首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new paralichthyid flounder,Citharichthys gnathus, is described from 25 specimens from the Galapagos Islands. The new species strongly resemblesC. fragilis Gilbert, distributed in the Gulf of California and adjacent waters, in general appearance, and meristic and morphometric characters, but is distinguished from the latter by two adult characters, a remarkable bony knob at the anterior tip of the lower jaw and larger proportion of snout length in standard length.  相似文献   

3.
Patterns of colonization and diversification on islands provide valuable insights into evolutionary processes. Due to their unique geographic position and well known history, the Galapagos Islands are an important model system for evolutionary studies. Here we investigate the evolutionary history of a winged grasshopper genus to infer its origin and pattern of colonization in the Galapagos archipelago. The grasshopper genus Sphingonotus has radiated extensively in the Palaearctic and many species are endemic to islands. In the New World, the genus is largely replaced by the genus Trimerotropis. Oddly, in the Caribbean and on the Galapagos archipelago, two species of Sphingonotus are found, which has led to the suggestion that these might be the result of anthropogenic translocations from Europe. Here, we test this hypothesis using mitochondrial and nuclear DNA sequences from a broad sample of Sphingonotini and Trimerotropini species from the Old World and New World. The genetic data show two distinct genetic clusters representing the New World Trimerotropini and the Old World Sphingonotini. However, the Sphingonotus species from Galapagos and the Caribbean split basally within the Old World Sphingonotini lineage. The Galapagos and Caribbean species appear to be related to Old World taxa, but are not the result of recent anthropogenic translocations as revealed by divergence time estimates. Distinct genetic lineages occur on the four investigated Galapagos Islands, with deep splits among them compared to their relatives from the Palaearctic. A scenario of a past wider distribution of Sphingonotus in the New World with subsequent extinction on the mainland and replacement by Trimerotropis might explain the disjunct distribution.  相似文献   

4.
Aegialomys occurs in open habitats west of the Ecuadorean and Peruvian Andes, including the Galapagos Archipelago. This genus currently includes two species, A. galapagoensis and A. xanthaeolus. We studied patterns of geographic variation to characterize the morphologic and morphometric variation and recognize diagnosable clusters of samples. Employing this evidence, within a phylogenetic framework employing morphological, molecular, and concatenated matrices, we diagnose monophyletic lineages and assign the appropriate names to species–group taxa. Qualitatively, we noted geographic variation in some characters, and quantitatively there is a pronounced increase in cranial dimensions along the north–south distribution axis, revealing the existence of four distinct clusters: North, South, Extreme South, and Galapagos. These results, along with the phylogenetic relationships, allowed us to hypothesize that Aegialomys exhibits four monophyletic species that we call: Aegialomys galapagoensis, restricted to the Galapagos Archipelago; Aegialomys xanthaeolus, distributed from Ecuador to northern Peru; Aegialomys baroni, ocurring in Central Perú; and Aegialomys ica, distributed in southern Peru. Our distributional data suggest that species discontinuities are associated with some well-known barriers in the western portion of South America. Through the Andes and trans–Andean area, there are some geographic features or areas, the Huancabamba Depression, that historically played a key role as barriers to plant and animal dispersion or as a boundaries to species distribution.  相似文献   

5.
A new genus and species of pachyosteomorph arthrodire, Omalosteus krutoensis gen. et sp. nov. from shallow-water marine deposits of the Evlanovo Regional Stage (Upper Frasnian, Upper Devonian) of the Central Devonian Field is described. It is tentatively referred to the family Trematosteidae Gross, 1932, which was earlier believed to be endemic to central Europe. The new genus is characterized by a rounded, dorsoventrally compressed cross section of the pectoral region and smooth head shield and postcranial membrane bones. The centrale is elongated, forming a narrow lateral lobe. The praeorbitale, postorbitale, and centrale come in contact in the center of the orbital region. The mediodorsale is wide, its carinal process projects considerably posteriorly. The anterior margin of the anterior ventrolaterale lacks articular facets for the interlaterale.  相似文献   

