首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gln synthetase (GS) is the key enzyme in N metabolism and it catalyzes the synthesis of Gln from glutamic acid, ATP, and NH4+. There are two major isoforms of GS in plants, a cytosolic form (GS1) and a chloroplastic form (GS2). In leaves, GS2 functions to assimilate ammonia produced by nitrate reduction and photorespiration, and GS1 is the major isoform assimilating NH3 produced by all other metabolic processes, including symbiotic N2 fixation in the nodules. GS1 is encoded by a small multigene family in soybean (Glycine max), and cDNA clones for the different members have been isolated. Based on sequence divergence in the 3'-untranslated region, three distinct classes of GS1 genes have been identified (alpha, beta, and gamma). Genomic Southern analysis and analysis of hybrid-select translation products suggest that each class has two distinct members. The alpha forms are the major isoforms in the cotyledons and young roots. The beta forms, although constitutive in their expression pattern, are ammonia inducible and show high expression in N2-fixing nodules. The gamma1 gene appears to be more nodule specific, whereas the gamma2 gene member, although nodule enhanced, is also expressed in the cotyledons and flowers. The two members of the alpha and beta class of GS1 genes show subtle differences in the expression pattern. Analysis of the promoter regions of the gamma1 and gamma2 genes show sequence conservation around the TATA box but complete divergence in the rest of the promoter region. We postulate that each member of the three GS1 gene classes may be derived from the two ancestral genomes from which the allotetraploid soybean was derived.  相似文献   

2.
The glutamine synthetase (GS) gene family of Medicago truncatula Gaertn. contains three genes related to cytosolic GS (MtGSa, MtGSb, and MtGSc), although one of these (MtGSc) appears not to be expressed. Sequence analysis suggests that the genes are more highly conserved interspecifically rather than intraspecifically: MtGSa and MtGSb are more similar to their homologs in Medicago sativa and Pisum sativum than to each other. Studies in which gene-specific probes are used show that both MtGSa and MtGSb are induced during symbiotic root nodule development, although not coordinately. MtGSa is the most highly expressed GS gene in nodules but is also expressed to lower extents in a variety of other organs. MtGSb shows higher levels of expression in roots and the photosynthetic cotyledons of seedlings than in nodules or other organs. In roots, both genes are expressed in the absence of an exogenous nitrogen source. However the addition of nitrate leads to a short-term, 2- to 3-fold increase in the abundance of both mRNAs, and the addition of ammonium leads to a 2-fold increase in MtGSb mRNA. The nitrogen supply, therefore, influences the expression of the two genes in roots, but it is clearly not the major effector of their expression. In the discussion section, the expression of the GS gene family of the model legume M. truncatula is compared to those of other leguminous plants.  相似文献   

3.
In plants, glutamine synthetase (GS) is the enzyme primarily responsible for the assimilation of ammonia into organic nitrogen. In Phaseolus vulgaris a number of isoenzymic forms of GS are found, each of which consists of eight subunits of mol. wt 41 000-45 000. The GS subunits of P. vulgaris have previously been shown to be encoded by a small multigene family and a partial cDNA clone for a nodule-specific GS subunit has been obtained. We report here the isolation and nucleotide sequencing of two essentially full-length GS cDNA clones (pR-1 and pR-2) from a root cDNA library and the deduced amino acid sequences of the corresponding GS subunits (355 amino acid residues each). The coding sequences of pR-1 and pR-2 are closely related (80% nucleotide homology, 88% amino acid homology), but their 5'- and 3'-untranslated regions have diverged almost completely. Both pR-1 and pR-2 are related to, but distinct from, the nodule GS clone, pcPvNGS-01 (or pN-1). Hybridization to genomic Southern blots showed that the three GS mRNAs are encoded by three seperate genes and indicated the existence of a fourth class of GS gene. An S1 nuclease protection assay demonstrated the presence of R-1 and R-2 mRNA in both roots and leaves and confirmed that expression of the N-1 gene is nodule-specific. Expression of the R-1 and R-2 genes in the roots did not change significantly during nodulation. However, only the R-1 gene is expressed in the nodules themselves, indicating that the R-2 gene is specifically repressed during nodule development.  相似文献   

