-glomerular circuit interactions that impose slow temporal structures and fast oscillations onto the firing patterns of principal neurons. The transformations appear to improve signal-to-noise characteristics, define odor categories, achieve precise odor identification, extract invariant features, and begin the process of sparsening the neural representations of odors for efficient discrimination, memorization, and recognition.  相似文献   

13.
Gupta N  Stopfer M 《Current biology : CB》2011,21(13):R504-R506
Electrophysiological investigations in locusts have revealed that the sparseness of odor representations, in the brain region expected to mediate olfactory learning, is shaped by a unique inhibitory neuron.  相似文献   

14.
A series of experiments sought to clarify the relationship between odor naming and memory by manipulating odor label availability during a dual naming-memory task. Experiment 1 demonstrated that recognition memory and odor naming were both better when the naming task provided participants with odor label alternatives. Consistent and correct odor naming was associated with nearly perfect memory, whereas inconsistent or incorrect naming was associated with very weak memory if any at all. Experiment 2 showed that the availability of odor labels was effective at improving memory only if labels were available at both memory encoding and retrieval, suggesting that the labels were aiding memory by improving the identification of the odors. Odor naming was manipulated in Experiment 3 by varying the number of available labels from 4 to 16 during each odor-naming trial. As found in the previous experiments, naming and memory were strongly related in each of the labeling conditions. Experiment 4 showed that corrective naming feedback produced better memory performance but only when the feedback led to correct odor naming. It was concluded that perceptual processes related to matching olfactory input to acquired, multidimensional representations of odors play a critical role in both odor naming and episodic memory.  相似文献   

15.
How does the nervous system encode complex sensory stimuli? A recent study reveals the fly olfactory system compensates for variability in sensory input as odor representations are restructured for enhanced discriminability and coding efficiency.  相似文献   

16.
There is no single way to represent a task. Indeed, despite experiencing the same task events and contingencies, different subjects may form distinct task representations. As experimenters, we often assume that subjects represent the task as we envision it. However, such a representation cannot be taken for granted, especially in animal experiments where we cannot deliver explicit instruction regarding the structure of the task. Here, we tested how rats represent an odor-guided choice task in which two odor cues indicated which of two responses would lead to reward, whereas a third odor indicated free choice among the two responses. A parsimonious task representation would allow animals to learn from the forced trials what is the better option to choose in the free-choice trials. However, animals may not necessarily generalize across odors in this way. We fit reinforcement-learning models that use different task representations to trial-by-trial choice behavior of individual rats performing this task, and quantified the degree to which each animal used the more parsimonious representation, generalizing across trial types. Model comparison revealed that most rats did not acquire this representation despite extensive experience. Our results demonstrate the importance of formally testing possible task representations that can afford the observed behavior, rather than assuming that animals’ task representations abide by the generative task structure that governs the experimental design.  相似文献   

17.
What is the spatial and temporal nature of odor representations within primary olfactory networks at the threshold of an animal's ability to discriminate? Although this question is of central importance to olfactory neuroscience, it can only be answered in model systems where neural representations can be measured and discrimination thresholds between odors can be characterized. Here, we establish these thresholds for a panel of odors using a Pavlovian paradigm in the moth Manduca sexta. Moths were differentially conditioned to respond to one odor (CS+) but not another (CS-) using undiluted odorants to minimize salience-dependent learning effects. At 24 and 48 h postconditioning, moths were tested for the presence of a conditioned response (CR) with a blank, then the CS+ and CS- (pseudorandomly) across a 5-log step series of increasing concentration. Results identified discrimination thresholds and established that differential CRs to the CS+ and CS- increased with stimulus concentration. Next, 3 separate groups of moths were differentially conditioned at either one-log step below, at, or one log step above the identified discrimination threshold. At 24 and 48 h postconditioning, moths were tested sequentially with a blank, the concentration used for conditioning, and then undiluted odor. Conditioning at one log step below the discrimination threshold established a CR, indicating both stimulus detection and learning, but was insufficient to establish evidence of discrimination. Moths conditioned at the discrimination threshold were able to discriminate but only when stimulated with undiluted odors, indicating learning, but discrimination measures were hampered. When conditioned above the discrimination threshold, moths had no difficulty in discriminating. These results establish methods for psychophysical characterization of discrimination and indicate that differential conditioning at lowered concentrations biases threshold measures.  相似文献   

18.
On the basis of its primary circuit it has been postulated that the olfactory bulb (OB) is analogous to the retina in mammals. In retina, repeated exposure to the same visual stimulus results in a neural representation that remains relatively stable over time, even as the meaning of that stimulus to the animal changes. Stability of stimulus representation at early stages of processing allows for unbiased interpretation of incoming stimuli by higher order cortical centers. The alternative is that early stimulus representation is shaped by previously derived meaning, which could allow more efficient sampling of odor space providing a simplified yet biased interpretation of incoming stimuli. This study helps place the olfactory system on this continuum of subjective versus objective early sensory representation. Here we show that odor responses of the output cells of the OB, mitral cells, change transiently during a go–no-go odor discrimination task. The response changes occur in a manner that increases the ability of the circuit to convey information necessary to discriminate among closely related odors. Remarkably, a switch between which of the two odors is rewarded causes mitral cells to switch the polarity of their divergent responses. Taken together these results redefine the function of the OB as a transiently modifiable (active) filter, shaping early odor representations in behaviorally meaningful ways.  相似文献   

19.
Gottfried JA  Winston JS  Dolan RJ 《Neuron》2006,49(3):467-479
The relationship between odorant structure and odor quality has been a focus of olfactory research for 100 years, although no systematic correlations are yet apparent. Animal studies suggest that topographical representations of odorant structure in olfactory bulb form the perceptual basis of odor quality. Whether central olfactory regions are similarly organized is unclear. Using an olfactory version of fMRI cross-adaptation, we measured neural responses in primary olfactory (piriform) cortex as subjects smelled pairs of odorants systematically differing in quality and molecular functional group (as one critical attribute of odorant structure). Our results indicate a double dissociation in piriform cortex, whereby posterior regions encode quality (but not structure) and anterior regions encode structure (but not quality). The presence of structure-based codes suggests fidelity of sensory information arising from olfactory bulb. In turn, quality-based codes are independent of any simple structural configuration, implying that synthetic mechanisms may underlie our experience of smell.  相似文献   

20.
Certain goal-directed behaviors depend critically upon interactions between orbitofrontal cortex (OFC) and basolateral amygdala (ABL). Here we describe direct neurophysiological evidence of this cooperative function. We recorded from OFC in intact and ABL-lesioned rats learning odor discrimination problems. As rats learned these problems, we found that lesioned rats exhibited marked changes in the information represented in OFC during odor cue sampling. Lesioned rats had fewer cue-selective neurons in OFC after learning; the cue-selective population in lesioned rats did not include neurons that were also responsive in anticipation of the predicted outcome; and the cue-activated representations that remained in lesioned rats were less associative and more often bound to cue identity. The results provide a neural substrate for representing acquired value and features of the predicted outcome during cue sampling, disruption of which could account for deficits in goal-directed behavior after damage to this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号