6.
Marine algae collected from rock pools on Hood, Fernandina and Mosquera, in the Galapagos Islands, have provided a fauna of 26 ostracod species of which 14 are new. One genus, belonging to the Hemicytheridae, is also new and appears to be endemic to the Islands. From two littoral algal samples collected from Punta Canoa and San Pedro beach, Ecuador, an assemblage of some nine species, four of which are new, is also described. Two ostracods: Touroconcha lapidiscola and Loxoconcha (Lox-ocorniculum) lenticuloides , are the only species so far known to be present both in the Galapagos Islands and off the coast of Central and South America. One species: Cytherelloidea praecipua recorded from off Tobago and Clipperton Islands may be present in the Galapagos but this has not definitely been confirmed. The evolution in the Gulf Coast/Caribbean region of several ostracods and their subsequent dispersal westwards is discussed.  相似文献   

7.
Galapagos giant tortoises (Chelonoidis spp.) are a group of large, long-lived reptiles that includes 14 species, 11 of which are extant and threatened by human activities and introductions of non-native species. Here, we evaluated the phylogenetic relationships of all extant and two extinct species (Chelonoidis abingdonii from the island of Pinta and Chelonoidis niger from the island of Floreana) using Bayesian and maximum likelihood analysis of complete or nearly complete mitochondrial genomes. We also provide an updated phylogeographic scenario of their colonization of the Galapagos Islands using chrono-phylogenetic and biogeographic approaches. The resulting phylogenetic trees show three major groups of species: one from the southern, central, and western Galapagos Islands; the second from the northwestern islands; and the third group from the northern, central, and eastern Galapagos Islands. The time-calibrated phylogenetic and ancestral area reconstructions generally align with the geologic ages of the islands. The divergence of the Galapagos giant tortoises from their South American ancestor likely occurred in the upper Miocene. Their diversification on the Galapagos adheres to the island progression rule, starting in the Pleistocene with the dispersal of the ancestral form from the two oldest islands (San Cristóbal and Española) to Santa Cruz, Santiago, and Pinta, followed by multiple colonizations from different sources within the archipelago. Our work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human-mediated dispersal events and provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galapagos lineages.  相似文献   

8.
A root-knot nematode from Portugal, Meloidogyne lusitanica n. sp., is described and illustrated from specimens obtained from olive trees (Olea europaea L.). Females of the new species have a characteristic perineal pattern with medium to high trapezoidal dorsal arch with distinct punctuations in the tail terminus area. The excretory pore is located posterior to the stylet, about 1.5-2.5 stylet lengths from the anterior end. The stylet is 17.1 μm long with pear-shaped knobs. Males have a rounded, posteriorly sloping head cap and head region not annulated. The robust stylet, 24.5 μ long, has large, elongate knobs. Mean length of the second-stage juveniles is 449.5 μm, stylet length 14.2 μm, and tail length 44.1 μm. Scanning electron microscope observations provide further details of perineal patterns and head and stylet morphology of females, males, and second-stage juveniles. Meloidogyne lusitanica n. sp. did not reproduce on any of the differential hosts used to separate the four most common Meloidogyne species. The common name "olive root-knot nematode" is proposed for M. lusitanica n. sp.  相似文献   

9.
A new chewing louse genus and species belonging to the Philopteridae, namely, Palmaellus inexpectatus n. gen., n. sp., is described. The new genus is distinguished from the other ischnoceran genera hitherto described by its peculiar characters of the dorsal anterior head plate with 2 postero-lateral projections, pterothorax and abdomen with scarce chaetotaxy, male genitalia with simple mesomere and paramere lacking inner digitiform projection, and the genital region of female with postero-vulvar plates bearing setae. It is a parasite of the trumpeters, an avian family endemic to South America's Amazon Basin.  相似文献   

