首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lettuce (Lactuca sativa L.) mutant that exhibits a procumbent growth habit was identified and characterized. In two wild type (WT) genetic backgrounds, segregation patterns revealed that the mutant phenotype was controlled by a recessive allele at a single locus, which was designated weary. Hypocotyls and inflorescence stems of plants homozygous for the weary allele exhibited reduced gravitropic responses compared with WT plants, but roots exhibited normal gravitropism. Microscopic analysis revealed differences in the radial distribution of amyloplasts in hypocotyl and inflorescence stem cells of weary and WT plants. Amyloplasts occurred in a single layer of endodermal cells in WT hypocotyls and inflorescence stems. By contrast, amyloplasts were observed in several layers of cortical cells in weary hypocotyls, and weary inflorescence stem cells lacked amyloplasts entirely. These results are consistent with the proposed role of sedimenting amyloplasts in shoot gravitropism of higher plants. The phenotype associated with the weary mutant is similar to that described for the Arabidopsis mutant sgr1/scr, which is defective in radial patterning and gravitropism.  相似文献   

2.
By screening a T-DNA population of Arabidopsis mutants for alterations in inflorescence stem vasculature, we have isolated a mutant with a dramatic increase in vascular tissue development, characterized by a continuous ring of xylem/phloem. This phenotype is the consequence of premature and numerous cambial cell divisions in both the fascicular and interfascicular regions that result in the loss of the alternate vascular bundle/fiber organization typically observed in Arabidopsis stems. The mutant was therefore designated high cambial activity (hca). The hca mutation also resulted in pleiotropic effects including stunting and a delay in developmental events such as flowering and senescence. The physiological characterization of hca seedlings in vitro revealed an altered auxin and cytokinin response and, most strikingly, an enhanced sensitivity to cytokinin. These results were substantiated by comparative microarray analysis between hca and wild-type plants. The genetic analysis of hca indicated that the mutant phenotype was not tagged by the T-DNA and that the hca mutation segregated as a single recessive locus, mapping to the long arm of chromosome 4. We propose that hca is involved in mechanisms controlling the arrangement of vascular bundles throughout the plant by regulating the auxin-cytokinin sensitivity of vascular cambial cells. Thus, the hca mutant is a useful model for examining the genetic and hormonal control of cambial growth and differentiation.  相似文献   

3.
The KNAT1 gene is a member of the Class I KNOXhomeobox gene family and is thought to play an important role in meristem development and leaf morphogenesis. Recent studies have demonstrated that KNAT1/BP regulates the architecture of the inflorescence by affecting pedicle development in Arabidopsis thaliana. Herein, we report the characterization of an Arabidopsis T-DNA insertion mutant that shares considerable phenotypic similarity to the previously identified mutant brevipedicle (bp). Molecular and genetic analyses showed that the mutant is allelic to bp and that the T-DNA is located within the first helix of the KNAT1 homeodomain (HD). Although the mutation causes a typical abnormality of short pedicles, propendent siliques, and semidwarfism, no obvious defects are observed in the vegetative stage. A study on cell morphology showed that asymmetrical division and inhibition of cell elongation contribute to the downward-pointing and shorter pedicle phenotype. Loss of KNAT/BPfunction results in the abnormal development of abscission zones. Mlcroarray analysis of gene expression profiling suggests that KNAT1/BP may regulate abscission zone development through hormone signaling and hormone metabolism in Arabidopsis.  相似文献   

4.
To examine the mechanism underlying the reproductive development in monocarpic plants, we screened for mutants that exhibit premature cessation of inflorescence growth in Arabidopsis. We identified a novel mutant line that exhibited earlier cessation of flower formation and inflorescence stem elongation. This mutant also exhibited accelerated rosette leaf senescence after the cessation of the inflorescence growth. We designated the mutant fireworks (fiw) because flowers and siliques were clustered at the top of the fiw inflorescence. The fiw mutation was a single, recessive mutation and mapped on the lower part of chromosome 4. The fiw phenotype was not observable during vegetative growth, but the inflorescence growth was arrested more than 7 d earlier than the wild type (WT). Microscopic observation revealed that the fiw apical meristem was structurally preserved. The premature arrest of growth was observed not only in the primary inflorescence but also in the lateral inflorescence, which is consistent with the global proliferative arrest observed later in WT. Regardless of such dramatic phenotypic features, the fiw plants bore normal flowers and set fully matured siliques.  相似文献   