4.
A cDNA library prepared from pea nodule poly(A)+ RNA was screened by differential hybridization with cDNA probes synthesized from root and nodule RNA respectively. From the cDNA clones that hybridized exclusively with the nodule probe five clones, designated pPsNod 6, 10, 11, 13 and 14 and each containing unique sequences, were further characterized together with one leghemoglobin and one root-specific cDNA clone. In vitro translation of RNA selected by the pPsNod clones showed that the corresponding genes encode nodulins with molecular weights ranging from 5 800 to 19 000. During pea root nodule development expression of the five PsNod genes starts more or less concomitantly with the onset of nitrogen fixing activity in the nodules and the time course of appearance and accumulation of the nodulin mRNAs is similar to that of leghemoglobin mRNA. In ineffective pea root nodules expression of the PsNod genes is induced but the final accumulation levels of the mRNAs are markedly reduced to various degrees. The expression of another nodulin gene, designated ENOD2, was followed using a heterologous soybean cDNA clone as probe. In pea root nodules the ENOD2 gene is expressed at least five days before the PsNod and leghemoglobin genes, and in contrast to the PsNod mRNAs the concentration of the ENOD2 mRNA is the same in wild type and fix - nodules. The results described suggest that in root nodules several regulatory mechanisms exist which determine the final nodulin mRNA amounts accumulating in the root nodule.  相似文献   

5.
6.
Glutamine synthetase (GS; EC 6.3.1.2) is present in different subcellular compartments in plants. It is located in the cytoplasm in root and root nodules while generally present in the chloroplasts in leaves. The expression of GS gene(s) is enhanced in root nodules and in soybean roots treated with ammonia. We have isolated four genes encoding subunits of cytosolic GS from soybean (Glycine max L. cv. Prize). Promoter analysis of one of these genes (GS15) showed that it is expressed in a root-specific manner in transgenic tobacco and Lotus corniculatus, but is induced by ammonia only in the legume background. Making the GS15 gene expression constitutive by fusion with the CaMV-35S promoter led to the expression of GS in the leaves of transgenic tobacco plants. The soybean GS was functional and was located in the cytoplasm in tobacco leaves where this enzyme is not normally present. Forcing this change in the location of GS caused concomitant induction of the mRNA for a native cytosolic GS in the leaves of transgenic tobacco. Shifting the subcellular location of GS in transgenic plants apparently altered the nitrogen metabolism and forced the induction in leaves of a native GS gene encoding a cytosolic enzyme. The latter is normally expressed only in the root tissue of tobacco. This phenomenon may suggest a hitherto uncharacterized metabolic control on the expression of certain genes in plants.  相似文献   

7.
8.
9.
10.
11.
12.
In vitro translation products of total RNA isolated from soybean nodules at successive stages of nodule development were analyzed by two-dimensional gel electrophoresis. In that way the occurrence of over 20 mRNAs specifically transcribed from nodulin genes was detected. The nodulin genes could be divided into two classes according to the time of expression during nodule development. Class A comprises at least 4 nodulin mRNAs which are found when a globular meristem is present in the root cortex. These class A nodulin genes have a transient expression. Class B nodulin genes are expressed when the formation of a nodule structure has been completed. Bradyrhizobium japonicum nod + fix-mutants, with large deletions spanning the nif H,DK region, still induced nodules showing normal expression of all nodulin genes, indicating that the nif H,DK region is not involved in the induction of nodulin genes. In nodules induced by Bradyrhizobium japonicum nod + fix-mutant HS124 the bacteria are rarely released from the infection thread and the few infected cells appear to be collapsed. All class A and class B nodulin genes are expressed in HS124 nodules with the exception of 5 class B genes.  相似文献   