10.
Guava (Psidium guajava) is an aggressive invasive plant in the Galapagos Islands. Determining its provenance and genetic diversity could explain its adaptability and spread, and how this relates to past human activities. With this purpose, we analyzed 11 SSR markers in guava individuals from Isabela, Santa Cruz, San Cristobal, and Floreana islands in the Galapagos, as well as from mainland Ecuador. The mainland guava population appeared genetically differentiated from the Galapagos populations, with higher genetic diversity levels found in the former. We consistently found that the Central Highlands region of mainland Ecuador is one of the most likely origins of the Galapagos populations. Moreover, the guavas from Isabela and Floreana show a potential genetic input from southern mainland Ecuador, while the population from San Cristobal would be linked to the coastal mainland regions. Interestingly, the proposed origins for the Galapagos guava coincide with the first human settlings of the archipelago. Through approximate Bayesian computation, we propose a model where San Cristobal was the first island to be colonized by guava from the mainland, and then, it would have spread to Floreana and finally to Santa Cruz; Isabela would have been seeded from Floreana. An independent trajectory could also have contributed to the invasion of Floreana and Isabela. The pathway shown in our model agrees with the human colonization history of the different islands in the Galapagos. Our model, in conjunction with the clustering patterns of the individuals (based on genetic distances), suggests that guava introduction history in the Galapagos archipelago was driven by either a single event or a series of introduction events in rapid succession. We thus show that genetic analyses supported by historical sources can be used to track the arrival and spread of invasive species in novel habitats and the potential role of human activities in such processes.  相似文献   

11.
Abstract Evolutionary radiations of colonists on archipelagos provide valuable insight into mechanisms and modes of speciation. The apparent diversification of Galapagos mockingbirds (Nesomimus) provoked Darwin's initial conception of adaptive radiation, but the monophyly of this historically important exemplar has not been evaluated with molecular data. Additionally, as with most Galapagos organisms, we have a poor understanding of the temporal pattern of diversification of the mockingbirds following colonization(s) from source populations. Here we present a molecular phylogeny of Galapagos and other mockingbird populations based on mitochondrial sequence data. Monophyly of Galapagos mockingbirds was supported, suggesting a single colonization of the archipelago followed by diversification. Our analyses also indicate that Nesomimus is nested within the traditional genus Mimus, making the latter paraphyletic, and that the closest living relatives of Galapagos mockingbirds appear to be those currently found in North America, northern South America, and the Caribbean, rather than the geographically nearest species in continental Ecuador. Thus, propensity for over‐water dispersal may have played a more important role than geographic proximity in the colonization of Galapagos by mockingbirds. Within Galapagos, four distinct mitochondrial DNA clades were identified. These four clades differ from current taxonomy in several important respects. In particular, mockingbirds in the eastern islands of the archipelago (Española, San Cristóbal, and Genovesa) have very similar mitochondrial DNA sequences, despite belonging to three different nominal species, and mockingbirds from Isabela, in the west of the archipelago, are more phylogenetically divergent than previously recognized. Consistent with current taxonomy is the phylogenetic distinctiveness of the Floreana mockingbird (N. trifasciatus) and close relationships among most mockingbirds from the central and northern region of the archipelago (currently considered conspecific populations of N. parvulus). Overall, phylogeographic patterns are consistent with a model of wind‐based dispersal within Galapagos, with colonization of more northerly islands by birds from more southern populations, but not the reverse. Further radiation in Galapagos would require coexistence of multiple species on individual islands, but this may be prevented by relatively limited morphological divergence among mockingbirds and by lack of sufficient habitat diversity in the archipelago to support more than one omnivorous mimid  相似文献   