5.
Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional alpha-L-arabinofuranosidase/beta-D-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis.  相似文献   

6.
A gain-of-function Arabidopsis mutant was identified via activation tagging genetic screening. The mutant exhibited clustered ectopic floral buds on the surface of inflorescence stems. The mutant was designated as sef for stem ectopic flowers. Our detailed studies indicate that the ectopic flower meristems are initiated from the differentiated cortex cells. Inverse PCR and sequence analysis indicated that the enhancer-containing T-DNA from the activation tagging construct, SKI015, was inserted upstream of the previously cloned WUS gene encoding a homeodomain protein. Studies from RT-PCR, RNA in situ hybridization and transgenic plant analysis further confirmed that the phenotypes of sef are caused by the overexpression of WUS. Our results suggest that overexpression of WUS could trigger the cell pluripotence and reestablish a new meristem in cortex. The type of new meristems caused by WUS overexpression was dependent upon the developmental and physiological stages of a plant. With the help of some undefined factors in the reproductive organs the new meristems differentiated into floral buds. In a vegetative growth plant, however, only the new vegetative buds can be initiated upon the overexpression of WUS. These studies provide new insights of WUS on flower development.  相似文献   

7.
Marks MD  Feldmann KA 《The Plant cell》1989,1(11):1043-1050
Progeny from a transformed Arabidopsis plant (produced by the Agrobacterium-mediated seed transformation procedure) were found to be segregating for an altered trichome phenotype. The mutant plants have normal leaf trichomes but completely lack trichomes usually found on the stem. The mutation is tightly linked to a T-DNA insert. Complementation analysis with genetically characterized trichome mutants revealed that the new mutation is an allele of the GL1 locus. The new trichome mutant has been designated gl1-43. DNA gel blot analysis indicated that the insert site contains a complex array of at least four tandemly linked T-DNA units oriented as both direct and inverted repeats. A genomic library, constructed using DNA from gl1-43 plants, was used to clone DNA that flanks the left end of the T-DNA insert. The availability of DNA from the region interrupted by the insert has allowed initial characterization of the wild-type GL1 gene and will permit the eventual cloning and sequencing of this developmentally interesting gene.  相似文献   

8.
9.
10.
11.
The Arabidopsis gene Terminal Flower 1 (TFL1) controls inflorescence meristem identity. A terminal flower (tfl1) mutant, which develops a terminal flower at the apex of the inflorescence, was induced by transformation with T-DNA. Using a plant DNA fragment flanking the integrated T-DNA as a probe, a clone was selected from a wild-type genomic library. Comparative sequence analysis of this clone with an EST clone (129D7T7) suggested the existence of a gene encoding a protein similar to that encoded by the cen gene which controls inflorescence meristem identity in Antirrhinum. Nucleotide sequences of the region homologous to this putative TFL1 gene were compared between five chemically induced tfl1 mutants and their parental wild-type ecotypes. Every mutant was found to have a nucleotide substitution which could be responsible for the tfl1 phenotype. This result confirmed that the cloned gene is TFL1 itself. In our tfl1 mutant, no nucleotide substitution was found in the transcribed region of the gene, and the T-DNA-insertion site was located at 458?bp downstream of the putative polyadenylation signal, suggesting that an element important for expression of the TFL1 gene exists in this area.  相似文献   

12.
从已构建的水稻(Oryza sativa L.)T-DNA插入突变体中鉴定获得一株穗部额外发育出叶片的突变体,并根据该叶片的形态学位置将其命名为剑叶突变体(J4)。研究表明这种额外发育的叶片呈现明显的缺陷,主要表现为叶片短小、表皮细胞变小、叶片中维管束数目减少等。进一步通过TAIL-PCR和inverse-PCR的方法克隆该突变体中T-DNA插入位置的旁邻序列,从而准确地将T-DNA定位到2号染色体上。基因表达分析显示,T-DNA插入位置附近的AK100376基因在J4突变体以及表型类似突变体neck leaf 1中的表达均被明显下调,可初步将其确定为与剑叶突变体表型相关的候选基因。  相似文献   