13.
14.
Summary A cDNA clone (pcPvNGS-01) to glutamine synthetase (GS) mRNA from root nodules of Phaseolus vulgaris showed cross-hybridization to GS and mRNA from soybean root nodules, thus allowing its use as a probe to study the expression of GS genes during root nodule development in soybeans. Hybrid-select translation of root and nodule RNA of soybean with DNA from pcPvNGS-01, followed by 2D gel electrophoresis, showed six peptides in the root and an additional four peptides in the nodule which represent nodule-specific glutamine synthetase (GSn) gene products. The GSn gene products appeared for the first time between day 11 and 12 after infection, either concomitant with the onset of nitrogenase activity or immediately following it. The levels of expression of the GSn and leghemoglobin genes were not affected in young Fix- nodules formed by Bradyrhizobium japonicum strains that are defective in nitrogenase activity, suggesting that the induction of these two sets of host genes take place independent of nitrogenase activity. However, in Fix- nodules that are incapable of maintaining the peribacteroid membrane, GSn gene products were not detected while 1ba, 1bc2 and 1bc3 appeared. In both the timing of appearance during root nodule development and the effect of different bacterial mutations on the expression, GSn genes differ from most other nodulin genes examined (30), suggesting different regulatory mechanisms.  相似文献   

15.
16.
We have characterized the distinct polypeptides, primary translation products and mRNAs encoding glutamine synthetase (GS) in the various organs of pea. Western blot analysis of soluble protein has identified five distinct GS polypeptides which are expressed at different relative levels in leaves, roots and nodules of pea. Of the two GS polypeptides in leaves (44 and 38 kd), the 44-kd GS polypeptide is predominant and is localized to the chloroplast stroma. In roots, the predominant GS polypeptide is 38 kd. Upon Rhizobium infection of roots, three 37-kd GS polypeptides increase in abundance in the nodules relative to uninfected roots. cDNA clones encoding three different GS mRNAs have been characterized. Hybrid-select translation has identified three different GS primary translation products (49, 38 and 37 kd). Two cDNA clones (pGS134 and pGS341) are homologous to GS mRNAs most abundant in nodules which encode the 38- and 37-kd GS primary translation products. A third cDNA (pGS197) corresponds to a larger GS mRNA species specific to leaf poly(A) RNA, which encodes a 49-kd putative precursor to the mature chloroplast GS polypeptide. cDNA sequence analysis and Southern blot analysis of pea nuclear DNA identifies at least three genes encoding GS in pea which are related but distinct in structure and in vivo pattern of expression.  相似文献   

17.
18.
Although numerous reports have documented the effect of bacterially-inducedineffectiveness on root nodule structure, function, and plantgene expression, few studies have detailed the effect of theplant genome on similar parameters. In this report effective(N2-fixing) broadbean {Vicia faba L.) and plant-controlled ineffective(non-N2-fixing) broadbean recessive for the sym-1 gene werecompared for nodule structure, developmental expression of noduleenzyme activities, enzyme proteins, and mRNAs involved in Nassimilation, leghemoglobin (Lb) synthesis, and acetylene reductionactivity (ARA). During development of effective wild-type nodules,glutamine synthetase (GS), aspartate aminotransferase (AAT),phosphoenolpyruvate carboxylase (PEPC) and NADH-glutamate synthase(GOGAT) activities and enzyme proteins increased coincidentwith nodule ARA. The increases in GS, AAT, and PEPC were associatedwith increased synthesis of mRNAs for these proteins. Synthesisof Lb polypeptides and mRNAs during development of effectivenodules was similar to that of GS, AAT, and PEPC. By contrast,ineffective sym-1 nodules displayed little or no ARA and hadneither the increases in enzyme activities nor enzyme proteinsand mRNAs as seen for effective nodules. The effect of the sym-1gene appeared to occur late in nodule development at eitherthe stage of bacterial release from infection threads or differentiationof bacteria into bacteroids. High in vitro enzyme activities,enzyme polypeptides, and mRNA levels in parental effective noduleswere dependent upon a signal associated with effective bacteroidsthat was lacking in sym-1 nodules. Nodule organogenesis didnot appear to be a signal for the induction of GS, PEPC, AAT,and Lb expression in sym-1 nodules. Key words: Vicia faba, mutation, sym-1 gene, nodules  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号