12.
Nucleotide sequences of mitochondrial genes (ND1, ND2, COI, and tRNAs) were determined for 38 samples representing 15 taxa of tropidurid lizards from the Galapagos Islands and mainland South America. Phylogenetically informative characters (759 of 1,956) were analyzed under Bayesian, maximum likelihood, and parsimony frameworks. This study supports the hypothesis that tropidurid lizards dispersed to the Galapagos on at least two separate occasions. One dispersal event involved an eastern Galapagos clade (Microlophus habelii and M. bivittatus, on Marchena and San Cristobal islands, respectively) the sister taxon of which is M. occipitalis from coastal Ecuador and Peru; the closest mainland relative of the western Galapagos clade was not unambiguously identified. The wide-ranging M. albemarlensis is revealed to be a complex of weakly divergent lineages that is paraphyletic with respect to the insular species M. duncanensis, M. grayii, and M. pacificus.  相似文献   

13.
The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands. The haplotype of the individual collected alive in 1906 is in the same clade as the haplotype in the contemporary population. To search for traces of a second lineage in the contemporary population on San Cristóbal, we closely examined the population by sequencing the mitochondrial control region for 129 individuals and genotyping 70 of these for both 21 microsatellite loci and >12,000 genome-wide single nucleotide polymorphisms [SNPs]. Only a single mitochondrial haplotype was found, with no evidence to suggest substructure based on the nuclear markers. Given the geographic and temporal proximity of the two deeply divergent mitochondrial lineages in the historical samples, they were likely sympatric, raising the possibility that the lineages coexisted. Without the museum samples, this important discovery of an additional lineage of Galapagos giant tortoise would not have been possible, underscoring the value of such collections and providing insights into the early evolution of this iconic radiation.Subject terms: Phylogenetics, Population genetics  相似文献   

14.
Aim To delineate biogeographical patterns in Galapagos shallow‐water reef fauna at regional scales. Location Galapagos Islands. Methods Fishes and macro‐invertebrates were quantitatively censused using underwater visual techniques along more than 500 transects at defined depth strata across the Galapagos archipelago. Data were analysed using multivariate techniques to define regional patterns and identify species typical of different regions. Results Subtidal communities of fishes and macro‐invertebrates on shallow reefs differed consistently in species composition across the Galapagos archipelago, with three major biogeographical groupings: (1) the ‘far‐northern area’ containing the islands of Darwin and Wolf, (2) the ‘central/south‐eastern area’, including the east coast of Isabela, and (3) the ‘western area’, encompassing Fernandina and western Isabela. In addition, the northern islands of Pinta, Marchena and Genovesa form a separate region in the central/south‐eastern area, and Bahia Elizabeth and Canal Bolivar separate from other parts of the western area. The far‐northern bioregion is characterized by high fish species richness overall, including a high proportion of species of Indo‐Pacific origin. However, very few endemic fishes or species with distributions extending south from Ecuador (‘Peruvian’ species) are present, and the bioregion also possesses relatively low species richness of mobile macro‐invertebrate taxa. By contrast, the ‘western’ bioregion possesses disproportionately high numbers of endemic fish taxa, high numbers of cool‐temperate Peruvian fish species, and high invertebrate species richness, but very few species of Indo‐Pacific origin. The Bahia Elizabeth/Canal Bolivar bioregion possesses more endemic species and fewer species with Peruvian affinities than coasts within the western bioregion. The northern bioregion of Pinta, Marchena and Genovesa represents an overlap zone with affinities to both the far‐northern and south‐eastern islands. The south‐eastern bioregion includes species from a variety of different sources, particularly ‘Panamic’ species with distributions extending north to Central America. Main conclusions On the basis of congruent divisions for reef fish and macro‐invertebrate communities, the Galapagos archipelago can be separated into three major biogeographical areas, two of which can be further subdivided into two regions. Each of these five bioregions possesses communities characterized by a distinctive mix of species derived from Indo‐Pacific, Panamic, Peruvian and endemic source areas. The conservation significance of different regions is not reflected in counts of total species richness. The regions with the lowest overall fish species richness possess a temperate rather than tropical climate and highest levels of endemism.  相似文献   