13.
14.
Mutation of the SCARECROW (SCR) gene results in a radial pattern defect, loss of a ground tissue layer, in the root. Analysis of the shoot phenotype of scr mutants revealed that both hypocotyl and shoot inflorescence also have a radial pattern defect, loss of a normal starch sheath layer, and consequently are unable to sense gravity in the shoot. Analogous to its expression in the endodermis of the root, SCR is expressed in the starch sheath of the hypocotyl and inflorescence stem. The SCR expression pattern in leaf bundle sheath cells and root quiescent center cells led to the identification of additional phenotypic defects in these tissues. SCR expression in a pin-formed mutant background suggested the possible origins of the starch sheath in the shoot inflorescence. Analysis of SCR expression and the mutant phenotype from the earliest stages of embryogenesis revealed a tight correlation between defective cell divisions and SCR expression in cells that contribute to ground tissue radial patterning in both embryonic root and shoot. Our data provides evidence that the same molecular mechanism regulates the radial patterning of ground tissue in both root and shoot during embryogenesis as well as postembryonically.  相似文献   

15.
16.
17.
前期研究表明AtcpSecA基因的突变使叶绿体发育缺陷,内部缺少正常类囊体片层结构,叶片呈黄白色。在此基础上我们进一步研究AtcpSecA基因的表达特异性,并构建了AtcpSecA基因启动子与报告基因GUS的融合基因AtcpSecA::GUS,以农杆菌介导方法转化获得转基因拟南芥。GUS组织化学染色结果表明,在AtcpSecA::GUS转基因拟南芥的下胚轴、子叶、叶片、果柄等绿色组织中有很强的GUS活性,而在根、花序和种荚等非绿色组织中几乎没有GUS活性。降低培养基中琼脂浓度转基因拟南芥中AtcpSecA::GUS基因的表达明显受抑制,暗中则显著受到促进。  相似文献   

18.
An allelic series of the novel argonaute mutant (ago1-1 to ago1-6) of the herbaceous plant Arabidopsis thaliana has been isolated. The ago1 mutation pleotropically affects general plant architecture. The apical shoot meristem generates rosette leaves and a single stem, but axillary meristems rarely develop. Rosette leaves lack a leaf blade but still show adaxial/abaxial differentiation. Instead of cauline leaves, filamentous structures without adaxial/abaxial differentiation develop along the stem and an abnormal inflorescence bearing infertile flowers with filamentous organs is produced. Two independent T-DNA insertions into the AGO1 locus led to the isolation of two corresponding genomic sequences as well as a complete cDNA. The AGO1 locus was mapped close to the marker mi291a on chromosome 1. Antisense expression of the cDNA resulted in a partial mutant phenotype. Sense expression caused some transgenic lines to develop goblet-like leaves and petals. The cDNA encodes a putative 115 kDa protein with sequence similarity to translation products of a novel gene family present in nematodes as well as humans. No specific function has been assigned to these genes. Similar proteins are not encoded by the genomes of yeast or bacteria, suggesting that AGO1 belongs to a novel class of genes with a function specific to multicellular organisms.  相似文献   

19.
The Arabidopsis gene Terminal Flower 1 (TFL1) controls inflorescence meristem identity. A terminal flower (tfl1) mutant, which develops a terminal flower at the apex of the inflorescence, was induced by transformation with T-DNA. Using a plant DNA fragment flanking the integrated T-DNA as a probe, a clone was selected from a wild-type genomic library. Comparative sequence analysis of this clone with an EST clone (129D7T7) suggested the existence of a gene encoding a protein similar to that encoded by the cen gene which controls inflorescence meristem identity in Antirrhinum. Nucleotide sequences of the region homologous to this putative TFL1 gene were compared between five chemically induced tfl1 mutants and their parental wild-type ecotypes. Every mutant was found to have a nucleotide substitution which could be responsible for the tfl1 phenotype. This result confirmed that the cloned gene is TFL1 itself. In our tfl1 mutant, no nucleotide substitution was found in the transcribed region of the gene, and the T-DNA-insertion site was located at 458 bp downstream of the putative polyadenylation signal, suggesting that an element important for expression of the TFL1 gene exists in this area. Received: 14 November 1996 / Accepted: 29 November 1996  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号