15.
16.
Differences in dispersal abilities have been implicated for causing disparate evolutionary patterns between Columbicola and Physconelloides lice (Insecta: Phthiraptera). However, no study has documented straggling (when lice are found on atypical hosts) rates within these lineages. We used the fact that the Galapagos Hawk, Buteo galapagoensis (Gould) (Falconiformes) feeds on the Galapagos Dove Zenaida galapagoensis Gould (Columbiformes) within an ecologically simplified setting. The Galapagos Dove is the only typical host of Columbicola macrourae (Wilson) and Physconelloides galapagensis (Kellogg and Huwana) in Galapagos. We quantitatively sampled and found these lice on both bird species. A DNA barcoding approach confirmed that stragglers were derived from Galapagos doves. We also collected a Bovicola sp. louse, likely originating from a goat (Capra hircus). On hawks, C. macrourae was significantly more prevalent than P. galapagensis. On doves, the two lice were equally prevalent and abundant. Differences in prevalence on hawks was a function of differences in straggling rate between lice, and not a reflection of their relative representation within the dove population. This provides further evidence that differences in dispersal abilities may drive differences in the degree of cospeciation in Columbicola and Phyconelloides lice, which have become model systems in evolutionary biology.  相似文献   

17.
云南武定节甲类的新材料   总被引:1,自引:0,他引:1  
文中描述了采自云南武定中泥盆统一新的属种Yinostius maior gen.et sp.nov.属于短胸节甲类Heterosteidae科,这类化石在我国系初次发现。  相似文献   

18.
A new jawfish,Stalix toyoshio, is described on the basis of three specimens (41.5–43.2 mm SL) collected from a depth of 77 m in the Tanegashima Straits, southern Kyushu, Japan. This species is distinguished from otherStalix by the following combination of characters: no stripes, blotches or spots on body and vertical fins; cephalic pores well developed; brown speckles on head; no pigmentation between the 4th mandibular pores on both sides; less pigmentation on anterior gular region; anterior two mandibular pores confluent; and 6th dorsal fin spine strongly forked.  相似文献   

19.
Studies of Darwin's finches of the Galapagos Islands have provided pivotal insights into the interplay of ecological variation, natural selection, and morphological evolution. Here we document, across nine Darwin's finch species, correlations between morphological variation and bite force capacity. We find that bite force correlates strongly with beak depth and width but only weakly or not at all with beak length, a result that is consistent with prior demonstrations of natural selection on finch beak morphology. We also find that bite force is predicted even more strongly by head width, which exceeds all beak dimensions in predictive strength. To explain this result we suggest that head width determines the maximum size, and thus maximum force generation capacity of finch jaw adductor muscles. We suggest that head width is functionally relevant and may be a previously unrecognized locus of natural selection in these birds, because of its close relationship to bite force capacity.  相似文献   

20.
Ornithodoros (Alectorobius) spheniscus n. sp., described from wild-caught and laboratory-reared females, males, nymphs, and larvae parasitizing the Humboldt Penguin, Spheniscus humboldti Meyen, is the fifth species of the Ornithodoros (Alectorobius) capensis group to be recognized in the Neotropical Region. A related Peruvian species, Ornithodoros (Alectorobius) amblus Chamberlin, also parasitizes S. humboldti but is recorded from a wider range of marine birds breeding on the Pacific coast and offshore islands, where the birds congregate to feed on the rich fish fauna usually produced by the Humboldt current. Differential criteria are provided for the new species, O. (A.) amblus, and Ornithodoros (Alectorobius) yunkeri Keirans, Clifford, and Hoogstraal of the Galapagos. These 3 members of the O. (A.) capensis group parasitize marine birds associated with the Humboldt current in western South America and the Galapagos. Persons visiting Humboldt Penguin breeding sites in caves and on barren coastal ledges are eagerly attacked by nymphal and adult O. (A.) spheniscus and suffer afterward from pruritus and slowly-healing blisters. The O. (A.) spheniscus life cycle required 128 to 193 days in the laboratory and, as typical of bird-parasitizing members of the subgenus Alectorobius, the first nymphal instar did not feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号